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Abstract

A continuous one-dimensional scenery is a double-infinite sequence
of points (thought of as locations of bells) in R. Assume that a
scenery X is observed along the path of a Brownian motion in the
following way: when the Brownian motion encounters a bell differ-
ent from the last one visited, we hear a ring. The trajectory of the
Brownian motion is unknown, whilst the scenery X is known except
in some finite interval. We prove that given only the sequence of times
of rings, we can a.s. reconstruct the scenery X entirely. For this we
take the scenery X to be a local perturbation of a Poisson scenery X ′.
We present an explicit reconstruction algorithm. This problem is the
continuous analog of the “detection of a defect in a discrete scenery”
as studied by Kesten [13] and Howard [9, 10]. Many of the essential
techniques used with discrete sceneries do not work with continuous
sceneries.
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1 Introduction and main result

Suppose that countably many bells are placed on R. Start a Brownian motion
from 0; each time it hits a bell different from the last one visited, we hear
a ring. During this process all the bells remain in the same position. The
set of locations of the bells in R is referred to as the scenery. Suppose now
that we cannot observe the trajectory of the Brownian motion, and that the
scenery is not completely known either. On the other hand, let the sequence
of time occurrences of the rings be known to us.

The detection of a local perturbation problem can be formulated as follows:
is it possible to recover the exact scenery a.s. given only the sequence of rings
and the scenery up to a local perturbation?

In this paper, we answer this question affirmatively provided that the
scenery is a local perturbation of a random realization of a one-dimensional
Poisson process with bounded rate. The realization of the one-dimensional
Poisson process is known to us but we do not know in which way and where
it was perturbed.

This problem is the continuous analog of the problem of detecting a defect
in a scenery seen along the path of a random walk. For periodic sceneries
this problem was studied by Howard [9, 10], whilst for random sceneries with
at least four colors the detection problem was solved by Harry Kesten [13].
In the discrete case (not in this paper) one considers a discrete scenery ξ :
Z → {0, 1, . . . , C − 1} and a random walk {St}t∈N. The discrete scenery is
a coloring of the integers with C colors. One observes the discrete scenery
seen along the path of the random walk, i.e. the sequence χ0, χ1, . . ., where
χi := ξ(Si). From this one tries to infer about ξ.

It is worth noticing that in the case of the present paper, i.e. in the case of
a continuous scenery, there are no “colors”: all the bells ring in the same way.
Hence, we have to use the time length between successive rings to estimate
where the random walk is. It turn out that bells close to each other tend to
confer a lot of information. In discrete scenery reconstruction it is usually
the opposite: long blocks of only one color are the essential “markers”.

The continuous case considered here contains one of the major difficulties
still open in discrete scenery reconstruction. Roughly speaking, in any part
of the scenery one can obtain any finite set of observations in the continu-
ous case. Some finite set of observations might be untypical but are never
impossible. In all the discrete cases, where scenery reconstruction has been
proven possible, there exist patterns which can appear in the observations
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only when the random walk dwells in some specific regions of the scenery.
This is one more reason which makes it worthwhile studying the continuous
case.

Also, we should mention that one of the main techniques used in discrete
reconstruction does not work here. This is the “going in a straight path
from x to y” as is used in a majority of discrete reconstruction papers. Instead
we use an estimate of the probability to hear a ring a certain amount of time
after being at a marker.

There exists one other related continuous problem solved by Burdzy [3].
He takes an iterated Brownian motion and shows that the path of the outer
one can be a.s. reconstructed. This is the continuous analog of reconstruct-
ing a random walk path given an iterated random walk path. Matzinger [25]
proved that the reconstruction of a 3-color scenery seen along a simple ran-
dom walk is equivalent to this problem.

Let us present more on the history of discrete scenery reconstruction
now. Scenery reconstruction is closely related to the scenery distinguishing
problem. We give a brief account. Let ξa and ξb be two non-equivalent
sceneries which are known to us. Assume that the scenery ξ is either equal
to ξa or ξb but we don’t know which. If we are only given one realization
of the observation process χ of the scenery ξ by the random walk S, can
we almost surely determine if ξ is equal to ξa or if it is equal to ξb? If so,
we say the sceneries ξa and ξb are distinguishable. Benjamini and Kesten [1]
showed that almost every pair of sceneries is distinguishable, even in the two-
dimensional case and with only 2 colors. To do this, they took ξa to be any
non-random scenery and ξb to be an i.i.d. scenery with two colors. Earlier,
Howard [10] showed that any pair of periodic, non-equivalent sceneries are
distinguishable, as well as periodic sceneries with a single defect [9].

The problem of distinguishing two sceneries which differ at only one point
is called detecting a single defect in a scenery. Kesten [13] was able to show
that one can a.s. detect single defects in the case of four color sceneries. A
question Kesten raised concerning the detection of defects in sceneries lead
Matzinger [24, 25, 26] to investigate the scenery reconstruction problem.

As with scenery reconstruction, there is a version of the scenery distin-
guishing problem with observations that are corrupted. Once again, the
scenery ξ is either equal to ξa or ξb, both of which are known to us. However,
the observations are now corrupted through an error process {νt}t≥0, which is
assumed to be a sequence of i.i.d. Bernoulli random variables with parameter
strictly smaller than 1/2 and independent of ξ and S. The variables νt are
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used to indicate at which times there are errors in the observations. More
precisely, if νt = 1 then there is an error in the observation at time t. Let χ̃
denote the sequence of observations χ corrupted by the errors {νt}t∈N. Thus,
χ̃t = χt when νt = 0 and χ̃t 6= χt otherwise. Knowing ξa and ξb, can we
decide a.s. whether ξ = ξa or ξ = ξb based on one path realization of the
process χ̃? This constitutes the scenery distinguishing problem in the case
of error-corrupted observations.

