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IntrodutionThis habilitation is a olletion of twelve papers. Papers [1℄-[10℄ are devoted to the SeneryReonstrution problem. Papers [11℄ and [12℄ investigate the asymptoti properties of theLongest Common Subsequene (LCS) of two random sequenes.paper 1 Franz Merkl, Heinrih Matzinger and Matthias L�owe. Reonstruting a Mul-tiolor Random Senery seen along a Random Walk Path with Bounded Jumps.Eletroni Journal of Probability, 9(15):436{507, 2004.paper 2 Heinrih Matzinger and Silke Rolles. Reonstruting a random senery observedwith random errors along a random walk path. Probab. Theory Related Fields,125(4):539{577, 2003.paper 3 Heinrih Matzinger. Reonstruting random senery seen along a simple randomwalk path. aepted in Ann. Appl. Probab., 2004.paper 4 Matthias L�owe and Heinrih Matzinger. Senery Reonstrution in Two Di-mensions with Many Colors. Ann. Appl. Probab., 12(4):1322{1347, 2002.paper 5 Matthias L�owe and Heinrih Matzinger. Reonstrution of Seneries with Cor-related Colors. Stohasti Proess. Appl., 105(2):175{210, 2003.paper 6 J�uri Lember and Heinrih Matzinger. Information reovery from a randomlymixed up message-text. Submitted (2004).paper 7 J�uri Lember and Heinrih Matzinger. Reonstruting a piee of 2-olor senery.Preprint (2002).paper 8 Heinrih Matzinger and Silke Rolles. Retrieving random media. Submitted(2003).paper 9 Heinrih Matzinger and Silke Rolles. Finding bloks and other patterns in arandom oloring of Z. Submitted (2003).paper 10 Andrew Hart, Servet Martinez and Heinrih Matzinger. Markers for error-orrupted observations. Submitted (2004).paper 11 Raphael Hauser, Servet Martinez and Heinrih Matzinger. Large deviationbased upper bounds for the LCS-Problem. Submitted (2003).paper 12 J�uri Lember, Heinrih Matzinger and Clement Durringer. Deviation from themean in sequene omparaison when one sequene is periodi. Preprint (2004).7



8The problem of senery reonstrution and the mathematis behind the LCS-statistisused to hek the alignment of geneti sequenes, belong to the same lass of problems.In both ases, one is onerned with identifying randomly altered information.To de�ne the senery reonstrution problem, onsider a reurrent random walk fS(t)gt2Non Z and a oloring of the integers � : Z! f0; 1; 2; : : : ; C � 1g. The oloring � is alleda (C-olor) senery. We are allowed to observe the senery � along the path of S. Thismeans that at time t, we see the olor �(t) := �(S(t)). The olor reord� := (�(0); �(1); �(2); : : :):is known. The senery reonstrution problem is to reover �, given only the observations�. It varies greatly in diÆulty depending on the number of olors in � and the distribu-tion of S. I showed in my PhD-thesis [21℄, that for a simple random walk with holding itis possible to reonstrut a.s. almost any senery. He takes the senery i.i.d.. However,Kesten notied [17℄, that the method used there ompletely fails in many other situations.For these other ases, it was neessary to develop a ompletely new methodology. In thishabilitation thesis, these new approahes are presented and worked out in the papers [pa-per 1 ℄-[paper 10 ℄. The artiles on Senery Reonstrution in this habilitation have beenwritten after my PhD-thesis.An important method used in the ontext of sequene alignment problems is the longestommon subsequene method. Let In denote the integer interval In := [1; n℄. LetX = (Xi)i2In and Y = (Yj)j2In denote two �nite sequenes. Denote by Ln the length ofthe longest ommon subsequene of X and of Y . (A ommon subsequene is a sequene,whih is a subsequene of X and of Y .) If the longest ommon subsequene is abnor-mally long, one deides that X and Y are related to eah other. The mathematis ofthe LCS-problem is badly understood. Let the sequenes X and Y be i.i.d. sequenes,independent of eah other, and with known distribution. E[Ln℄=n is known to onvergeto a (non-random) number , as n!1. However, in general,  and the asymptotis ofLn � E[Ln℄ are unknown. In [paper 11℄ we present a large deviation based upper boundfor . The seond LCS-paper, investigates the asymptotis of Ln � E[Ln℄.0.1 List of CoauthorsHere is a list of the oauthors (and friends) who worked with me on the papers in myhabilitation:� A.N. Avramidis, University of Montreal� F. Bonetto, Georgia Teh, U.S.A.� C. Durringer, Univerity of Toulouse, Frane� A. Hart, Centro de Modelamiento Matematio, Chile� R. Hauser, Oxford University, England� J. Lember, Tartu University, Estonia



0.2. Senery Reonstrution 9� M. L�owe, University Muenster, Germany� F. Merkl, University Leiden, the Netherlands� S. Rolles, UCLA, U.S.A.� M. Servet, Centro de Modelamiento Matematio, Chile0.2 Senery ReonstrutionWork on the senery reonstrution problem started by Kesten's question, whether one anreognize a single defet in a random senery. Kesten was motived by the T; T�1-problemas well as a onjeture by Keane and den Hollander, and Benjamini about distinguishingseneries.The T; T�1-problem is a problem from ergodi theory. The origin of this problem is afamous onjeture by Kolmogorov. He demonstrated that every Bernoulli shift T has atrivial tail-�eld (let us all the lass of all transformations having a trivial tail-�eld K)and onjetured that also the onverse is true. This was proved to be wrong by Ornstein,who presented an example of a transformation whih is K but not Bernoulli. Evidentlyhis transformation was onstruted for the partiular purpose to resolve Kolmogorov'sonjeture. In 1971 Ornstein, Adler, and Weiss ame up with a very natural examplewhih is K but appeared not to be Bernoulli. This was the T; T�1-transformation, andthe T; T�1-problem was to show that it was not Bernoulli. In a famous paper Kalikow [14℄showed that the T; T�1-transformation is not even loosely Bernoulli and therefore solvedthe T; T�1-problem. A generalization of this result was reently proved by den Hollanderand Steif [7℄.The T; T�1-transformation gives rise to a random proess of pairs. The �rst oordinateof these pairs an be regarded as the position of a realization of simple random walkon the integers at time i. The seond oordinate tells whih olor the walker would readat time i, if the integers were olored by an i.i.d. proess with blak and white in advane.This is the original setup of the senery distintion and senery reonstrution prob-lems. They are related to the T; T�1-problem, but atually we also onsider them interest-ing in their own rights. Moreover, it was pointed out to us that tehniques related to thosewe use for the senery reonstrution might also be useful in the ontext of reonstrutionof DNA sequenes.Spei�ation of the senery reonstrution problem. Two seneries � : Z !f0; 1; : : : ; C � 1g and ~� :! f0; 1; : : : ; C � 1g are said to be equivalent if one of them isobtained from the other by a translation or reetion. In this ase, we write � � ~�. Thesenery reonstrution problem an also be formulated as follows:Does one path realization of the proess f�(t)gt�0 uniquely determine �? The answerin those general terms is \no". However, under appropriate restritions, the answer willbeome \yes". Let us explain these restritions: First, if � and ~� are equivalent, we anin general not distinguish whether the observations ome from � or from ~�. Thus, we anonly reonstrut � up to equivalene modulo �. Seond, the reonstrution works in thebest ase only almost surely. Eventually, Lindenstrauss in [12 ℄ exhibits seneries whih



10an not be reonstruted. However, a lot of \typial" seneries an be reonstruted up toequivalene. For this we usually take the senery � to be the outome of a random proessand prove that almost every senery an be reonstruted up to equivalene. Most seneryreonstrution results assume that � and S are independent of eah other and distributedaording to given laws � and �. Usually, senery reonstrution results are formulatedas follows:Given that � and S are independent and follow the laws �, respetively �, there exists ameasurable funtion A : f0; 1gN �! f0; 1gZsuh that P (A(�) � �) = 1:In most ases, we prove the above type of theorem by expliitly desribing how to reon-strut � from �. The onstruted senery �� is shown to be a.s. equivalent to �.This problem whih at �rst glane seem inaessible, an also be understood as an \in-verse problem". It asks for the unobservable marginal distribution of a ombination of arandom walk and a random walk we an observe.Connetion to ergodi theory. As mentionned, senery reonstrution is part of aresearh area whih investigates the ergodi properties of the olor reord �. One of themotivations omes from the T; T�1problem; see Kalikow [14℄. The ergodi properties ofthe observations � were investigated by Heiklen, Ho�man, Rudolph in [10℄, Keane andden Hollander in [15℄, den Hollander in [8℄, and den Hollander and Steif in [7℄.A related topi: distinguishing seneries. A related important problem is to dis-tinguish seneries: Benjamini, den Hollander, and Keane independently asked whetherall non-equivalent seneries ould be distinguished. Here is an outline of this problem:Let �1 and �2 be two given seneries. Assume that either �1 or �2 is observed along arandom walk path, but we do not know whih one. Can we �gure out whih of the twoseneries was taken? Kesten and Benjamini proved that one an distinguish almost everypair of seneries even in two dimensions and with only two olors. Before that, Howardhad proved in [11℄, [12℄, and [13℄ that any two periodi one dimensional non-equivalentseneries are distinguishable, and that one an almost surely distinguish single defets inperiodi seneries. The problem of distinguishing two seneries whih di�er only in onepoint is alled \deteting a single defet in a senery". Kesten in [16℄ proved that onean a.s. reognize a single defet in a random senery with at least �ve olors. He askedwhether one an distinguish a single defet even if there are only two olors in the senery.Solution of the senery reonstrution problem. Kesten's question was answeredby the following result, proved in my Ph.D. thesis [21℄: Typial 2-olor seneries an bereonstruted almost surely up to equivalene. The olors are taken i.i.d. uniformly dis-tributed. I showed that almost every 2-olor senery an be almost surely reonstruted.In [22℄, I proved that almost every 3-olor senery an be almost surely reonstruted. In[17℄, Kesten notied that my proofs in [21℄, [22℄ heavily relie on the skip-free property ofthe random walk as well as the one-dimensionality of the senery. He asked whether theresult might still hold in the other ases.