The subject of the present article is closely related to a random coin
tossing problem which was first investigated by Harris and Keane in [8] and
later by Levin, Pemantle and Peres in [23]. They take the error-probability
to be equal to 1/2. The coin tossing problem of Harris and Keane can be
described as follows: Let X1, X2, . . . denote a sequence of Bernoulli variables
where Xk is the result of the k-th coin toss. We consider two ways of doing
this:

• The first method is to toss an unbiased coin independently each time.
In this case the variables Xk are a sequence of i.i.d. Bernoulli random
variables with parameter 1/2.

• Let τ1, τ2, . . . denote a sequence of return times of a random walk to
the origin. We toss fair coins independently at all times except at the
times τk, at which we toss a biased coin with fixed bias ω instead.

The problem investigated by Harris and Keane in [8] and later by Levin,
Pemantle and Peres in [23] can now be described as follows: If we are only
given one realization of the process {Xk}k≥0, but do not know if it was
generated by mechanism 1 or 2, can we determine a.s. from which of the two
processes the observed sequence comes? Harris and Keane were able to show
that, depending on the finiteness of the moments of the stopping times, we
may or may not be able to deduce the method used to generate the observed
sequence. Later, Levin, Pemantle and Peres were able to show that there is
a phase transition depending on the size of the bias. Furthermore, they were
also able to solve the problem in the case where the stopping times halt a
random walk at a finite number of points instead of just at the origin.

It is evident that the Harris-Keane coin tossing problem can be viewed
as a scenery distinguishing problem with errors. In particular, take ξa as the
scenery which is everywhere equal to zero, and ξb as the scenery which is
zero everywhere except at the origin. In the case studied by Levin, Pemantle
and Peres [23], set the scenery ξa ≡ 0 and ξb to be zero everywhere except at
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a finite number of points. They take the error probability to be 1/2, except
when a “one” is observed. Hence, in their case, P [χ̃t = 0 | χt = 0] = 1/2,
but P [χ̃t = 0 | χt = 1] 6= 1/2. In the case when the scenery is i.i.d. and has
many colors, but is observed with a small error probability, the reconstruction
problem was solved by Rolles and Matzinger in [27].

There is an excellent overview of scenery reconstruction and scenery dis-
tinguishing by Kesten [14]. Scenery distinguishing and reconstruction be-
longs to the general area of probability theory which deals with the ergodic
properties of observations made by a random process in a random media. An
important related problem is the T, T−1 problem studied by Kalikow [11].
Several important contributions about the properties of the observations
were made later. These include Keane and den Hollander [12], den Hol-
lander [4], den Hollander and Steif [5], Heicklen, Hoffman and Rudolph [7],
and Levin and Peres [22]. Interest in the scenery distinguishing problem was
sparked when Keane and den Hollander, as well as Benjamini, asked if all
non-equivalent sceneries could be distinguished. Lindenstrauss was able to
prove that there exist pairs of sceneries which can not be distinguished [16].
After, Matzinger showed the validity of scenery reconstruction in the sim-
ple case of error-free observations made by a one-dimensional random walk
without jumps (see [26, 25]), Kesten noticed that Matzinger’s method was
inadequate to solve the reconstruction problem in the 2-dimensional case, as
well as in the case when the random walk is allowed to jump. Subsequently,
Löwe and Matzinger [18] were able to prove that scenery reconstruction is
also possible on two-dimensional sceneries with many colors. Later, Löwe,
Matzinger and Merkl [20] proved that with enough colors in one dimension
one can do reconstruction even if the random walk is allowed to jump and
thus is not a simple random walk. In general, scenery reconstruction be-
comes more difficult as the number of colors decreases (except in the trivial
case when there is only one color). The most difficult case of reconstruction
from observations made by a random walk with jumps on two-color sceneries
was solved by Lember and Matzinger [19]. Den Hollander asked if it would
be possible to do reconstruction if the jumps made by the random walk are
not bounded. Lenstra and Matzinger [17] were able to answer this question.
Finally, following a question of den Hollander, Löwe and Matzinger [21] in-
vestigated the possibility of reconstructing sceneries that are not i.i.d. but
have some correlation. The possibility to reconstruct finite pieces of scener-
ies in polynomial time following a question of Benjamini was investigated by
Rolles and Matzinger [28, 29, 30].
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Let us start with the formal definitions used in this paper. A scenery is a
double infinite sequence X = (. . . , X−1, X0, X1, . . .), such thatXn < Xn+1 for
all n ∈ Z and limn→−∞Xn = −∞, limn→+∞Xn = +∞. The last condition
guarantees that the number of points of X in any finite interval is finite.

With some abuse of notation, we denote the set of points in the scenery
by the same letter, X = {. . . , X−1, X0, X1, . . .}. Let M be the set of all such
sceneries. Let ξ(n) := Xn − Xn−1 for all n ∈ Z. The sequence ξ is thus the
sequence of distances between the successive bell-locations.

Definition 1.1 Scenery X̃ is a local perturbation of X if they coincide ev-
erywhere except possibly in a finite interval, i.e., there exist a, b ∈ R such
that X̃ \ [a, b] = X \ [a, b].

Let (Wt, t ≥ 0) be the standard Brownian motion (starting from 0, unless
otherwise indicated). When it is necessary to consider a Brownian motion
starting from an arbitrary x ∈ R, we use the notations P

x,Ex for the cor-
responding probability and expectation. Let M+ be the set of all infinite
sequences U = (0 = U0, U1, U2 . . .), such that Un < Un+1 for all n ∈ Z+,
and such that limn→+∞Un = +∞. Using the scenery X and the trajec-
tory of the Brownian motion Wt, we define the specific sequence of stopping
times Y = (0 = Y0, Y1, Y2 . . .) ∈ M+ that corresponds to the sequence of
ringing-times. More precisely (see Figure ??, the marks on the horisontal
line correspond to the bells, the marks on the vertical line correspond to the
rings):

Yn+1 := inf
{

t ≥ Yn : Wt ∈ X \ {WYn}
}

,

n ≥ 0 (note that the sequence Y always begins with 0, regardless of whether
0 ∈ X or not). From the fact that X ∈ M it is elementary to obtain
that Yn+1 > Yn for all n ∈ Z+, and that limn→+∞ Yn = +∞ a.s., so indeed
Y ∈ M+. Denote by χ(n), n = 1, 2, 3, . . ., the sequence of time lapses
between successive rings. Hence, χ(n) := Yn − Yn−1.

Our main result is the following

Theorem 1.1 Suppose that (the known scenery) X ′ is a realization of a
one-dimensional inhomogeneous Poisson process with intensity bounded away
from 0 and +∞. Suppose also that (the unknown scenery) X is a local
perturbation of X ′, and Y is the sequence of rings defined above. Then,
almost surely, Y and X ′ together determine X. In other words, there exists
a measurable function ΨX′ : M+ 7→ M such that P[ΨX′(Y ) = X] = 1.
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2 Proof of Theorem 1.1

In the proof of this theorem we will suppose for definiteness that X ′ is a
realization of a Poisson process with rate 1, the general case is completely
analogous.

The idea of the proof is, roughly speaking, the following: we use couples of
bells which are untypically close to each other. The distance to neighbouring
bells in the scenery should be much larger. The Brownian motion is likely
to produce a long sequence of rings separated by short time intervals when
visiting such a couple of bells (one can observe this on Figure ??). The
Brownian motion tends to visit the two bells many times before moving on
to another bell in the scenery.

When we hear many rings shortly after one another, then this is likely
to be caused by two bells at short distance form each other in the scenery.
Hence a sequence many rings in a short time permits to estimate the dis-
tance between the underlying two bells. (Provided the sequence was really
generated on only two bells close to each other, which is likely.) We dis-
cuss this in Section 2.1. Then, for a given (large) n, we define a location ζn
(with a bell there) and construct a sequence of stopping times τ

(n)
i depending

only on Y and X ′ (i.e., on known information) such that, with overwhelm-
ing probability W

τ
(n)
i

= ζn, whenever i is not too large. In other words,

with large probability we are able to tell whether we are back to the same
place. For this we use the information provided by the estimated distances
between couple of bells close to each other. This is done in Section 2.2 (see
Lemma 2.5). In Section 2.3, we present an algorithm for reconstructing the
local perturbation with a high precision, then we consider a sequence of such
algorithms which permits us to reconstruct X exactly; however, this is done
supposing that the interval where the perturbation took place is known. In
Section 2.4 we explain the reconstruction procedure in the case when the
interval of perturbation is unknown.

2.1 The main idea: trills and couples

Fix some ε0, δ0, δ1 > 0 such that

ε0 + δ0 + δ1 < 1/2, (1)

6ε0 < δ0. (2)
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Let z0 be such that

+∞
∫

z0

(2πu3)−1/2 exp
(

− 1

2u

)

du =
1

2
. (3)

Denote also

A
k
n =

(

z−1
0 median{χ(k + 1), . . . , χ(k + nδ0/2)}

)1/2
.

The next two definitions play an important role in our construction.

Definition 2.1 We say that there is a level-n trill at the mth position of the
sequence Y , if χ(m+ k) ≤ n−2+2ε0+2δ0+δ1 for all k = 1, . . . , nδ0/2.

Definition 2.2 Suppose that there is a level-n trill at the mth position of
the sequence Y . We say that this trill is good, if A(m) ≤ n−1+ε0.

The main idea is that if there is a good level-n trill in the kth position of
the sequence Y , it is very probable that it was produced by the alternating
visits of the Brownian motion to some two neighboring points from X that
are roughly An(k) away from each other (by alternating visits we mean here
that the rings in the piece of the sequence Y under consideration were caused
by only two bells). Consider the following

Definition 2.3 A pair of two consecutive points (Xk, Xk+1) is called level-n
couple if ξ(k+1) = Xk+1−Xk ≤ n−1+ε0(1−z−1

0 n−δ0/6)−1, and min{ξ(k), ξ(k+
2)} ≥ n−1+ε0+δ0+δ1.

Let Ta = inf{t ≥ 0 : Wt = a} be the hitting time of a > 0 by Brownian
motion. Then, provided that the Brownian motion starts at 0, the density
fa(s) of Ta is given by (see [2], formula 1.2.0.2)

fa(s) = a(2πs3)−1/2 exp
(

− a2

2s

)

. (4)

We recall also the following elementary fact: if a < b < c, then (see [2],
formula 1.3.0.4)

P
b[Ta < Tc] =

c− b

c− a
. (5)
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Let us consider now a level-n couple (Xk, Xk+1). Abbreviate a := Xk −
n−1+ε0+δ0 , b := Xk, c := Xk+1, d := Xk+1 + n−1+ε0+δ0 . Note that, by Defini-
tion 2.3, it holds that Xk−1 < a and that Xk+2 > d. By (5), there is C1 > 0
such that

min{P
b[Tc < Ta],P

c[Tb < Td]} ≥ 1 − C1n
−δ0 ,

so for any x ∈ {b, c}(= {Xk, Xk+1})

P[WYm+s ∈ {b, c} for any 1 ≤ s ≤ nδ0/2 |WYm = x] ≥ 1 − C1n
−δ0/2, (6)

i.e., with a large probability the Brownian motion will commute between the
points of a level-n couple at least nδ0/2 times. Now, it is elementary to see
that