0.2. Senery Reonstrution 11Senery reonstrution in two dimensions. Together with L�owe, I proved in[paper 4 ℄, that one an still reonstrut seneries in two dimensions, provided there aresuÆiently many olors.Senery reonstrution using random walk with bounded jumps. Furthermore,in [paper 1 ℄, L�owe, Merkl, and I proved the following result: If the random walk an reahevery integer with positive probability and is reurrent with at most bounded jumps, andif moreover there are stritly more olors than possible single steps for the random walk,then one an almost surely reonstrut almost every senery up to equivalene. The aseof two olors, C0 = 2, is more diÆult than the ase investigated in this paper. Themajor diÆulty in the 2-olor ase is to reonstrut a �nite piee of � lose to the origin.Lember and I [paper 6,7 ℄ showed that in the 2-olor ase one an reonstrut with highprobability some information ontained in a piee of � near by the origin. We then showedhow this implies that one an reonstrut a 2-olor random senery seen along the pathof a random walk with bounded jumps.Senery reonstrution given disturbed input data. In [paper 2 ℄, Rolles and Iadapted the method proposed by L�owe, Merkl and me to the ase where random errorsour in the observed olor reord. We showed that the senery an still be reonstrutedprovided the probability of the errors is small enough. When the observations are seenwith random errors, the reonstrution of seneries is losely related to some oin tossingproblems. These have been investigated by Harris and Keane [9℄ and Levin, Pemantleand Peres [19℄. Our paper on reonstrution with errors was motivated by their work andby a question of Peres: He asked for generalizations of the existing results on randomoin tossing for the ase of many biased oins. With Andrew Hart [paper 6 ℄ we solvedpart of the reonstrution problem for a two olor senery seen along a random walkwith bounded jumps. The part whih we solved is the �nite amount reonstrution whihorrespond to the ontent of [paper 10 ℄.Senery reonstrution using orrelated seneries. Den Hollander asked if seneryreonstrution is possible if the senery is not i.i.d.. In a joint paper [paper 5 ℄, L�owe andI investigated that problem in the ase of three olors: we haraterized the distributionsof seneries for whih the three olor method of Matzinger is still appliable. For twoolors and for random walks with jumps this still remains an open question.Related work: Indistinguishable seneries. As mentioned above, it is in generalnot possible to reonstrut �; one an at most expet a reonstrution up to equivalene.As a matter of fat, even this is impossible: By a theorem of Lindenstrauss [20℄, there existnon-equivalent seneries that annot be distinguished and thus annot be reonstruted.Time omplexity of senery reonstrution. For seneries that an be reon-struted, Benjamini asked if it is possible to reonstrut a �nite piee in polynomialtime (in the length of the piee.) In [paper 8 ℄ and [paper 9 ℄, Rolles and I answered thisquestion in the aÆrmative. Den Hollander asked if it is possible to reonstrut a �nitepiee of senery in polynomial time. With Rolles we were able to prove that it works



12indeed in n2+" time where " > 0 is an arbitrary small onstant and n denotes the lengthof the piee of � we reonstrut.Some ideas on how the reonstrution tehniques work. We present here a sim-pli�ed example in order to give the reader a glimpse on how senery reonstrution works.Assume for a moment that the senery � is non-random, and instead of being a two olorsenery, would be a four olor senery, i.e. � : Z �! f0; 1; 2; 3g. Let us imagine further-more, that there are two integers x; y suh that �(x) = 2 and �(y) = 3, but outside xand y the senery has everywhere olor 0 or 1, (i.e. for all z 2 Z with z 6= x; y we havethat �(z) 2 f0; 1g.) The simple random walk fS(k)gk�0 an go with eah step one unitto the right or one unit to the left. This implies that the shortest possible time for therandom walk fS(k)gk�0 to go from the point x to the point y is jx�yj. When the randomwalk fS(k)gk�0 goes in shortest possible time from x to y it goes in a straight way, whihmeans that between the time it is at x and until it reahes y it only moves in one diretion.During that time, the random walk fS(k)gk�0 reveals the portion of � lying between xand y. If between time t1 and t2 the random walk goes in a straight way from x to y, (thatis if jt1� t2j = jx�yj and S(t1) = x; S(t2) = y), then the word �(t1); �(t1+1); : : : ; �(t2) isa opy of the senery � restrited to the interval [minfx; yg;maxfx; yg℄. In this ase, theword �(t1); �(t1+1); : : : ; �(t2) is equal to the word �(x); �(x+u); �(x+2u); : : : ; �(y), whereu := (y � x)=jy � xj. Sine the random walk fS(k)gk�0 is reurrent it a.s. goes at leastone, in the shortest possible way from the point x to the point y. Beause we are givenin�nitely many observations we an a.s. �gure out what the distane between x and y is:the distane between x and y is the shortest time laps that a \3" will ever appear in theobservations � after a \2". When, on the other hand, a \3" appears in the observations �in shortest possible time after a \2", then between the time we see that \2" and until wesee the next \3", we observe a opy of �(x); �(x+u); �(x+2u); : : : ; �(y) in the observations�. This fat allows us to reonstrut the �nite piee �(x); �(x+ u); �(x+ 2u); : : : ; �(y) ofthe senery. Choose any ouple of integers t1; t2 with t2 > t1, minimizing jt2 � t1j underthe ondition that �(t1) = 2 and �(t2) = 3. A.s. then �(t1); �(t1 + 1); : : : ; �(t2) is equalto �(x); �(x+ u); �(x+ 2u); : : : ; �(y).A numerial example: Let the senery � be suh that: �(�2) = 0, �(�1) = 2, �(0) = 0, �(1) = 1,�(2) = 1, �(3) = 3, �(4) = 0. Assume furthermore that the senery � has a 2 and a 3 nowhere else thenin the points �1 and 3. Imagine that � the observation given to us would start as follows:� = (0; 2; 0; 1; 0; 1; 3; 0; 3; 1; 1; 1; 1; 0; 2; 0; 1; 1; 3; : : :)By looking at all of � we would see that the shortest time a 3 ours after a 2 in the observations is 4. Inthe �rst observations given above there is however already a 3 only four time units after a 2. The binaryword appearing in that plae , between the 2 and the 3 is 011. We dedue from this that between theplae of the 2 and the 3 the senery must look like: 011.In reality the senery we want to reonstrut is i.i.d. and does not have a 2 and a 3ouring in only one plae . So, instead of the 2 and the 3 in the example above we willuse a speial pattern in the observations whih will tell us when the random walk is bakat the same spot. One possibility (although not yet the one we will eventually use) wouldbe to use binary words of the form: 001100 and 110011. It is easy to verify that theonly possibility for the word 001100, resp. 110011 to appear in the observations, is whenthe same word 001100, resp. 110011 ours in the senery and the random walk reads it.So, imagine (to give another pedagogial example of a simpli�ed ase) the senery wouldbe suh that in a plae x there ours the word 001100, and in the plae y there oursthe word 110011 , but these two words our in no other plae in the senery. Thesewords an then be used as markers: In order to reonstrut the piee of the senery �omprised between x and y we ould proeed as follows: take in the observations the



0.3. Longest Common Subsequenes 13plae where the word 110011 ours in shortest time after the word 001100. In thatplae in the observations we see a opy of the piee of the senery � omprised betweenx and y. The reason why the very last simpli�ed example is not realisti is the following:we take the senery to be the outome of a random proess itself where the �(k) 's arei.i.d. variables themselves. Thus any word will our in�nitely often in the senery �.The simple markers desribed above are not good enough for most senery reonstrutionproblems. Instead we use sophistiated markers. Depending on the number of olors of �and the distribution of S, the tehniques use to build eÆient markers di�er very muh.For example, take the random walk S to be a simple walk with holding. Let the senery� be a two olor senery. Let x 2 Z be a point suh that �z = 0 and �z+1 = 1. ThenS an generate any pattern by just moving bak and forth between the points z andz + 1. Hene, most patterns an be generated in many loations of the senery �. Thisimplies that there exists no markers based on some simple ombinatorial ideas. Rather,the markers have to be subtle statistial \loalization tests".Another important problem for senery reonstrution is to develop statistial tests to�nd out when the random walk is lose to the origin. If we know when the random walkis in the viinity of the origin, we an reognize the markers lose to the plae where wewant to reonstrut a piee of �.0.3 Longest Common SubsequenesThe investigation of the longest ommon subsequenes (LCS) of two �nite words is oneof the main problems in the theory of pattern mathing. The LCS-problem plays a rolefor DNA- and Protein-alignments, �le-omparison, speeh-reognition and so forth.In everything that follows we assume that:Xi; i 2 N and Yi; i 2 N are two independent, i.i.d. sequenes of uniform random variables.The state spae of these variables is a �nite alphabet A = f0; 1; : : : ; C � 1g. (In thesimplest ase, the variables are just i.i.d. Bernoulli variables with parameter 1/2.) Let Xand Y denote the �nite random words:X = X1 : : :Xnand Y = Y1 : : : Yn:Let Ln designate the length of a longest ommon subsequene of X and Y . (A ommonsubsequene of X and Y is a sequene whih is a subsequene of X and of Y . Let j � n.Then, X and Y admit a ommon subsequene of lenght j i� there exist two inreasinginteger maps � : [0; j� 1℄! [0; n℄ and � : [0; j� 1℄! [0; n℄ suh that X�(k) = Y�(k) for allk � j � 1). The random variable Ln and several of its variants have been studied inten-sively by probabilists, omputer-sientists and mathematial biologists; for appliationsof LCS-algorithms in biology see Waterman [24℄.The most widely used method for the omparison of geneti data is a generalization ofthe LCS-method. (For an exellent overview of this subjet see Waterman-Vingron [26℄.)In this generalization a maximal sore is sought over the set of all possible alignments of



14the two sequenes, where gaps are penalized with a �xed parameter Æ > 0 and mismathesare penalized by a �xed amount � > 0: onsider for example the two words \brot" and\bat". One possible alignment A of these words isb r o tb a � tThe sore of this alignment is 1 � � � Æ + 1 = S(A ). The mathing pairs of letters \b"and \t" are eah valued with a weight of 1. The gap � in \bat" after the \a" osts �Æ.Furthermore, the mismath between \r" and \a" is penalized by adding �� to the totalsore. IfM�;Æ(X; Y ) denotes the maximal sore amongst all possible alignments of the twowords X and Y , and ifMn(�; Æ) is the random variable de�ned byMn(�; Æ) =M�;Æ(X; Y ),where X and Y are two i.i.d. random sequenes of length n, then the LCS-problem is aspeial ase of the investigation of Mn(�; Æ), beause Ln = Mn(1; 0). Generalizing thearguments from the LCS-problem, one an prove that the limita(�; Æ) = limn!1 E [Mn ℄nexists. Arratia-Waterman [2℄ showed that there is a phase transition phenomenon de�nedby ritial values of � and Æ. In one phase Mn is of linear order in n, whereas in the otherit is logarithmially small in n. Waterman [25℄ onjetures that the deviation of Mn fromits mean behaves like pn.Let us mention a few further details on the history of these problems and the state ofknowledge about them: Waterman-Arriata [2℄ derive a law of large deviation for Ln forutuations on sales larger than pn. Using �rst passage perolation methods, Alexander[1℄ proves that E [Ln ℄=n onverges at a rate of order plogn=n.Large deviation based upper bounds for . Using a sub-additivity argument,Chvatal-Sanko� [4℄ prove that the limit := limn!1 E [Ln ℄=nexists. The exat value of  remains however unknown. Chvatal-Sanko� [4℄ derive upperand lower bounds for , and similar upper bounds were found by Baeza-Yates, Gavalda,Navarro and Sheihing [3℄ using an entropy argument.These bounds have been improved by Deken [6℄, and subsequently by Dan�ik-Paterson[5, 23℄. For a very large alphabet, M. Kiwi, M. Loebl and J. Matousek [18℄ where ableto determine the value of . On the other hand, in [paper 11 ℄, R. Hauser, S. Martinezand I developed a method whih allows to further improve the upper bound on . Ourapproah an be seen as a generalization of the method of Dan�ik-Paterson. It is a largedeviation and Monte-Carlo simulation based tehnique.Flutuation when one sequene is periodi. Let (Zi)i2N be a (non-random) periodisequene. Let LCSZ;n designate the length of the longest ommon subsequene of the two