P
b[min{Ta, Tc} ≤ n−2+2ε0+2δ0+δ1 | Tc < Ta] ≥ 1 − exp(−C2n

δ1) (7)

and that the same bound holds if b, a, c are substituted by c, d, b (in this
order). Indeed, since the conditional density of min{Ta, Tc} is known (see
1.3.0.6 of [2]), it is possible to obtain (7) by a direct (although not so simple)
computation. In any case, to see that (7) holds, it is sufficient to consider
the following intuitive argument: for any starting point within the interval
[a, c], the probability that the Brownian motion hits {a, c} in time at most
n−2+2ε0+2δ0 is bounded away from 0. The time interval [0, n−2+2ε0+2δ0+δ1 ]
contains nδ1 non-intersecting intervals of length n−2+2ε0+2δ0 , so we have at
least nδ1 tries to enter {a, c}. Also, it is easy to obtain that the conditional
probability in (7) is of the same order as the unconditional one. Thus, us-
ing (7), we obtain that

P[χ(m+ s) ≤ n−2+2ε0+2δ0+δ1 for any 1 ≤ s ≤ nδ0/2

| Ym = x, Ym+s ∈ {b, c} for any 1 ≤ s ≤ nδ0/2]

≥ 1 − nδ0/2 exp(−C2n
δ1). (8)

for any x ∈ {b, c}. This shows that if the Brownian motion commutes be-
tween b and c (without hitting other points of X) at least nδ0/2 times, then,
with overwhelming probability, we obtain a level-n trill. To show that this
trill should normally be good, we have to work a bit more.

First, let us recall the Chernoff’s bound for the binomial distribution:
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Lemma 2.1 [see e.g. [31], p. 68.] Let {ζi, i ≥ 1} be i.i.d. random variables
with P[ζi = 1] = θ and P[ζi = 0] = 1 − θ. Then for any 0 < θ < α < 1 and
for any s ≥ 1 we have

P

[1

s

s
∑

i=1

ζi ≥ α
]

≤ exp{−sH(α, θ)}, (9)

where

H(α, θ) = α log
α

θ
+ (1 − α) log

1 − α

1 − θ
> 0.

If 0 < α < θ < 1, then (9) holds with P[s−1
∑s

i=1 ζi ≤ α] in the left-hand side.

Now, we define another sequence of stopping times (Y ′
m, m ≥ 0), con-

structed in a similar way as the sequence Y , this time supposing, however,
that the only bells are in b and c (i.e., in Xk and in Xk+1):

Y ′
0 = 0, and

Y ′
n+1 = inf

{

t ≥ Y ′
n : Wt ∈ {b, c} \ {WY ′

n
}
}

.

Analogously, define χ′(i) = Y ′
i − Y ′

i−1 and

A
′
n =

(

z−1
0 median{χ′(1), . . . , χ′(nδ0/2)}

)1/2
.

Lemma 2.2 There is a positive constant γ1 such that for all n large enough
we have

P
[

β2(z0 − n−δ0/6) ≤ median{χ′(1), . . . , χ′(nδ0/2)} ≤ β2(z0 + n−δ0/6)
]

≥ 1 − exp(−γ1n
−δ0/6) (10)

and also

P
[

A
′
n(1 − z−1

0 n−δ0/6) ≤ β ≤ A
′
n(1 + z−1

0 n−δ0/6)
]

≥ 1 − exp(−γ1n
−δ0/6), (11)

where β := c− b = Xk+1 −Xk.

Proof. Denote
Z = median{χ′(1), . . . , χ′(nδ0/2)},

and for any y ∈ (0, 1) let M̂y be such that

M̂y
∫

0

β(2πs3)−1/2 exp
(

− β2

2s

)

= y. (12)
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Fix a number p ∈ (0, 1/2) (to be chosen later), and define the random variable
ηi = 1{χ′(i) ≥ M̂ 1

2
+p}, so that P[ηi = 1] = 1 − P[ηi = 0] = 1

2
− p. Now, we

have

P[Z ≥ M̂ 1
2
+p] = P

[

n−δ0/2
nδ0/2
∑

i=1

≥ 1

2

]

. (13)

Let us use Lemma 2.1 with s = nδ0/2, α = 1/2, θ = 1
2
− p. It holds that

H(α, θ) =
1

2
ln

1

1 − 2p
+

1

2
ln

1

1 + 2p

=
1

2
ln

1

1 − 4p2

≥ p2

for all p small enough. So, by (13) and Lemma 2.1 we obtain that

P[Z ≥ M̂ 1
2
+p] ≤ exp(−p2nδ0/2).

By symmetry, the same estimate holds for P[Z ≤ M̂ 1
2
−p], so we obtain

P[M̂ 1
2
−p ≤ Z ≤ M̂ 1

2
+p] ≥ 1 − 2 exp(−p2nδ0/2). (14)

To proceed, we notice that it is straightforward to obtain from (3) and (4)
that M̂1/2 = z0β

2. Since by (4), fβ(y) is of order β−2 when y is of order β2,
there exist positive constants C4, C5 such that

M̂ 1
2
+p ≤ z0β

2 + C4pβ
2,

M̂ 1
2
−p ≥ z0β

2 − C5pβ
2,

for all p small enough. Now, it remains only to take p = n−δ0/6 and use (14)
to obtain (10) and (11), thus finishing the proof of Lemma 2.2. �

Consider the events

Rn,m = {χ(m+ s) ≤ n−2+2ε0+2δ0+δ1 for any 1 ≤ s ≤ nδ0/2}

and
Dn,m = {Am

n (1 − z−1
0 n−δ0/6) ≤ β ≤ A

m
n (1 + z−1

0 n−δ0/6)}, (15)
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where, as before, β := c − b = Xk+1 − Xk. We are going to estimate the
conditional probability P[Dn,m | Rn,m] from below. To this end, define also
the events

D′
n,m = {A′

n(1 − z−1
0 n−δ0/6) ≤ β ≤ A

′
n(1 + z−1

0 n−δ0/6)},

and
En,m =

{

Ym+s ∈ {b, c} for all 0 ≤ s ≤ nδ0/2
}

.