Referenes 15�nite sequenes (Xi)i2In and (Zi)i2In, (where as before In designates the integer intervalIn = [1; n℄.) It is known that the limitlimn!1 LCSZ;nnonverges to a onstant Z . This onstant is not known. Of ourse Z depends on theperiodi sequene Zi; � 2 N . In [paper 12 ℄, J. Lember, C. Durringer and I , studied theasymptoti deviation from the mean of the random variable LCSZ;n. Our main result isthat DEVY;n := LCSZ;n � E [LCSZ;n℄has an order of magnitude of pn when the period of Zi; � 2 N is small in omparison ton.Referenes[1℄ Kenneth S. Alexander. The rate of onvergene of the mean length of the longestommon subsequene. Ann. Appl. Probab., 4(4):1074{1082, 1994.[2℄ Rihard Arratia and Mihael S. Waterman. A phase transition for the sore inmathing random sequenes allowing deletions. Ann. Appl. Probab., 4(1):200{225,1994.[3℄ R.A. Baeza-Yates, R. Gavald�a, G. Navarro, and R. Sheihing. Bounding the ex-peted length of longest ommon subsequenes and forests. Theory Comput. Syst.,32(4):435{452, 1999.[4℄ V�al�av Chvatal and David Sanko�. Longest ommon subsequenes of two randomsequenes. J. Appl. Probability, 12:306{315, 1975.[5℄ Vlado Danik and Mike Paterson. Upper bounds for the expeted length of alongest ommon subsequene of two binary sequenes. Random Strutures Algo-rithms, 6(4):449{458, 1995.[6℄ Joseph G. Deken. Some limit results for longest ommon subsequenes. DisreteMath., 26(1):17{31, 1979.[7℄ F. den Hollander and J. E. Steif. Mixing properties of the generalized T; T�1-proess.J. Anal. Math., 72:165{202, 1997.[8℄ W. Th. F. den Hollander. Mixing properties for random walk in random senery.Ann. Probab., 16(4):1788{1802, 1988.[9℄ M. Harris and M. Keane. Random oin tossing. Probab. Theory Related Fields,109(1):27{37, 1997.[10℄ D. Heiklen, C. Ho�man, and D. J. Rudolph. Entropy and dyadi equivalene ofrandom walks on a random senery. Adv. Math., 156(2):157{179, 2000.[11℄ C. D. Howard. Deteting defets in periodi senery by random walks on Z. RandomStrutures Algorithms, 8(1):59{74, 1996.
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Chapter 1Reonstruting a Multiolor RandomSenery seen along a Random WalkPath with Bounded Jumps
Eletroni Journal of Probability, 9(15):436{507, 2004.By Matthias L�owe, Heinrih Matzinger, and Franz MerklKesten [12℄ notied that the senery reonstrution method proposed by Matzinger [17℄relies heavily on the skip-free property of the random walk. He asked if one an stillreonstrut an i.i.d. senery seen along the path of a non-skip-free random walk. In thisartile, we positively answer this question. We prove that if there are enough olors andif the random walk is reurrent with at most bounded jumps, and if it an reah everyinteger, then one an almost surely reonstrut almost every senery up to translationsand reetions. Our reonstrution method works if there are more olors in the senerythan possible single steps for the random walk. 11.1 Introdution and ResultA (one dimensional) senery is a oloring � of the integers Z with C0 olors f1; : : : ; C0g.Two seneries �, �0 are alled equivalent, � � �0, if one of them is obtained from the otherby a translation or reetion. Let (S(t))t�0 be a reurrent random walk on the integers.Observing the senery � along the path of this random walk, one sees the olor �(S(t))at time t. The senery reonstrution problem is onerned with trying to retrieve thesenery �, given only the sequene of observations � := (�(S(t)))t�0. Quite obviouslyretrieving a senery an only work up to equivalene. Work on the senery reonstru-tion problem started by Kesten's question, whether one an reognize a single defet in arandom senery. Kesten [11℄ answered this question in the aÆrmative in the ase of four1MSC 2000 subjet lassi�ation: Primary 60K37, Seondary 60G10, 60J75.Key words: Senery reonstrution, jumps, stationary proesses, random walk, ergodi theory.17



18 Chapter 1. Reonstruting a Random Senery : : :olors. He takes the olors to be i.i.d. uniformly distributed. In his Ph.D. thesis [17℄, seealso [18℄ and [20℄, Matzinger proved that typial seneries an be reonstruted: He takesthe seneries as independent uniformly distributed random variables, too. He showedthat almost every senery an be almost surely reonstruted. In [12℄, Kesten notiedthat this proof in [17℄ heavily relies on the skip-free property of the random walk. Heasked whether the result might still hold in the ase of a random walk with jumps. Thisartile gives a positive answer to Kesten's question: If the random walk an reah everyinteger with positive probability and is reurrent with bounded jumps, and if there arestritly more olors than possible single steps for the random walk, then one an almostsurely reonstrut almost every senery up to equivalene.More formally: Let C = f1; : : : ; C0g denote the set of olors. Let � be a probabilitymeasure over Z supported over a �nite set M := supp � � Z. With respet to a prob-ability measure P , let S = (S(k))k2N be a random walk starting in the origin and withindependent inrements having the distribution �. We assume that E[S(1)℄ = 0; thus Sis reurrent. Furthermore we assume that supp � has the greatest ommon divisor 1, thusS an reah every z 2 Z with positive probability. Let � = (�(j))j2Z be a family of i.i.d.random variables, independent of S, uniformly distributed over C. We prove:Theorem 1.1.1. If jCj > jMj, then there exists a measurable map A : CN ! CZ suhthat P [A(�) � �℄ = 1: (1.1.1)Researh on random seneries started by work by Keane and den Hollander [10℄, [4℄.They thoroughly investigated ergodi properties of a olor reord seen along a randomwalk. These questions were motivated among others by the work of Kalikow [9℄ and denHollander, Steif [3℄, in ergodi theory.As was shown in [20℄ the two olor senery reonstrution problem for a senery whihis i.i.d. is equivalent to the following problem: let (R(k))k2Z and (S(k))k�0 be two inde-pendent simple random walks on Z both starting at the origin and living on the sameprobability spae. Does one path realization of the iterated random walk (R(S(k)))k�0uniquely determine the path of (R(k))k2Z a.s. up to shift and reetion around the origin?This is a disrete time analogue to a problem solved by Burdzy [2℄ onerning the pathof iterated Brownian motion.A preform of the senery reonstrution problem is the problem of distinguishing twogiven seneries. It has been investigated by Benjamini and Kesten in [1℄ and [11℄. Howardin a series of artiles [8℄, [7℄, [6℄ also ontributed to this area; see below. The senery dis-tinguishing problem is the following: Given two di�erent seneries �, �0 and observations(~�(S(j)))j�0, where ~� equals either � or �0, the question is: Can we distinguish whether~� = � or ~� = �0? Benjamini and Kesten [1℄ showed that one an almost surely distinguishalmost all pairs of seneries �, �0, if they are drawn independently with i.i.d. entries.Their result even holds in the two dimensional ase. This result is not beaten by a reon-strution result: the reonstrution method in two dimensions by L�owe and Matzinger[16℄ holds only when we have many olors. When � and �0 di�er in preisely one point,the distinguishing problem was examined by Kesten [11℄ and Howard [6℄. Kesten provedthat almost all pairs of those seneries (�; �0) an be distinguished in the 5-olor ase.



1.1. Introdution and Result 19He assumes the seneries to be i.i.d. Howard proved that all periodi seneries an bedistinguished.As mentioned above, it is in general not possible to reonstrut �; one an at mostexpet a reonstrution up to equivalene. As a matter of fat, even this is impossible:By a theorem of Lindenstrauss [14℄, there exist non-equivalent seneries that annot bedistinguished. Of ourse, they also annot get reonstruted.For seneries that an be reonstruted Benjamini asked whether the reonstrutionworks also in polynomial time. This question was positively answered by Matzinger [19℄in the ase of a two olor senery and a simple random walk with holding. L�owe andMatzinger [15℄ proved that reonstrution works in many ases even if the senery is noti.i.d., but has some orrelations. For the setting of our artile den Hollander asked if the�nite bound on the length of the jumps is neessary for senery reonstrution.In a way a result by Lenstra and Matzinger omplements the present paper. If therandom walk might jump more than distane 1 only with very small probability and ifthe tail of the distribution of the jumps deays suÆiently fast, Lenstra and Matzinger[13℄ proved that senery reonstrution is still possible.Let us explain how this artile is organized. In order to avoid getting lost amongthe many details of the rather omplex proof, this artile is ordered in a \top-down"approah: In order to show the global struture of the reonstrution proedure in aompat but formal way, we start with a setion alled \Skeleton". This setion olletsthe main theorems and main de�nitions of the reonstrution method, using \lower level"proedures as blak boxes. In the \Skeleton" setion, we only show how these theorems �ttogether to yield a proof of the reonstrution theorem 1.1.1; all proofs of the \ingredient"theorems are postponed to later setions. Although this approah is more abstrat thana \bottom-up" struture would be, we hope that it allows the reader to more quikly seethe global struture.Overview on some steps for the reonstrution proedure The reonstrutionstarts with an ergodiity argument: It suÆes to onsider only seneries whih produe avery untypial initial piee of observations; in partiular we may ondition on a large but�nite initial piee of the observations to be onstant. We apply a reonstrution proedure,whih works only in this untypial situation, again and again to the observations withlarger and larger initial piees dropped, disregarding all instanes that do not produethe presribed \untypial" outome. Finally we will see even the presribed \untypialsituation" suÆiently frequent to suessfully reonstrut the senery. The \untypialinitial piee" serves to identify loations lose to the origin at later times again, at leastup to a ertain time horizon.The reonstrution proedure onsists in a hierarhy of partial reonstrution proe-dures; these try to reonstrut larger and larger piees of the senery around the origin.The hierarhy of partial reonstrution proedures is de�ned reursively.To reonstrut a large piee in the (m + 1)st hierarhial level, we need some in-formation where the random walker is loated while produing its olor reords. This



20 Chapter 1. Reonstruting a Random Senery : : :information is enoded in stopping times, whih stop the random walk with high proba-bility suÆiently lose to the origin, at least up to a ertain time horizon.The stopping times for the (m + 1)st hierarhial level are built using the mth levelpartial reonstrution proedure: Given a reonstruted piee around the origin from themth level, one starts the whole mth level partial reonstrution proedure again at a later\andidate time". Whenever the piee of senery obtained in this way has a suÆientlyhigh overlap with the reonstruted piee around the origin, then one has a high hanethat the random walk is lose to the origin at the \andidate time".The global struture of this reursive onstrution is formally desribed in the \Skele-ton" Setions 1.3 and 1.4, and we prove in Setions 1.7 and 1.8 that the stopping timesful�ll their spei�ation.The heart of the reonstrution proedure, i.e. the onstrution of the partial reon-strution algorithm given the stopping times, is desribed in Setion 1.5 and proven tobe orret in Setion 1.6. Roughly speaking, to reonstrut a piee of senery of size 2n,we ollet a \puzzle" of words of size proportional to n, i.e. logarithmially in the sizeof the piee to be reonstruted. The puzzle ontains (with high probability) all orretsubwords of the given size in the \true" piee of senery to be reonstruted, but alsosome \garbage" words. We play a kind of puzzle game with these piees: starting withseed words, we reonstrut larger and larger piees by adjoining more and more piees ofthe puzzle that �t to the growing piee.Although the atual onstrution is muh more ompliated than the idea desribednow, let us desribe an (over)simpli�ed version of how to ollet piees in the puzzle:Suppose we have two \harateristi signals" A and B in the senery, whih our onlyone in the senery. Suppose that the distane between A and B is a multiple of themaximal step size l! of the random walk to the right. Then we an almost surely identifythe whole \ladder" word read while stepping from A to B with step size l! as follows:Look at all ourrenes of A and B in the olor reord with minimal distane. The wordsourring in the olor reord between those A and B should (a.s.) be always the same inthe whole reord, and it is the \ladder" word we are looking for. Of ourse, by ergodiitythere are almost surely no (bounded) signals A and B in the senery that our onlyone; this is why the simple idea desribed here annot be applied without onsiderablere�nement.The \piees of puzzle" obtained are l!-spaed piees; not piees with spaing 1. Thisis why our puzzle game leads to reonstrutions of modulo lasses of the senery modulol! only. In order to suessfully reonstrut the whole senery, we need to arrange thesemodulo lasses orretly, using some \neighborship" relation between piees of the puzzle.Unfortunately, the orret arrangement of modulo lasses is a tehnially intriate step inthe reonstrution proedure.1.2 Some notationWe ollet some globally used nonstandard notations and onventions in this setion.Sets, funtions, and integers: For funtions f and sets D the notation fdD meansthe restrition of f to the set D. D need not be ontained in the domain of f ; thusfdD is de�ned on D \ domain(f). If f and g are funtions, the notation f � g means



1.2. Some notation 21that f is a restrition of g; this notation is onsistent with the set theoreti de�nitionof funtions. By onvention, 0 2 N . The integer part of a real number r is denoted bybr := maxfz 2 Z j z � rg; similarly dre := minfz 2 Z j z � rg.Integer intervals: Unless expliitly stated otherwise, intervals are taken over the inte-gers, e.g. [a; b℄ = fn 2 Z : a � n � bg, ℄a; b[= fn 2 Z : a < n < bg. Given a �xednumber C0, we de�ne the set of olors C := [1; C0℄ = f1; : : : ; C0g, jCj = C0.In the rest of this setion I will denote an arbitrary subset of Z unless otherwisespei�ed.Seneries and equivalene: By de�nition, a senery is an element of CZ. If I � Z,then the elements of CI are alled piees of senery. The length j�j of a piee of senery� 2 CI is the ardinality jIj of its index set. �$ := (��i)i2�I denotes the reetion of apiee of senery � 2 CI at the origin. Two piees of senery � 2 ZI and � 0 2 ZI0 are alledstrongly equivalent, � � � 0, if � is obtained by some translation of � 0, i.e. I 0 = I + b forsome b 2 Z, and � = (� 0i+b)i2I . � and � 0 are alled equivalent, � � � 0, if � is obtainedby some translation or reetion of � 0, i.e. I 0 = aI + b for some a 2 f�1g, b 2 Z, and� = (� 0ai+b)i2I . If T : Z ! Z, T (z) = az + b, denotes this translation or reetion, thenT [�℄ := � 0 denotes the transport of � 0 by T ; the same notation is used for the domains:T [I℄ = I 0. By de�nition, � 4 � 0 means that � � � 0dJ for some J � I 0. If additionally suha subset J � I 0 and its reading diretion (i.e. either � � � 0dJ or � � (� 0dJ)$) is unique,we write � 41 � 0. Similarly � v � 0 (in words: \� ours in � 0") means that � � � 0dJ forsome J � I 0.Words: The elements of C� := Sn2N Cn = Sn2N Cf0;:::;n�1g are alled words (over C). Weidentify C with C1. The onatenation of two words w1 2 Cn and w2 2 Cm is denoted byw1w2 2 Cn+m.Probability distributions: The law of a random variableX with respet to a probabil-ity measure P is denoted by LP (X). The n-fold onvolution of a probability distribution� over R is denoted by ��n.Random seneries and random walks: As mentioned before, let � be a probabilitymeasure over Z supported over a �nite setM = supp� � Z. Let 
2 � ZN denote the setof all paths with starting point S(0) = 0 and jump sizes S(t+1)�S(t) 2 M, t 2 N . Let Q0denote the law of a random walk S = (S(k))k2N with start in 0 2 Z and with independentinrements having the distribution �. Furthermore, let � = (�j)j2Z be a family of i.i.d.random variables, independent of S, with uniform distribution L(�j) = � over C. Werealize (�; S) as anonial projetions of 
 = CZ�
2 endowed with its anonial produt�-algebra and the probability measure P := �Z
 Q0. (The restrition of the randomwalk paths not to have forbidden jumps even on null sets is tehnially onvenient.) Weassume that E[S(1) � S(0)℄ = 0 (k 2 N); thus S is reurrent. Furthermore we assumethat supp � has the greatest ommon divisor 1, thus S eventually reahes every z 2 Zwith probability one. For �xed seneries � 2 CZ, we set P� := Æ� 
 Q0, where Æ� denotesthe Dira measure at �. Thus P� is the \anonial" version of the onditioned probability



22 Chapter 1. Reonstruting a Random Senery : : :P [ � j�℄. We use the notations P� and P [ � j�℄ as synonyms; i.e. we will never work with adi�erent version of the onditioned measure P [ � j�℄ than P�.Filtrations: We de�ne the �ltration F := (Fn)n2N, Fn := �(�; (S(k))k=0;:::;n) over 
.We further introdue the �ltration G := (Gn)n2N over CN , where Gn is the �-algebragenerated by the projetion map CN ! C [0;n℄, � 7! �d[0; n℄.Observations of the senery along the random walk and shifts:Let � = (�n)n2N := (�S(n))n2N. We sometimes write simply � = � Æ S; this is to beunderstood in the sense �(!) = �(!) Æ S(!) for all ! 2 
. Let H = (Hn)n2N, Hn :=�(�k; 0 � k � n) denote the �ltration obtained by observing the senery along initialpiees of the random walk. We de�ne the shift operations � : CN ! CN, (�n)n2N 7!(�n+1)n2N, and � : 
! 
, (�; S) 7! ((�n+S(1))n2Z; (S(k+1)�S(1))k2N); thus �Æ� = �Æ�.Intuitively, � spatially shifts both the senery and the random walk by the loation S(1)of the random walk after one step, and it drops the �rst time step. One observes � � �Æ�.Admissible paths: A piee of path � = (�i)i2I 2 ZI over an integer interval I is alledadmissible if �i+1��i 2 M for all fi; i+1g � I. For �nite I 6= ?, �min I and �max I are alledstarting point and end point of �, respetively. We set TimeShift(�) := (�i�1)i2I+1. Byde�nition, the length j�j of the path � is the ardinality jIj. For x; t > 0 let AdPaths(x; t)denote the set of all admissible piees of path � 2 [�x; x℄[0;t[.Ladder intervals and ladder paths: Let l! := maxM, l := jminMj; thus l! andl are the maximal possible jump sizes of S to the right and to the left, respetively. Weabbreviate l := maxfl!; l g and h := ljMj. By de�nition, d-spaed intervals (d 2 N) aresets of the form I\ (a+dZ) with a bounded interval I and a modulo lass a+dZ 2 Z=dZ.l!-spaed intervals are also alled right ladder intervals. Similarly, l -spaed intervalsare alled left ladder intervals. By de�nition, a right ladder path is a piee of path thatsteps through the points of some right ladder interval in inreasing order. Similarly, a leftladder path is a piee of path that steps through the points of some left ladder intervalin dereasing order.Reading words from piees of seneries: For I = fi0; : : : ; in�1g � Z with i0 <: : : < in�1 and a piee of senery � 2 CI , we de�ne �! := (�ik)k=0;:::;n�1 2 Cn and� := (�in�1�k)k=0;:::;n�1 2 Cn; thus �! and � are the words obtained by reading � fromthe left to the right and from the right to the left, respetively. The right ladder word ofa senery � over a right ladder interval I is de�ned to be (�dI)!; similarly one de�nes leftladder words (�dJ) over left ladder intervals J .1.2.1 Conventions onerning onstantsFour �xed \suÆiently large" positive integer parameters 2, 1, �, and n0 globally playa role. The meaning of these parameters is explained below at the loation of theirourrene; at this point we only desribe their mutual dependene:� 2 2 N is hosen �rst suÆiently large; say 2 � min2 (jCj; �).



1.3. Skeleton of the Reonstrution Proedure 23� Then 1 2 2N is hosen to be even and suÆiently large; say 1 � min1 (2; jCj; �).� Then � 2 N is hosen to be suÆiently large; say � � �min(1; jCj; �).� Finally n0 2 2N is hosen to be even and suÆiently large; say n0 � nmin0 (1; �; jCj; �).We do not speify expliitly here how large the allowed lower bounds min2 , min1 , �min andnmin0 atually need to be; but we emphasize that the onstrutions below will work if theyare suÆiently large.All other positive onstants are denoted by \i" with a ounting index i > 2; they keeptheir meaning globally during the whole artile. Unless expliitly stated otherwise, theseonstants may depend only on the number of olors jCj and on the jump distribution � ofthe random walk; in partiular they may depend on the upper bound l of the jump size,but not on n0.1.3 Skeleton of the Reonstrution ProedureOur �rst \ingredient" theorem redues the problem of almost surely reonstruting sener-ies to the following simpler one: We only need to �nd an auxiliary reonstrution proedureAB whih may fail to give an answer, and it may sometimes even give the wrong answer,if only giving the orret answer is more probable than giving a wrong one. Roughlyspeaking, we apply the auxiliary reonstrution proedure AB repeatedly to the observa-tions with initial piees dropped, taking the answer of the majority as our result; hereergodiity of the observations plays a key role.Theorem 1.3.1. If there exists a measurable map AB : CN ! CZ[ ffailg withP [AB(�) 6= fail;AB(�) � �℄ > P [AB(�) 6= fail;AB(�) 6� �℄; (1.3.1)then there exists a measurable map A : CN ! CZ suh thatP [A(�) � �℄ = 1: (1.3.2)The auxiliary reonstrution proedure AB gives the output \fail" if one does notsee a long blok of 1's in the initial piee of the observations. Thus failure of AB is avery frequent event; however, non-failure still ours with a positive but small proba-bility, and onditioned on this event the most probable answer will be the orret one.Roughly speaking, when we apply AB again and again to the observations with initialpiees dropped, we will �nally see suÆiently many long bloks of 1's to make the wholeproedure work orretly.The required long blok of 1's in the initial piee should have length n200 for somesuÆiently large but �xed even number n0 2 2N. The parameter n0, whih parametrizesthe size of this required blok, is hosen �xed but large enough (see Subsetion 1.2.1).De�nition 1.3.1. With the abbreviation J1 = [�2ln200 ; 2ln200 ℄, we de�ne the followingevents: EB(k) := f�n = 1 for all n � kg for k 2 N ; (1.3.3)BigBlok := (There is an integer interval J0 � J1 with jJ0j � n40 suhthat �dJ0 = (1)j2J0 is a onstant piee of senery withvalue 1. ) :(1.3.4)



24 Chapter 1. Reonstruting a Random Senery : : :Let PB denote the image of the onditioned law P [ � jEB(n200 )℄ with respet to the shift �n200 .Furthermore, we de�ne the onditioned law~P := PB[ � jBigBlok℄: (1.3.5)The event EB(n200 ) ours when we see a large blok of 1's in an initial piee of theobservations, while BigBlok ours when there is a large blok of 1's lose to the originin the (unobservable) real senery �. The next lemma tells us that suh a large blokin the real senery is very probable whenever we see a large initial blok of 1's in theobservations:Lemma 1.3.1. There exists 3 > 0 suh that PB [BigBlok℄ � 1� e�3n120 .We desribe the intuitive meaning of ~P : After having seen a large initial blok of 1's inthe observations, we drop this initial piee and take the present point as our new startingpoint. Sine then a large blok of 1's lose to the origin in the unobservable real senery �is typial, it does not hange muh when we even ondition on this (unobservable) event.Almost all the proofs using the measure ~P will not expliitly use its de�nition (1.3.5),but only the following properties of ~P (and n0):Lemma 1.3.2. The probability measure ~P ful�lls:1. � and S are independent with respet to ~P ;2. The ommon distributions of (S; �d(Zn J1)) with respet to ~P and with respet to Poinide.3. With respet to ~P , the restrition �dJ1 is independent of �d(Z n J1).4. ~P [BigBlok℄ = 1.The next theorem shows that whenever we have a reonstrution proedure A0 thatworks suÆiently probably with respet to the modi�ed measure ~P , then there exists theauxiliary reonstrution proedure AB that we needed above:Theorem 1.3.2. Assume that there exists a measurable map A0 : CN ! CZ with~P [A0(�) � �℄ � 23 : (1.3.6)Then there exists a measurable map AB : CN ! CZ[ ffailg suh thatP [AB(�) 6= fail;AB(�) � �℄ > P [AB(�) 6= fail;AB(�) 6� �℄: (1.3.7)The reonstrution funtionA0 required by the last theorem is built by putting togethera hierarhy of partial reonstrution algorithms Am, m � 1. The partial reonstrutionalgorithms Am try to reonstrut longer and longer piees around the origin; the relevantlength sale in the m-th hierarhy is given by 2nm, where nm is de�ned as follows:De�nition 1.3.2. We de�ne reursively a sequene (nm)m2N : n0 was already hosenabove; we set nm+1 := 2bpnm: (1.3.8)