Write

P[Dn,m | Rn,m] ≥ P[Dn,mEn,m | Rn,m]

= P[D′
n,mEn,m | Rn,m]

≥ 1 − P[(D′
n,m)c | Rn,m] − P[Ec

n,m | Rn,m]

≥ 1 − P[(D′
n,m)c]

P[Rn,m]
− P[Ec

n,m | Rn,m]. (16)

Recall that {b, c} is a level-n couple, so that min{ξ(k), ξ(k + 2)} ≥
n−1+ε0+δ0+δ1 . It is elementary to obtain from (4) that for some C6 > 0
and all n it holds that

P[Tn−1+ε0+δ0+δ1 ≤ n−2+2ε0+2δ0+δ1 ] ≤ exp(−C6n
δ1),

so
P[Ec

n,m | Rn,m] ≤ nδ0/2 exp(−C6n
δ1). (17)

By (8), P[Rn,m] ≥ 1/2 for all n large enough, and we can bound P[(D′
n,m)c]

from above by using Lemma 2.2. So, using (16) and (17), we obtain

P[Dn,m | Rn,m] ≥ 1 − 2 exp(−γ1n
−δ0/6) − nδ0/2 exp(−C6n

δ1). (18)

In words, the above equation shows that if a level-n couple causes a level-n
trill, then, with a very high probability, that trill will be good and that one
will be able to obtain the distance between the points in the couple with a
good precision. Also, by (6) and (reftr1), we obtain that

P[Rn,m | H∗
m] ≥ 1 − C7n

−δ0/2, (19)

where the event H∗
m is defined by

H∗
m = {WYm is a point of some level-n couple}.
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Now, we have also to figure out how likely it is to produce good level-n
trills elsewhere, not in level-n couples. First, we observe that, since the
interval between any two consecutive rings in a level-n trill are at most
n−2+2ε0+2δ0+δ1, the bells where the rings were produced should not be at
distance more than n−1+ε0+δ0+δ1 from each other (otherwise the probabil-
ity of producing such closely placed rings would be stretched-exponentially
small). On the other hand, if we have three or more close bells (with distance
of order n−1+ε0 from each other), then such a group of bells is, in principle,
capable to produce a good level-n trill as well.

Suppose, however, that we know that we are in some region where there
are no triples of close points (bells). More precisely, suppose that there are
bells in points a, b, c, d ∈ R, and |b−c| < n−1+ε0+δ0+δ1 , while min{|a− b|, |c−
d|} > n−1+ε0+δ0+δ1 ; however, b is not close enough to c to form a level-n
couple. Then, analogously to the proof of Lemma 2.2, it is straightforward
to prove that

P[there is a good level-n trill at m | H∗
m(b)] ≤ exp(−C8n

−δ0/6), (20)

where H∗
m(b) = {WYm = b}.

Now, for the sake of convenience we introduce some definitions concerning
trills and couples:

Definition 2.4 A level-n trill is compatible with a level-n couple with the
distance β between the points, if (supposing for definiteness that the trill
begins at the mth position of the sequence Y ) the event Dn,m, defined in (15),
occurs.

Definition 2.5 We say that a level-n trill was produced by a level-n couple,
if all the rings of the trill occurred in the bells of the couple.

Definition 2.6 (i) Two level-n couples with the distances between their
points being respectively β1, β2 are called n-similar if

min{|β1β
−1
2 − 1|, |β−1

1 β2 − 1|} ≤ 5z−1
0 nδ0/6.

(ii) Two level-n trills (in positions m1, m2) are called n-similar if

min{|Am1
n (Am2

n )−1 − 1|, |(Am1
n )−1

A
m2
n − 1|} ≤ 5z−1

0 nδ0/6.

Two level-n couples (trills) are called n-different, if they are not n-similar.
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Using the above definition, we summarize the results of this section in
the following

Lemma 2.3 There is a positive constant γ2 such that:

(i) With probability at least 1−exp(−γ2n
−δ0/6), given that a level-n couple

produces a level-n trill, the former will be compatible with the latter.

(ii) With at least the same probability n-different couples produce n-different
trills.

(iii) Suppose that WYm = b, where b is not from a level-n couple, and in
the interval [b − 2n−1+ε0+δ0+δ1 , b + 2n−1+ε0+δ0+δ1 ] there are at most
two bells (including the one in b). Then, with probability at least
1 − exp(−γ2n

−δ0/6), there is no level-n trill at the mth position of the
sequence Y .

Proof. Items (i) and (iii) follow from (18) and (20) respectively, and (ii) is
an immediate consequence of (i). �

2.2 Localization test

The purpose of this section is to construct a test which, with high probability,
is able to tell us if the Brownian motion is back to the same place.

Suppose that the local perturbation of the scenery X ′ was made in the
interval [−ℓ, ℓ], in other words, the “real” scenery X is known precisely in R\
[−ℓ, ℓ]. We construct now a localization test depending on parameters n
and ℓ. Define the events

G
(n)
i,1 =

{

in the interval [in1−
ε0
2 , (i+ 1)n1−

ε0
2 ) there are at most n

3ε0
4

pairs Xk, Xk+1 such that Xk+1 −Xk ≤
n−1+ε0

1 − z−1
0 n−δ0/6

}

,

G
(n)
i,2 =

{

in the interval [in1−
ε0
2 , (i+ 1)n1−

ε0
2 ) there are at least n

ε0
4

level-n couples which are n-different

from all the level-n couples in [ℓ, 5n]
}

,

and let G
(n)
i = G

(n)
i,1 ∩G(n)

i,2 .
Now, we define the values of n for which the localization test will be

constructed.
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Definition 2.7 We say that n > 2ℓ is good, if:

(i) On the interval [n/2, πn] there are at least nε0/3 level-n couples, and
the same holds for the interval [πn, 5n].