1.3. Skeleton of the Reonstrution Proedure 25The partial reonstrution algorithms may sometimes, but not too frequently, give thewrong answer:Theorem 1.3.3. Assume that there exists a sequene (Am)m�1 of measurable maps Am :CN ! C [�5�2nm ;5�2nm ℄ suh that ~P " 1[m=1(Em)# � 13 ; (1.3.9)where Em := f�d[�2nm; 2nm℄ 4 Am(�) 4 �d[�9 � 2nm ; 9 � 2nm ℄g: (1.3.10)Then there exists a measurable map A0 : CN ! CZ suh that the following holds :~P [A0(�) � �℄ � 23 : (1.3.11)Before desribing it formally, let us intuitively explain how the hierarhy of partialreonstrution algorithms Am is onstruted: The Am are built reursively in a \zig-zag"way simultaneously with a hierarhy of stopping times:These stopping times have the task to estimate times when the random walk S is suÆ-iently lose bak to the origin, at least up to a ertain time horizon. For this estimation,one may use only an initial piee of the olor reord �. To �nd \higher level" stoppingtimes, we try to reonstrut a piee of senery both at the present andidate loationand at the starting point, using a \lower level" partial reonstrution algorithm. If thetwo obtained piees of senery have a high overlap with eah other, then there is a goodhane that the andidate loation and the starting point are lose to eah other. This isthe \zig" part of the \zig-zag" reursion.The \zag" part of the reursion uses the stopping times as follows to onstrut a\higher level" partial reonstrution algorithmAm: Whenever the stopping times indiatethat one might be suÆiently lose to the origin, one ollets \typial signals" whih oneexpets to be harateristi of the loal environment in the senery. The data obtained inthis way are then mathed together similarly to playing a puzzle game. This proedureis the heart of the whole reonstrution method.To get the whole onstrution started, one needs some initial stopping times whihindiate that one might be suÆiently lose to the origin. A simple way to get suh timesis the following: Whenever one observes a suÆiently long blok of 1's in the olor reord,then one has a high hane to be lose to the origin. (Remember: We onditioned onseeing a long blok of 1's at an initial piee of the olor reord.) This is the reason whywe introdue the modi�ed measure ~P , sine with respet to ~P one an be (almost) sure tohave a big blok of 1's in the senery lose to the origin. However, the suh onstrutedstopping times are not reliable enough to base the �rst partial reonstrution algorithmon them. Instead, these stopping times are used as ingredients to onstrut more reliablestopping times.We treat the \zig" part and the \zag" part of the reursion separately, starting with theformal spei�ation of the \zig" part: Given an abstrat partial reonstrution algorithmf , we build stopping times out of it:The spei�ation of the stopping times depends on a �xed, suÆiently large parameter� 2 N . Informally speaking, � inuenes how many stopping times in eah step should bevaluable, and what the time horizon for the m-th partial reonstrution algorithm in the



26 Chapter 1. Reonstruting a Random Senery : : :hierarhy should be. The parameter � is hosen �xed but large enough; reall Subsetion1.2.1.De�nition 1.3.3. Let m � 1. Let a funtion f : CN ! C [�5�2nm ;5�2nm ℄ be given. Assumethat f(�) depends only on �d[0; 2 � 212�nm [. We de�ne the random setTf (�) := �t 2 [0; 212�nm+1 � 2 � 212�nm [ �� 9w 2 C2�2nm : w 4 f(�) and w 4 f(�t(�)) 	 :(1.3.12)We de�ne a sequene Tf = (Tf;k)k�0 of G-adapted stopping times with values in [0; 212�nm+1 ℄:Let t(0) < : : : < t(jTf (�)j� 1) be the elements of Tf (�) arranged in inreasing order. Fork 2 N, we setTf;k(�) := � t(2 � 22nm+1k) + 2 � 212�nm if 2 � 22nm+1k < jTf (�)j,212�nm+1 otherwise. (1.3.13)Observe that the stopping times Tf (�) depend only on �d[0; 212�nm+1 [.In the next de�nition, we introdue events Emstop;� ; they speify what the stoppingtimes should ful�ll: There should be suÆiently many of them, they should be separatedby at least 2 � 22nm, and they should stop the random walk suÆiently lose to the origin.Furthermore, given any abstrat partial reonstrution algorithm f , we de�ne an eventEmreonst;f ; it measures whether f orretly reonstruts a piee of the senery around theorigin.De�nition 1.3.4. Let m 2 N.1. Given a sequene � = (�k)k2N of G-adapted stopping times, we de�neEmstop;� (1.3.14):= 2�nm\k=0 ��k(�) < 212�nm ; jS(�k(�))j � 2nm ; �j(�) + 2 � 22nm � �k(�) for j < k	 :2. We set for f : CN ! C [�5�2nm ;5�2nm ℄:Emreonst;f := f�d[�2nm; 2nm℄ 4 f(�) 4 �d[�9 � 2nm; 9 � 2nm℄g : (1.3.15)Roughly speaking, the following theorem states: there are stopping times \to getstarted" whih solve their task with high probability:Theorem 1.3.4. There exists a sequene of G-adapted stopping times T 1 = (T 1k )k2N withvalues in [0; 212�n1 ℄ and a onstant 4 > 0, suh that~P �(E1stop;T 1)� � e�4n0: (1.3.16)The next theorem states that the \zig"-part of the onstrution works orretly withhigh probability. As a premise, the \zig"-part needs the underlying \lower level" partialreonstrution algorithm f to work orretly when f is applied at the beginning. Fur-thermore, the \zig"-part needs f to have a suÆiently high probability to work orretlyon the given senery � whenever it is applied again. Informally speaking, the reason is: In



1.3. Skeleton of the Reonstrution Proedure 27the \zig"-part we an only reonstrut, if we know where we are. The idea is to start thewhole lower-level reonstrution proedure again whenever we want to �nd out whetherwe are lose to the origin. As mentioned before, if the result has a large overlap with thepiee we have have already reonstruted, we an be rather sure that we are lose to theorigin.Theorem 1.3.5. Under the assumptions of De�nition 1.3.3, we have thatP �(Em+1stop;Tf ) \ Emreonst;f \�P �Emreonst;f j �� � 12�� � e�nm+1 : (1.3.17)We remark: in the \zig part" (Theorem 1.3.5) we work with the event Em+1stop;Tf , whilein the \zag part" (Theorem 1.3.6 below) we work with Emstop;Tf .Intuitively, in order to suessfully reognize loations lose to the origin, we need notonly the \lower level" reonstrution to work orretly the �rst time (i.e. Emreonst;f needsto hold), but also the senery must be suh that whenever one starts the \lower level"reonstrution again, one has a suÆiently high hane to reonstrut again a orretpiee; this is why we need the event \P [Emreonst;f j �℄ � 1=2".Finally the heart of the reonstrution algorithm onsists of the \zag"-part: there arepartial reonstrution algorithms Algnm whih take an initial piee of the olor reordas input data, and abstrat \lower level" stopping times � as \argument proedures".Intuitively, the following theorem states that the algorithms Algnm reonstrut orretlywith high probability, provided the \argument proedures" � ful�ll their spei�ationEmstop;� .Theorem 1.3.6. For every m 2 N, there is a mapAlgnm : [0; 212�nm ℄N � C2�212�nm ! C [�5�2nm ;5�2nm ℄ (1.3.18)suh that for every vetor � = (�k)k2N of G-adapted stopping times with values in [0; 212�nm℄one has P �(Emreonst;Algnm (�;�)) \ Emstop;�� � 5e�6nm (1.3.19)for some positive onstants 6 and 5, where Algnm(�; �) : � 7! Algnm(�(�); �d[0; 2�212�nm [).To motivate the allowed range for the abstrat arguments � in this theorem, reallthat Tf;k(�) in (1.3.13) take their values in [0; 212�nm+1 ℄.Note that Theorems 1.3.5 and 1.3.6 use the original probability measure P , whileTheorem 1.3.4 uses the modi�ed probability measure ~P .An algorithm Algn is de�ned in the next Setion 1.5, but its orretness, i.e. Theorem1.3.6, is proven in Setion 1.6, below. Theorems 1.3.5 and 1.3.4 are proven below inseparate Setions 1.7 and 1.8, respetively. Right now we show how to use these threetheorems: Provided these three theorems are true, the hypothesis of Theorem 1.3.3 holds,i.e. there exists a sequene of measurable maps Am : CN ! C [�5�2nm ;5�2nm ℄ suh that(1.3.9) is valid. We take the maps Algnm and the sequenes of stopping times T 1, Tffrom Theorems 1.3.4, 1.3.5, and 1.3.6 to de�ne reursively maps Am. Then we prove:the properties guaranteed by Theorems 1.3.4, 1.3.5, and 1.3.6 imply that the sequene ofmaps (Am)m�1 satis�es (1.3.9). We are ready to desribe the \zig-zag"-reursion formally:De�nition 1.3.5. We de�ne Am : CN ! C [�5�2nm ;5�2nm ℄ and sequenes Tm = (Tmk )k2N ofG-adapted stopping times by simultaneous reursion over m � 1:



28 Chapter 1. Reonstruting a Random Senery : : :� T 1 is hosen using Theorem 1.3.4.� Am(�) := Algnm(Tm(�); �d[0; 2 � 212�nm [), with Algnm taken from Theorem 1.3.6.� Tm+1 := TAm , with the notation of De�nition 1.3.3.Reall De�nition (1.3.10) of the events Em. >From now on, we use our spei� hoiefor Am from De�nition 1.3.5. Using (1.3.15), we rewrite (1.3.10) in the formEm = Emreonst;Am : (1.3.20)Theorem 1.3.7. For the sequene (Am)m�1 as de�ned in De�nition 1.3.5 and (Em)m2Nas in (1.3.20), the bound (1.3.9) is valid.All theorems of this setion together yield the proof of our main theorem:Proof of Theorem 1.1.1. By Theorem 1.3.7, (1.3.9) holds; then (1.3.11) holds byTheorem 1.3.3; moreover (1.3.7) holds by Theorem 1.3.2; �nally Theorem 1.3.1 impliesthe laim (1.1.1) of Theorem 1.1.1.1.4 Proofs onerning the Skeleton StrutureLemma 1.4.1. The shift � : 
! 
, (�; S) 7! (�(�+ S(1)); S(�+ 1)� S(1)) is measure-preserving and ergodi with respet to P .Proof. The shift � is measure-preserving: Sine the distribution of � is invariantunder (deterministi) translations, and sine S(1) is independent of �, we get: �(�+S(1))has the same distribution as �. Furthermore, (S(t + 1) � S(1))t2N has the same distri-bution as S. Sine �, S(1) and (S(t + 1) � S(1))t2N are independent, �(� + S(1)) and(S(t + 1) � S(1))t2N are independent, too. Consequently �(�; S) has the same distribu-tion as (�; S).For the ergodiity part, we ondition �rst on deterministi �: Reall from Setion 1.2that for �xed � 2 C Z, P� = Æ� 
 Q0 denotes the \anonial" version of the onditionedmeasure P [ � j �℄. We laim �rst that the shift � is ergodi (but in general not measure-preserving) with respet to P�. To prove this laim, note that the standard shift�̂ : ZN ! ZN; (s(t))t2N 7! (s(t+ 1))t2N (1.4.1)is ergodi (but not measure-preserving) with respet to the probability measure PS in-dued by S. Consider the measurable mapf� : ZN ! 
; f�(s) := (�(�+ s(0)); s� s(0)); (1.4.2)then f� Æ �̂ = � Æ f�, and P� is the image measure of PS with respet to f�. Thus � isergodi with respet to P�, sine �̂ is ergodi with respet to PS.Let A � 
 be measurable and shift-invariant: ��1[A℄ = A. Aording to the abovewe have for every � 2 CZ that P�[A℄ 2 f0; 1g. Consider the setM := �� 2 CZ j P�[A℄ = 1	 : (1.4.3)



1.4. Proofs onerning the Skeleton Struture 29We laim that for all a 2 Z holds � 2 M if and only if �(� + a) 2 M . To prove thislaim, let � 2 M and hoose N 2 N suh that P [S(N) = a℄ > 0. Then the imagemeasure of P�[ � j S(N) = a℄ with respet to �N equals P�(�+a). Assume � 2 M . Then1 = P�[A j S(N) = a℄ = P�[��NA j S(N) = a℄ = P�(�+a)[A℄; this shows that � 2 Mimplies �(�+ a) 2M . The same argument, applied to the translated senery �0 = �(�+ a)and a0 = �a, shows that �(�+ a) 2M implies � 2M ; hene M is a translation invariantset.By the ergodiity of the translation operator on seneries, M has measure P [� 2M ℄ =0 or P [� 2M ℄ = 1. If P [� 2M ℄ = 0, then P [P�[A℄ = 0℄ = 1; in this ase Fubini's theoremyields P [A℄ = 0. Otherwise P [P�[A℄ = 1℄ = 1; thus P [A℄ = 1, again by Fubini's theorem.Proof of Theorem 1.3.1. The idea of this proof is to apply the reonstrutionfuntion AB to all the shifted observations �k(�) for eah k 2 N . Every time one doesthis, one gets either a senery or the state fail as result.Given AB : CN ! CZ[ ffailg as in the hypothesis of the theorem, we de�ne measur-able funtions AkB : CN ! CZ, k 2 N , as follows:� If there exists j 2 [0; k[ suh that AB(�j(�)) 6= fail and���nj 0 2 [0; k[ ��� AB(�j0(�)) 6= fail; AB(�j0(�)) � AB(�j(�))o��� (1.4.4)> ���nj 0 2 [0; k[ ��� AB(�j0(�)) 6= fail; AB(�j0(�)) 6� AB(�j(�))o��� ;then let j0 be the smallest j with this property, and de�ne AkB(�) := AB(�j0(�)).� Else de�ne AkB(�) to be the onstant senery (1)j2Z.Finally de�ne the measurable funtion A : CN ! CZ byA(�) := � limk!1AkB(�) if this limit exists pointwise,(1)j2Z otherwise. (1.4.5)We hek that the suh de�ned funtion A ful�lls the laim (1.1.1) of the Theorem 1.3.1:Let us give the general idea: by the hypothesis (1.3.1) and an ergodiity argument, "onthe long run" the proportion of seneries AB(�k(�)) (for k 2 N) whih are equivalentto � is stritly bigger than the proportion of seneries whih are not equivalent to �.More formally, de�ne for k 2 Z the Bernoulli variables Xkse and Xkwrong se: we set Xkseequal to 1 i� AB(�k(�)) 6= fail and AB(�k(�)) � �. Similarly, Xkwrong se is equal to 1 i�AB(�k(�)) 6= fail and AB(�k(�)) 6� �. De�neY kse := 1k k�1Xi=0 X ise and Y kwrong se := 1k k�1Xi=0 X iwrong se: (1.4.6)Observe that if Y kse > Y kwrong se holds, then AkB(�) � �. As a onsequene of Lemma 1.4.1,the sequenes (Xkse)k�0 and (Xkwrong se)k�0 are stationary and ergodi, sine they an beviewed as a measurable funtion of the sequene k 7! �k(�; S). Note that � � �(�+S(k)).By the ergodi theorem, we have almost surely:Y kse k!1�! P �AB(�k(�)) 6= fail; AB(�) � �� ; (1.4.7)Y kwrong se k!1�! P �AB(�k(�)) 6= fail; AB(�) 6� �� : (1.4.8)



30 Chapter 1. Reonstruting a Random Senery : : :Thus by the assumption (1.3.1) there exists a.s. a (random) k0 suh that for all k � k0we have Y kse > Y kwrong se and hene AkB(�) = Ak0B (�) � �; reall that we hose the smallestpossible j0 in the de�nition of AkB. Thus a.s. A(�) � �.De�nition 1.4.1. For k; � 2 N, let �Blok(k; �) be the event of seneries�Blok(k; �) := (� 2 CZ �����There is an integer interval J0 � [�lk; lk℄ with jJ0j � �suh that �dJ0 = (1)j2J0 is a onstant piee of senery withvalue 1. ) :(1.4.9)In this setion, only the ase k = n200 , � = n40 is relevant. In Setion 1.8 below, anotherase is used as well.Lemma 1.4.2. If � 2 2N is large enough, k � �2, k 2 N, and if � is a senery with � =2�Blok(k; �), then P [EB(k)j �℄ � e�7k=�2 with some onstant 7 > 0. As a onsequene,P [EB(k)j � =2 �Blok(k; �)℄ � e�7k=�2 .Proof. Let � 2 CZ n �Blok(k; �). The idea of the proof is to split the time interval[0; k℄ into piees of size �2. Let us examine at �rst one of these time intervals of size �2:A typial length sale for the distane that the random walks travels in this time intervalis �; in partiular the probability that it travels farther than distane � is bounded awayfrom 0, at least if � is large enough. If the random walk travels that far, it gets lose by apoint not olored with \1", assuming that � =2 �Blok(k; �). (Note that the random walkdoes not leave the interval [�lk; lk℄ up to the time horizon k.) But one the random walkis lose enough to a point not olored with \1", the probability to hit this point a fewsteps later is bounded away from 0, too. Thus in every �2-sized interval the random walkhas a probability bounded away from 0 to see not only the olor 1. There are roughlyk=�2 suh intervals in [0; k℄; thus the probability to see only 1's up to the time horizon kis exponentially small in k=�2.Formally, we proeed as follows: We de�ne stopping times (�j)j=0;:::;b��2k�1:�j := inf �t 2 [j�2; (j + 1=2)�2℄ j �d[S(t); S(t) + l!℄ is not onstant 1	 : (1.4.10)In other words, �j is the smallest time in the interval [j�2; (j + 1=2)�2℄ when there isa point suÆiently lose to the right of the loation of the random walker whih is notolored with \1". If no suh time exists, �j = 1. We laim: For some onstant 8 > 0holds P ��j <1 j �; Sd[0; j�2℄� � 8: (1.4.11)This means: Uniformly in � 2 CZ n �Blok(k; �) and in the history of the random walkerup to time j�2, the hane that the random walk will get suÆiently lose to a point notolored by \1" during the next �2=2 steps is bounded from below by a positive onstant.To prove (1.4.11), we observe by the Markov property, �j := S((j +1=2)�2)�S(j�2)has the distribution ���2=2 with respet to the onditioned law P 0j := P [� j �; Sd[0; j�2℄℄;reall that � is even. Sine ���2=2 has the standard deviation 9� for some onstant 9,the Central Limit Theorem implies P [�j � �℄ � 10 (1.4.12)



1.4. Proofs onerning the Skeleton Struture 31for large enough �. Here 10 denotes a �xed positive onstant less than P [X � �19 ℄, andX is a standard normal random variable. Observe that whenever � 2 CZ n �Blok(k; �)and �j � � hold (i.e. in the interval of interest the random walk S moves at leastthe distane � to the right), then �j is �nite (i.e. the random walk passes lose to apoint whih is not olored with 1). This is true sine � 2 CZ n �Blok(k; �) implies that�d[S((j+1=2)�2); S((j+1=2)�2)+�℄ annot be a onstant piee 1, and sine the randomwalk does not perform jumps to the right larger than l!. Sine the jump distribution� is not supported on a strit sublattie Z of Z, there is a �xed L 2 N suh that[0; l!℄ � SL̀=0 supp(��`). If the event f�j < 1g holds, then � is not onstant 1 on theinterval [S(�j); S(�j) + l!℄. Let Aj denote the event that �d[j�2; (j + 1)�2℄ is onstant 1.Then we have for some onstant 1 > 11 > 0 and �2=2 � L:P 0j[Aj℄ � P 0j[�j <1℄P 0j[9` 2 [0; L℄ : �(�j + `) 6= 1 j �j <1℄ (1.4.13)� 8P 0j[9` 2 [0; L℄ : �(�j + `) 6= 1 j �j <1℄ � 11:Hene we obtain by the Markov property:P [EB(k) j �℄ � P 24 b��2k�1\j=0 Aj ������ �35 = E 24 b��2k�1Yj=0 P 0j[Aj℄ ������ �35 � (1� 11)b��2k: (1.4.14)This proves Lemma 1.4.2Proof of Lemma 1.3.1. Let �2 := Var [S(1)℄ be the variane of the single stepdistribution �. Consider the integer interval I := [�2�n100 ; 2�n100 ℄ \ Z; thenP [�dI = (1)j2I℄ = jCj�jIj � jCj�4�n100 �1: (1.4.15)The �rst submartingale inequality states P [max0�j�tXj > �℄ � E[Xt℄=�, for � > 0 andnonnegative submartingalesXt. Reall that S2 is a submartingale, sine x 7! x2 is onvex.Applying the submartingale inequality yields:P �9j 2 [0; n200 ℄ : S(j) =2 I� = P � max0�j�n200 S(j)2 > 4�2n200 � � (4�2n200 )�1E �S(n200 )2� = 14 :(1.4.16)If S(j) 2 I is valid for all j 2 [0; n200 ℄ and if �dI = (1)j2I holds, then �d[0; n200 ℄ = (1)j2[0;n200 ℄.Thus (1.4.15) and (1.4.16) and the independene of S and � implyP �EB(n200 )� � 34 jCj�4�n100 �1: (1.4.17)Hene we get for some onstant 3 > 0, using Lemma 1.4.2 and the abbreviations �Blok =CZn �Blok(n200 ; n40) and EB = EB(n200 ):P [� 2 �BlokjEB℄ � P [EBj � 2 �Blok℄P [EB℄ � 43 jCj4�n100 +1e�7n120 � e�3n120 : (1.4.18)The shift operation �n200 applied to (�; S) annot shift the senery � by more than ln200steps, and every shift of the interval [�ln200 ; ln200 ℄ by not more than ln200 steps is ontainedin J1. Thus the shifted event ��n200 BigBlok ours whenever the event � 2 �Blok holds;thus (1.4.18) implies P [��n200 BigBlok j EB℄ � e�3n120 , whih is equivalent to the laimof Lemma 1.3.1.Proof of Lemma 1.3.2. We abbreviate k := n200 .