(ii) All the level-n couples on the interval [ℓ, 5n] are n-different.

(iii) Any subinterval of [ℓ, 5n] of length 4n−1+ε0+δ0+δ1 contains at most two
bells. Note that this implies that any pair of consecutive bells Xk, Xk+1

such that Xk+1−Xk ≤ n−1+ε0(1−z−1
0 n−δ0/6)−1 and {Xk, Xk+1} ⊂ [ℓ, 5n]

is a level-n couple.

(iv) for any i ∈ Z such that [in1−
ε0
2 , (i + 1)n1−

ε0
2 ) ∩ [ℓ, πn] = ∅ and that

|i| < exp(n
ε0
8 ) the event G

(n)
i holds.

(v) On any interval of length n1−
ε0
2 , which is within [ℓ, 5n], there is at least

n
ε0
4 level-n couples.

(vi) In the interval [−n2, n2], the minimal distance between two neighboring
bells is at least n−3.

The following lemma ensures that there is an infinite sequence of good
ns:

Lemma 2.4 There exists C > 0 such that P[n is good] ≥ 1 − n−C.

Proof. The proof of this lemma is completely elementary, so we shall give
only a sketch. First, one can easily see that the probability that there exists
a level-n couple on an interval of length 1 is (up to smaller terms) n−1+ε0 .
This implies that the probability of the events in (i) and (v) are high enough
(even stretched-exponentially high). Similarly, it is elementary to obtain
that the probability of the event in (iii) is of order 1 − n−1+2ε0+δ0+δ1 (and
2ε0 + δ0 + δ1 < 1, recall (1)), and for the event in (vi), that probability is of
order 1− const

n
. Also, note that the amount of “classes” of n-different level-n

couples is of order nδ0/6; since the total number of level-n couples there is
of order nε0 (recall (2)), this takes care of (ii). To deal with (iv), we note
that a “random” level-n couple has a good (bounded away from 0) chance to
be different from all those in the interval [ℓ, πn]. With this observation, one
can obtain by a straightforward computation that (iv) holds with stretched-
exponentially high probability. �
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Now, we define the localization test. Suppose that n is good and consider
all the level-n couples in the interval [n/2, πn]. Let (ζ ′n, ζ

′
n + ∆′

n) be the
smallest level-n couple on that interval, (ζn, ζn + ∆n) the largest one, and
let ψ(n) be the number of other level-n couples there (note that, by (i) of
Definition 2.7, ψ(n) ≥ nε0/3 − 2).

Define τ
(n)
0 = 0 and, for i ≥ 1,

τ
(n)
i = inf{t ≥ τ

(n)
i−1 + 3n2 : t satisfies (A), (B), (C), (D) below}, (21)

where

(A) there exists s ∈ [t− n2, t) and m1 ∈ Z+ such that Ym1 = s and there is
a level-n trill in m1 compatible with the couple (ζ ′n, ζ

′
n + ∆′

n);

(B) the number of n-different level-n trills on the time interval [t− n2, t) is

at least ψ(n)
2

;

(C) for any level-n trill from that interval there exists a level-n couple on
[n/2, πn] which is compatible to that trill;

(D) (suppose without restricting of generality that ⌊nδ0/2⌋ is even) for some
m2 ∈ Z+ there is a level-n trill in m2 such that it is compatible with
the couple (ζn, ζn + ∆n) and Ym2+⌊nδ0/2⌋ = t.

In words, the above (A)–(D) are what we typically observe when the Brow-
nian motion crosses the interval [n/2, πn].

The main result of this section is the following

Lemma 2.5 There exist δ2, δ3 > 0 such that

P[W
τ
(n)
i

= ζn for all i = 1, . . . , exp(nδ2)] ≥ 1 − exp(−nδ3). (22)

Proof. Choose a number δ2 > 0 such that

δ2 < min
{δ0

6
, δ1,

ε0

8

}

(23)

(in fact, due to (2), in the above display δ0
6

is redundant).
Let us say that a time interval [t1, t2] is a crossing of the interval [a, b] by

the Brownian motion, if Wt1 = a, Wt2 = b, and Ws /∈ {a, b} for s ∈ (t1, t2).
We say that a crossing [t1, t2] of the interval [n/2, πn] by the Brownian motion
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is good, if t2 − t1 ≤ n2, and there is j0 such that τ
(n)
j0

∈ [t1, t2] (see (A)–(D)
above). Define the events

U
(n)
1 =

{

up to time exp(3nδ2), there are at least exp(nδ2)

good crossings of the interval [n/2, πn]
}

,

U
(n)
2 =

{

up to time exp(3nδ2), all the level-n trills produced when

the Brownian motion was in the interval [ℓ, 5n] correspond

to level-n couples compatible with those trills
}

,

U
(n)
3 =

{

up to time exp(3nδ2), on any time interval I of length at least

n2−
ε0
2 and such that {Ws, s ∈ I} ∩ [n/2, πn] = ∅, one finds

at least n
ε0
4 level-n trills and at least 1

2
n

ε0
4 of those trills

are not compatible with any of the couples from [n/2, πn]
}

,

U
(n)
4 =

{

up to time exp(3nδ2), on any time interval I of length at least

n2−
ε0
2 the range of the Brownian motion is at most n1−

ε0
8

}

,

where the range of the Brownian motion on a time interval is the difference
between the maximum and the minimum of the Brownian motion on that
interval.

First, let us show that on U
(n)
1 ∩ U

(n)
2 ∩ U

(n)
3 ∩ U

(n)
4 the event {W

τ
(n)
i

=

ζn for all i = 1, . . . , exp(nδ2)} holds. It is straightforward to see that on U
(n)
1

we have that τ
(n)

exp(nδ2 )
≤ exp(3nδ2). Now, let us suppose that there exists

i0 ≤ exp(nδ2) such that a0 := W
τ
(n)
i0

6= ζn. Consider the two possible cases:

a0 ∈ [ℓ, 5n], or a0 /∈ [ℓ, 5n]. We know that τ
(n)
i0

is at the end of a level-n

trill compatible with the level-n couple (ζn, ζn + ∆n), so on the event U
(n)
2

it is impossible to have a0 ∈ [ℓ, 5n]. On the other hand, if a0 /∈ [ℓ, 5n], then

(since (5 − π)n > n1−
ε0
2 ) on the event U

(n)
4 we have that Ws /∈ [n/2, πn] for

all s ∈ [τ
(n)
i0

− n2−
ε0
2 , τ

(n)
i0

]. So, on U
(n)
3 we have that on the time interval

[τ
(n)
i0

− n2−
ε0
2 , τ

(n)
i0

] there will be level-n trills which are not compatible with
any of the level-n couples from [n/2, πn]; clearly, this contradicts (21).

Now let us estimate the probabilities of the events U
(n)
i , i = 1, 2, 3, 4.
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First, we deal with U
(n)
2 . Recall that, by Definition 2.7 (vi), the minimal

distance between the bells in [ℓ, 5n] is at least n−3. So, given that the particle
is in some bell there, the time until the next ring will be greater than n−7

with probability at least 1 − exp(−C1n
1/2) for some C1 > 0. Thus, up to

time exp(3nδ2) we will have at most n7 exp(3nδ2) rings produced by the bells
in [ℓ, 5n], with probability at least

1 − n7 exp(−C1n
1/2 + 3nδ2)

(recall that δ2 < 1/2 by e.g. (1)). Using Lemma 2.3, one obtains

P[U
(n)
2 ] ≥ 1 − n7 exp(−C1n

1/2 + 3nδ2) − n7 exp(−γ2n
δ0
6 + 3nδ2). (24)

To estimate the probability of U
(n)
1 , we note that by (19) and Lemma 2.3,

the probability that a crossing of the interval [n/2, πn] is good, is bounded
away from 0 by some constant C2. Also, with probability at least 1 −
C3 exp(−nδ2) up to time exp(3nδ2) there will be at least 2C−1

2 exp(nδ2) cross-
ings of that interval. So,

P[U
(n)
1 ] ≥ 1 − C4 exp(−nδ2) (25)

for some C4 > 0.
Now, note that the event U

(n)
4 occurs if on each of the intervals (of length

1
2
n2−

ε0
2 ) [(i− 1)n2−

ε0
2 , in2−

ε0
2 ], i = 1, . . . , 2n−2+

ε0
2 exp(3nδ2), the range of the

Brownian motion is at most n1−
ε0
8 . So, since for each i that happens with

probability at least 1 − exp(−n ε0
8 ), we obtain

P[U
(n)
4 ] ≥ 1 − 2n−2+

ε0
2 exp(−n

ε0
8 + 3nδ2). (26)

The probability of the event U
(n)
3 can be bounded from below in the

following way. Note that for each time interval of length n2−
ε0
2 the range of

the Brownian motion on that interval is greater than 2n1−
ε0
2 with probability

at least 1 − exp(−C5n
ε0
4 ). Note also that

P

[

max
s≤exp(3nδ2 )

|Ws| ≤ exp(n
ε0
8 )

]

≥ 1 − exp
(

− n
ε0
8 − 3

2
nδ2

)

.

Then we use Definition 2.7 (iv) and (v) and Lemma 2.3 to obtain that

P[U
(n)
3 ] ≥ 1 − exp(−C6n

ε0
8 ) (27)

for some C6 > 0.
Using (24)–(27) it is straightforward to obtain (22), thus finishing the

proof of Lemma 2.5. �
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2.3 Reconstruction algorithm for the case when the

interval of perturbation is known

In this section we describe the algorithm that reconstructs the local pertur-
bation using the localization test of Section 2.2. As in the previous section,
we assume here that it is known that the perturbation took place on the
interval [−ℓ, ℓ].

Let k1 = min{k : Xk ∈ [−ℓ, ℓ]}, k2 = max{k : Xk ∈ [−ℓ, ℓ]}. Denote by
m = k2 − k1 + 1 the number of points of the (true) scenery in the interval
[−ℓ, ℓ], and abbreviate by ai = Xk1+i−1 + ℓ the distance from the left end of
the interval to the ith point of the scenery there, i = 1, . . . , m. Moreover,
for i = 1, 2, 3, . . . denote Ai = ai1 + · · · + aim. Now, the idea is to reconstruct
first the quantity m; then, given m, reconstruct A1; then, given m and A1,
reconstruct A2, and so on.

We need the following technical fact:

Lemma 2.6 Suppose that θ = o(n−3) and x = O(n). Then

P
[

Wt = x for some t ∈ [n2, n2 + θ]
]

=
1√
2πn

exp
(

− x2

2n2

)(2
√

2√
π
θ1/2 + n−2O(θ3/2)

)

. (28)

Proof. By (4) and conditioning on Wn2 , the left-hand side of (28) can be
written as follows:

+∞
∫

−∞

1√
2πn

exp
(

− (y − x)2

2n2

)

θ
∫

0

|y|√
2πs3/2

exp
(

− y2

2s

)

ds dy

=
1√
2πn

exp
(

− x2

2n2

)

θ
∫

0

1√
2πs3/2

+∞
∫

−∞

|y| exp
(

− y2

2n2
+
xy

n2
− y2

2s

)

dy ds.

Then, in the last integral we change the variables u := y2

2s
, and after some

elementary calculus we obtain (28). �

Define θn = exp(−nδ2/2). Let

Z
(n)
i = 1{there is a ring in the interval [τ

(n)
i + n2, τ

(n)
i + n2 + θn]},
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and let

Z(n) = exp(−nδ2)
exp(nδ2 )
∑

i=1

Z
(n)
i .