32 Chapter 1. Reonstruting a Random Senery : : :1. We observe �rst that � Æ�k and the event EB(k) are both measurable with respetto the �-�eld �(�; (S(j))j�k), and S Æ �k is measurable with respet to �((S(j) �S(k)))j>k). Sine �(�; (S(j))j�k) and �((S(j) � S(k)))j>k) are independent withrespet to P , this implies that � Æ �k and S Æ �k are independent with respet toP [ � jEB(k)℄. Hene � and S are independent with respet to the image measurePB = (P [ � jEB(k)℄) Æ (�k)�1. Sine BigBlok 2 �(�), this implies part 1.2. By the independene proven in 1., it suÆes to show the two laims L ~P (S) = LP (S)and L ~P (�d(Z n J1)) = LP (�d(Z n J1)):� With respet to P , S Æ�k and S both have i.i.d. �-distributed inrements andthe starting point 0; thus their distributions oinide. By the above argument,S Æ�k and EB(k) are independent with respet to P . Hene the laws of S Æ�kwith respet to P and with respet to P [ � jEB(k)℄ oinide with the law LP (S)of S with respet to P . Hene LP (S) = LP [ � jEB(k)℄(S Æ �k) = LPB(S). Sine� and S are independent with respet to PB, and sine BigBlok 2 �(�), weobtain the �rst laim L ~P (S) = LP (S).� We ondition on �xed values of �d[�lk; lk℄ and Sd[0; k℄:We know that � Æ�k is a translation of � by S(k) steps, whih is not more thankl; this translation maps [�lk; lk℄ to a subset of J1. Thus (�Æ�k)d(ZnJ1) is ob-tained by translating a (S(k)-dependent) subpiee of �d(Zn [�lk; lk℄). Thus byour i.i.d. and independene assumptions for � and S we get: (�Æ�k)d(ZnJ1) hasthe distribution LP (�d(ZnJ1)) = �ZnJ1 with respet to P [ � j�d[�lk; lk℄; Sd[0; k℄℄.Furthermore, (� Æ �k)d(Z n J1) and (� Æ �k)dJ1 are independent with respetto P [ � j�d[�lk; lk℄; Sd[0; k℄℄.Sine EB(k) depends only on �d[�lk; lk℄ and Sd[0; k℄, this impliesLPB(�d(Z n J1)) = LP [ � jEB(k)℄((� Æ�k)d(Z n J1)) = �ZnJ1; (1.4.19)and �d(Z n J1) is independent of �dJ1 with respet to PB. Sine the eventBigBlok depends only on �dJ1, this independene impliesL ~P (�d(Z n J1)) = LPB(�d(Z n J1)) = �ZnJ1 = LP (�d(Z n J1)); (1.4.20)reall our hoie of ~P . This proves our seond laim.3. We have just seen: BigBlok 2 �(�dJ1), and the random piees �d(Z n J1) and �dJ1are mutually independent with respet to PB. These two fats imply part 3.4. This is an immediate onsequene of the de�nition ~P = PB[ � jBigBlok℄.Proof of Theorem 1.3.2. Assume A0 : CN ! CZ is a measurable map satisfying (1.3.6):PB[A0(�) � � jBigBlok℄ � 23. (1.4.21)So, PB [fA0(�) � �g \ BigBlok℄ � 23PB [BigBlok℄ : (1.4.22)



1.4. Proofs onerning the Skeleton Struture 33By Lemma 1.3.1 it follows, sine n0 is large enough (see Subsetion 1.2.1):PB[A0(�) � �℄ � 23 �1� e�3n120 � > 12 : (1.4.23)Now, by de�nition of PB,PB[A0(�) � �℄ = P hA0 �� Æ�n200 � � � Æ�n200 ��� EB(n200 )i : (1.4.24)Obviously � Æ�n200 � �. ThusP hA0 �� Æ�n200 � � � ��� EB(n200 )i > 12 : (1.4.25)We de�ne AB : CN ! CZ[ ffailg:AB(�) := � A0(� Æ�n200 ) if EB(n200 ) holds,fail otherwise; (1.4.26)this is well de�ned sine EB(n200 ) 2 �(�). By (1.4.25), the suh de�ned AB satis�es (1.3.7).Lemma 1.4.3. For all events E � 
 we have~P (E) � jCj4ln200 +1P (E): (1.4.27)Proof of Lemma 1.4.3. De�ne 
0 := CZnJ1 � 
2 and write 
 = CZ � 
2 =CJ1 � CZnJ1 � 
2 = CJ1 � 
0. Then by de�nition of the measure P and by Lemma 1.3.2we have P = �J1 
 P
0 and ~P = ~PJ1 
 P
0 where P
0 and ~PJ1, respetively, are themarginal distributions of ~P on 
0 and CJ1, respetively. Thus we have for all measurableylinder-sets of the form E = fe1g � E2 � 
, where e1 2 CJ1 and E2 � 
0:~P [E℄ = ~PJ1[fe1g℄P
0[E2℄ � jCj4ln200 +1�J1 [fe1g℄P
0[E2℄ = jCj4ln200 +1P [E℄ (1.4.28)where the inequality follows beause � is the uniform distribution on C, jJ1j = 4ln200 + 1,and ~PJ1 is bounded from above by one. Sine CJ1 is �nite, every measurable subset of 
an be written as a �nite disjoint union of sets of the above form fe1g�E2 with e1 2 CJ1and E2 � 
0. This proves the result.Proof of Theorem 1.3.3. For piees of senery  ; ', we de�ne the piee of senery�( ; ') as follows: If  41 ', then �( ; ') denotes the unique piee of senery with�( ; ') � ' suh that  � �( ; '); otherwise we set �( ; ') := '. Let Am as in thehypothesis of the theorem and � 2 CN. With the abbreviation �m := Am(�), we de�nereursively �1 := �1; (1.4.29)�m+1 := �(�m; �m+1); (1.4.30)A0(�) := � limm!1 �m if this limit exists pointwise on Z,(1)j2Z else. (1.4.31)



34 Chapter 1. Reonstruting a Random Senery : : :(By onvention, a sequene (�m)m2N of piees of seneries onverges pointwise to a senery� if the following holds: lim infm!1 domain(�m) = Z, and for every z 2 Z there is mz > 0suh that for all m � mz one has �m(z) = �(z).) Being a pointwise limit of measurablemaps, the map A0 : CN ! CZ is measurable. For the purpose of the proof, we abbreviate�m := �d[�2nm ; 2nm℄ and �m := �d[�9 � 2nm; 9 � 2nm ℄ and we de�ne the eventsEm1�t := n�m 41 �m+1o : (1.4.32)We laim:1. lim infm!1Em1�t holds ~P -a.s.,2. If the event lim infm!1Em1�t \T1m=1 Em ours, then A0(�) � �.These two statements together with the hypothesis (1.3.9) imply the laim (1.3.11) of thetheorem.Proof of laim 1.: By Lemma 1.4.3 we may replae \ ~P -a.s." in the laim by \P -a.s.".If I1 6= I2 are �xed integer intervals with jI1j = jI2j, then P [�dI1 � �dI2℄ � 212e�13jIjholds for some onstants 12; 13 > 0, even if I1 and I2 are not disjoint. (See also thesimilar Lemma 1.6.18, in partiular estimate (1.6.66), below. The fator 2 makes thenotation onsistent with this lemma; reall the binary hoie: �dI1 � �dI2 means �dI1 ��dI2 or �dI1 � (�dI2)$.) We apply this for I1 = [�2nm ; 2nm℄ and all integer intervalsI2 � [�9 �2nm+1 ; 9 �2nm+1℄ with jI1j = jI2j = 2 �2nm+1, I1 6= I2; there are at most 18 �2nm+1hoies of I2. We obtain P [(Em1�t)℄ � 18 �2nm+1 �212e�2132nm , whih is summable over m;reall nm+1 = o(2nm) as m ! 1. Hene (Em1�t) ours P -a.s. only �nitely many timesby the Borel-Cantelli lemma; this proves laim 1.Next we prove the seond laim: By the assumption made there, there is a (random)Msuh that the events Em1�t and Em hold for all m �M . Let m �M . In the onsiderationsbelow, we use several times the following rule: For piees of seneries �; �; ; Æ:If � 4 � 4  4 Æ and � 41 Æ, then � 41 . (1.4.33)In partiular, this applies to�m 41 �m+1 and �m 4 �m 4 �m 4 �m+1 4 �m+1 4 �m+1; (1.4.34)we obtain �m 41 �m+1. By the de�nition of �m and �, we know �m � �m; hene we obtain�m 41 �m+1. Using the de�nition of � again, we see �m � �(�m; �m+1) = �m+1. Using(1.4.33), (1.4.34), �m � �m, �m+1 � �m+1 again, we get�m 41 �m 41 �m+1 41 �m+1 and �m 41 �m+1. (1.4.35)Let hm : Z! Z, m � M , denote the unique translation or reetion that maps �m ontoa subpiee of �m. As a onsequene of �m � �m+1, �m � �m+1, and (1.4.35) we see thathm does not depend on m for m � M . Hene hm maps � := Sm�M �m to a subpieeof � = Sm�M �m; thus � 4 �. In fat the domain of � is Z; to see this we observe thatdomain(�) ontains all (hm)�1[domain(�m)℄ = (hm)�1[�9 � 2nm; 9 � 2nm℄, whih over all ofZ. To summarize, we have shown that (�m)m�M onverges pointwise to a senery � � �;thus A0(�) = � � � by the de�nition of A0(�). This �nishes the proof of the seond laimand also the proof of Theorem 1.3.3.



1.4. Proofs onerning the Skeleton Struture 35De�nition 1.4.2. We de�ne events of seneries�I := �� 2 CZ �� P �(E1stop;T 1) �� �� � e�4n0=2	 ; (1.4.36)�II := 1\m=1�� 2 CZ ���� If P [Em j �℄ � 12 ; then P h(Em+1stop;Tm+1) \ Em ��� �i � e�nm+1=2�= 1\m=1�� 2 CZ ����P �(Em+1stop;Tm+1) \ Em \�P [Em j �℄ � 12����� �� � e�nm+1=2� ; (1.4.37)�III := 1\m=1n� 2 CZ �� P �(Em) \ Emstop;Tm j �� � 1=25 e�6nm=2o ; (1.4.38)� := �I \ �II \ �III; (1.4.39)where 5 and 6 are taken from Theorem 1.3.6 and 4 is taken from Theorem 1.3.4.Note the similarity between these events and the bounds in (1.3.16), (1.3.17) and(1.3.19). The following lemma provides a link between bounds with and without ondi-tioning on the senery �:Lemma 1.4.4. Let A be an event, r � 0, and Q be a probability measure on 
 suh thatQ[A℄ � r2. Then Q [Q[Aj�℄ > r℄ � r: (1.4.40)Proof of Lemma 1.4.4. This follows diretly fromr2 � Q[A℄ � ZfQ[Aj�℄>rgQ[Aj�℄ dQ � rQ [Q[Aj�℄ > r℄ : (1.4.41)Lemma 1.4.5. For some onstant 14 > 0 it holds:~P [� =2 �℄ � e�14n0 : (1.4.42)Proof of Lemma 1.4.5. Using the bound (1.3.16), Lemma 1.4.4 for Q = ~P , thefat ~P [� j �℄ = P [� j �℄, and the de�nition (1.4.36) of �I, we obtain for a suÆiently smallonstant 14 > 0 ~P [� =2 �I℄ � e�4n0=2 � e�14n03 ; (1.4.43)reall that n0 was hosen large enough, see Subsetion 1.2.1. As a onsequene of thebounds (1.3.17) and (1.3.19) we knowP �(Em+1stop;Tm+1) \ Em \�P [Em j �℄ � 12�� � e�nm+1 ; (1.4.44)P �(Em) \ Emstop;Tm� � 5e�6nm : (1.4.45)We obtain by the bound (1.4.44), Lemmas 1.4.3 and 1.4.4 with Q = P , and (1.4.37):~P [� =2 �II℄ � jCj4ln200 +1P [� =2 �II℄ � jCj4ln200 +1 1Xm=1 e�nm+1=2 � e�14n03 : (1.4.46)