Let
h(n) = P

ζn[there is a ring in the interval [n2, n2 + θn]].

By Lemma 2.5 and usual large deviation technique (use e.g. Lemma 2.1), we
obtain that

P

[

|Z(n) − h(n)| > exp
(

− nδ2

2

)]

≤ exp
(

− nδ2

4

)

. (29)

Let X ′′ be the local perturbation of the scenery X ′ (and X) obtained by
removing all the bells from the interval [−ℓ, ℓ] (so, since we supposed that X ′

was perturbed on [−ℓ, ℓ], X ′′ is completely known to us). Define

µ(n) = P
ζn[there is a ring in the interval [n2, n2 + θn] | the scenery is X ′′].

Let Ẑ(n) = Z(n) − µ(n) and abbreviate also bn = (ζn + ℓ)/n. Let

B(n) =
2θ

1/2
n

πn
exp

(

− b2

2

)

m
∑

i=1

exp
(

− a2
i

2n2
+
bai
n

)

.

Using Definition 2.7 (vi), it is straightforward to obtain that

P
ζn [there are at least two rings in the interval [n2, n2 + θn]] ≤ e−n (30)

for all n large enough. So, by Lemma 2.6 and (29)–(30), we can write

P

[
∣

∣

∣
Ẑ(n) −B(n)

∣

∣

∣
> 2 exp(−nδ2/2)

]

≤ exp
(

− nδ2

4

)

. (31)

Consider now the function ϕb(x) = exp
(

− x2

2
+ bx

)

and its Taylor de-
composition in x = 0:

ϕb(x) = exp
(

− x2

2
+ bx

)

= 1 +
∞

∑

k=1

Mk(b)x
k.

It is easy to see that Mk(b) is a polynomial of kth degree of b, so if b is a
transcendental number, Mk(b) 6= 0 for all k. By Definition 2.7 (v), we have
that bn/n→ π, so if n is large enough, then we have Mi(bn) 6= 0 for all i ≤ m.
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Now, we can write

B(n) =
2θ

1/2
n

πn
exp

(

− b2n
2

)(

m+
M1(bn)A1

n
+
M2(bn)A2

n2
+ · · ·

)

. (32)

Let us define the estimator for m (the number of points of the scenery in
[−ℓ, ℓ]):

m̂(n) =
[

Ẑ(n) exp
(b2n

2

) πn

2θ
1/2
n

]

; (33)

here [y] stands for the integer part of y+ 1
2
, i.e., [y] is the integer closest to y.

Given m, define the estimator for A1 (cf. (32)):

Â1(n;m) =
(

Ẑ(n) exp
(b2

2

) πn

2θ
1/2
n

−m
) n

M1(bn)
,

and, for all i ≥ 2, given m and A1, . . . , Ai−1, define the estimator for Ai:

Âi(n;m,A1, . . . , Ai−1) =
(

Ẑ(n) exp
(b2

2

) πn

2θ
1/2
n

−m−
i−1
∑

j=1

Mj(bn)Aj
nj

) ni

Mi(bn)
.

Using (31), one can observe that

P[m̂(n) 6= m] ≤ exp
(

− nδ2

4

)

(34)

and

P
[

|Âi(n;m,A1, . . . , Ai−1) − Ai| ≥ Cni exp(−nδ2/2)
]

≤ exp
(

− nδ2

4

)

. (35)

Now, informally, the idea is the following: take a sequence of ns going
fast to infinity, reconstructm (using also Borel-Cantelli), then reconstruct A1,
and so on. Formally, consider the sequence nk = 2k, k = 1, 2, 3, . . .. Then,
by Lemma 2.4, nk will be good for all but finitely many k. Using (34) and
Borel-Cantelli lemma, we obtain that there is k0 such that

m̂(nk) = m for all k ≥ k0. (36)

Then, given m, we are able to determine A1 in the following way: by (35),

lim
k→∞

Â1(nk, m) = A1 a.s. (37)
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Inductively, given m and A1, . . . Ai−1, we determine Ai by

lim
k→∞

Âi(nk, m,A1, . . . , Ai−1) = Ai a.s., (38)

for all i ≤ m.
At this point we need the following elementary fact:

Lemma 2.7 Suppose that a1, . . . , am are positive numbers satisfying the fol-
lowing system of algebraic equations







a1 + · · ·+ am = d1

. . .
am1 + · · ·+ amm = dm

(39)

Suppose also that (a′1, . . . , a
′
m) is another solution of the system (2.7). Then

{a1, . . . , am} = {a′1, . . . , a′m}, i.e., a′1, . . . , a
′
m is simply a reordering of the

collection a1, . . . , am.

Proof. This is an easy consequence of Newton’s and Vieta’s formulas. �

To conclude this section, it remains to note that, by Lemma 2.7, one can
uniquely determine a1, . . . , am from A1, . . . , Am.

2.4 Reconstruction algorithm for the general case

Now, suppose that we do not know about where the perturbation took place,
and that we only know it is local in the sense of Definition 1.1. That means
that there exists N0 (which is not known to us) such that the interval of
perturbation is fully inside [−N,N ] for all N ≥ N0. Denote by X̃(N) the
result of application of the reconstruction algorithm of Section 2.3 with ℓ :=
N . Note, however, that it is not clear if the algorithm of Section 2.3 produces
any result (i.e., (36), (38) hold) when the perturbation is not actually limited
to [−N,N ]. When the algorithm does not produce the result, we formally
define X̃(N) := ∅.

Then, it is clear that the true scenery X can be obtained as

X = lim
N→∞

X̃(N),

where the limit can be formally defined in any reasonable sense, since actually
X̃(N) = X for all N ≥ N0. This concludes the proof of Theorem 1.1. �
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