36 Chapter 1. Reonstruting a Random Senery : : :Here we used again that n0 is large, and that (nm)m2N grows fast; see De�nition 1.3.2.The same argument yields, this time using (1.4.45) and (1.4.38):~P [� =2 �III℄ � jCj4ln200 +1P [� =2 �III℄ � jCj4ln200 +1 1Xm=1 1=25 e�6nm=2 � e�14n03 :(1.4.47)The ombination of (1.4.43), (1.4.46), (1.4.47), and (1.4.39) proves Lemma 1.4.5.Lemma 1.4.6. For all � 2 � and all m 2 N the following holds for some onstants15 > 0, 16 > 0: P [Em j �℄ � 1� mXk=0 16e�15nk � 12 (1.4.48)and P [Em n Em+1 j �℄ � 16e�15nm+1: (1.4.49)Proof of Lemma 1.4.6. Let � 2 �. We prove (1.4.48) and (1.4.49) simultaneouslyby indution over m: For m = 1 we obtain, sine � 2 �I and � 2 �III; see (1.4.36) and(1.4.38): P [E1 j �℄ � P [E1stop;T 1 j �℄� P [(E1) \ E1stop;T 1 j �℄� 1� e�4n0=2 � 1=25 e�6n1=2 � 1� 1Xm=0 16e�15nm � 12; (1.4.50)for some onstants 16, 15; reall that n1 � n0 and n0 is large enough by Subsetion 1.2.1.Thus (1.4.48) holds for m = 1. Let m � 1. Using � 2 �II, (1.4.37), and our indutionhypothesis (1.4.48), we see P [(Em+1stop;Tm+1)\Em j �℄ � e�nm+1=2. Hene we obtain (1.4.49),using � 2 �III and (1.4.38):P [Em n Em+1 j �℄ � P h(Em+1) \ Em+1stop;Tm+1��� �i+ P h(Em+1stop;Tm+1) \ Em��� �i� 1=25 e�6nm+1=2 + e�nm+1=2 � 16e�15nm+1 : (1.4.51)Consequently we get, using our indution hypothesis (1.4.48) again:P [Em+1 j �℄ � P [Em j �℄� P [Em n Em+1 j �℄ � 1� m+1Xk=0 16e�15nk � 12; (1.4.52)this ompletes our indution step.Lemma 1.4.7. For some onstant 17 > 0 and for all � 2 �,~P " 1[m=1(Em) ����� �# � e�17n0: (1.4.53)Proof of Lemma 1.4.7. By Lemma 1.4.6 we have for � 2 �:P " k[m=1(Em) ����� �# � P �(E1) j ��+ kXm=1P [Em n Em+1 j �℄ � kXm=0 16e�15nm � e�17n0 ;(1.4.54)



1.5. Heart of the Reonstrution Proedure: De�nition of the Algorithm Algn 37where 17 < 15 is a small positive onstant; reall that n0 is large. In the limit as k !1,this yields the result (1.4.53).Proof of Theorem 1.3.7. Using Lemma 1.4.5 we have~P " 1[m=1(Em)# � ~P [� =2 �℄ + ~P "f� 2 �g \ 1[m=1(Em)# (1.4.55)� e�14n0 + Zf�2�g ~P " 1[m=1(Em) ����� �# d ~P� e�14n0 + sup�2� ~P " 1[m=1(Em) ����� �# :We bound the argument of the last supremum, using Lemma 1.4.7:~P " 1[m=1(Em) ����� �# = P " 1[m=1(Em) ����� �# � e�17n0 : (1.4.56)The ombination of (1.4.55) and (1.4.56) yields, sine n0 is large (by Subsetion 1.2.1):~P " 1[m=1(Em)# � e�14n0 + e�17n0 � 13 : (1.4.57)
1.5 Heart of the Reonstrution Proedure:De�nition of the Algorithm AlgnThis setion ontains the heart of the reonstrution proedure: for every n 2 N , wede�ne an algorithm Algn; it is designed to reonstrut long piees of senery with highprobability. In Setion 1.6 below we show that it ful�lls the formal spei�ation given inTheorem 1.3.6.Informally speaking, the observation � allows us to ollet many piees of \puzzlewords". These puzzle words are hosen to have size 1n with a �xed parameter 1; reallsubsetion 1.2.1. To obtain them, we ollet triples of words (w1; w2; w3) whih our insequene in the observations � soon after a stopping time �(k); an initial piee of � isrepresented below by a formal argument �. We put those words w2 into our puzzle whihare already uniquely determined by w1 and w3. This means that w1 and w3 should be bevery \harateristi signals"; if w1 and w3 ould be read at very di�erent loations in thesenery lose to a stopping time, then it is unprobable that they will enlose always thesame word w2. Frequently, w2 turns out to be a ladder word: Whenever one reads a w2in the ontext w1w2w3 along a non-ladder path suÆiently lose to the origin, one readswith high probability a di�erent word w02 in the ontext w1w02w3, too, along a di�erentpath with the same starting point and the same end point; but then w2 is not olletedas a puzzle word.Here is the formal onstrution: We take input data � 2 [0; 212�n℄N and � 2 C2�212�n .A side remark: although for formal reasons there are in�nitely many �(k) given in theinput data, the onstrution below atually uses only the �rst 2�n of them.



38 Chapter 1. Reonstruting a Random Senery : : :De�nition 1.5.1. We de�ne for m � 0 the random sets:PrePuzzlen(�; �) := (1.5.1)�(w1; w2; w3) 2 (C1n)3 j 9k 2 [0; 2�n[: w1w2w3 v �d[�(k); �(k) + 22n℄	 ;PuzzlenI (�; �) := (1.5.2)f(w1; w2; w3) 2 PrePuzzlen(�; �) j 8(w1; w02; w3) 2 PrePuzzlen(�; �): w02 = w2g ;PuzzlenII(�; �) := (1.5.3)fw2 2 C1n j 9w1; w3 2 C1n: (w1; w2; w3) 2 PuzzlenI (�; �)g :Let us explain the idea behind the following onstrutions: Although many of thewords w2 in \PuzzleII" turn out to be ladder words of a entral piee in the true senery �,some of them are not: There are \garbage words" in the puzzle. We play a \puzzle-game"with the words in \PuzzleII": We try to �t larger and larger piees together. In orderto distinguish \real" piees from \garbage" piees, we need some \seed words" whih areguaranteed (with high probability) not to be garbage words; every piee that �ts to apiee ontaining a seed word has a high hane not to be garbage, too. This is what theset SeedII de�ned below is good for. We identify \seed" words as \puzzle" words thatour in the observations almost immediately after a stopping time �(k), when we expetthe random walk to be lose to the origin.Reall the abbreviation h = ljMj. Formally, we proeed as follows:De�nition 1.5.2.SeednI (�; �) := (1.5.4)�(w1; w2; w3) 2 PuzzlenI (�; �) ���� 9k 2 [0; 2�n[ 9j 2 [0; 71nl℄ :w1w2w3 � �d(�(k) + j + [0; 31n[) � ;SeednII(�; �) := fw2 2 C1n j (w1; w2; w3) 2 SeednI (�; �)g ; (1.5.5)SeednIII(�; �) := (1.5.6)�u 2 SeednII(�; �) ���� 9v 2 SeednII(�; �) :(ud([0; 2nl ℄ \ l Z))! = (vd([0; 2nl!℄ \ l!Z)) � ;Neighborsn(�; �) := (1.5.7)�(w1; w2) 2 (C1n)2 j 9k 2 [0; 2�n[; w 2 Ch�1 : w1ww2 v �d[�(k); �(k) + 22n℄	 :Let us explain what \SeedIII" is intended for: We need to identify the orientation of thepiees (whether they are to be read \forward" or \bakward"). This task onsists of twoproblems: The identi�ation of the relative orientation of two piees with respet to eahother, and the identi�ation of the absolute orientation with respet to the \true" senery�. Of ourse, we have no hane to identify the absolute orientation if the random walkis symmetri; we even bother about identifying the absolute orientation only in the veryunsymmetri ase l! 6= l . The set SeedIII helps us to identify the absolute orientationin this ase: Suppose we read every l!-th letter in a word from the left to the right,and every l -th letter in the same word from the right to the left; then every l!l -thletter appears in both words, when at least one letter is read both times. This turns out



1.5. Heart of the Reonstrution Proedure: De�nition of the Algorithm Algn 39to be harateristi enough to identify the reading diretions \left" and \right" in thease l! 6= l . The �xed parameter 2 inuenes the length of the sample piees in thisproedure.The relation \Neighbors" serves as an estimation for the geometri neighborship rela-tion between ladder words: ladder words that our losely together in the observation �are expeted to our on geometrially neighboring intervals in the \true" senery �. Thenext de�nition de�nes a \true" geometri neighborship relation .n. We try to reonstrutthe orresponding \true" neighborship relation for ladder words in a piee of � using onlythe \estimated" neighborship relation \Neighbors".Reall that ��k denotes the k-fold onvolution of �; in partiularsupp��k := ( kXi=1 si ����� 8i : si 2 supp�) : (1.5.8)De�nition 1.5.3. Let I; J be right ladder intervals. By de�nition, I .n J means jIj =jJ j = 1n and minJ � max I 2 supp��h. Similarly for I 0; J 0 being left ladder intervals,I 0 /n J 0 means jI 0j = jJ 0j = 1n and maxJ 0 �min I 0 2 supp ��h.The next de�nition is the heart of our method: We desribe how to obtain reon-struted piees of seneries. All piees of senery w 2 C [�5�2n;5�2n℄ are tested as andidatesin a sequene of \Filters": Reonstruted ladder words should be in \PuzzleII", the \es-timated" and the \reonstruted" neighborship relation should be onsistent with eahother, the reonstruted piees should ontain \SeedIII" words, and no piee of the puzzleshould be used twie.Only andidate piees that pass all Filters are onsidered as a solution of the partialreonstrution problem.De�nition 1.5.4. Let Filterni (�; �), i = 1; : : : ; 5, denote the set of all w 2 C [�5�2n;5�2n℄whih ful�ll the following ondition 1:; : : : ; 5:, respetively:1. For every right ladder interval I � [�5 � 2n; 5 � 2n℄, jIj = 1n, one has (wdI)! 2PuzzlenII(�).2. For all right ladder intervals I; J � [�5 � 2n; 5 � 2n℄:if I .n J, then ((wdI)!; (wdJ)!) 2 Neighborsn(�; �).3. For all right ladder intervals I; J � [�5 � 2n; 5 � 2n℄, jIj = jJ j = 1n:if ((wdI)!; (wdJ)!) 2 Neighborsn(�; �), then there is q 2 N suh that I .n J + ql!.4. For every right modulo lass Z 2 Z/l!Z there exists a right ladder interval I �Z \ [�2 � 2n; 2 � 2n℄ suh that (wdI)! 2 SeednIII(�; �).5. For all right ladder intervals I; J � [�5 � 2n; 5 � 2n℄, jIj = jJ j = 1n:if (wdI)! = (wdJ)!, then I = J.We set SolutionPieesn(�; �) := 5\i=1 Filterni (�; �): (1.5.9)



40 Chapter 1. Reonstruting a Random Senery : : :The output of the algorithmAlgn ould be any of these piees w 2 SolutionPieesn(�; �);we hoose one of them, if it exists.De�nition 1.5.5. We de�ne Algn(�; �) as follows:� If SolutionPieesn(�; �) is nonempty, then we de�ne Algn(�; �) to be its lexiograph-ially smallest element.� Otherwise Algn(�; �) is de�ned to be the onstant senery (1)j2[�5�2n;5�2n℄.We ould have equally well taken any element of SolutionPieesn(�; �) in De�nition1.5.5; we hoose the lexiographially smallest one just for de�niteness.1.6 Playing Puzzle: Corretness of the AlgorithmAlgnIn this setion we prove Theorem 1.3.6 by showing that the Algorithm Algn de�ned inDe�nition 1.5.5 ful�lls the spei�ation desribed by this theorem: Let n = nm, m 2 N . Aremark onerning notation: Events de�ned in this setion are labeled with an upper indexn, not m, sine the \hierarhy level" m plays no role here, in ontrast to the \Skeleton"setion. Only events that also our in the \Skeleton" setion keep their old index m.Hopefully, this should not ause any onfusion.Let � = (�k)k2N denote a �xed vetor of G-adapted stopping times with values in[0; 212�n℄. We abbreviate Input := (�(�); �d[0; 2 � 212�n[).De�nition 1.6.1. We de�ne the following events:Enxi does it := f�d[�5 � 2n; 5 � 2n℄ 2 SolutionPieesn(Input)g ; (1.6.1)Enall piees ok := � 8w 2 SolutionPieesn(Input) :�d[�2n; 2n℄ 4 w 4 �d[�9 � 2n; 9 � 2n℄ � : (1.6.2)Lemma 1.6.1. Enxi does it \ Enall piees ok � Emreonst;Algn(�;�) (1.6.3)Proof of Lemma 1.6.1. When the event Enxi does it holds, then the setSolutionPieesn(Input) is not empty. Thus Algn(Input) is the lexiographially smallest el-ement of SolutionPieesn(Input). When the event Enall piees ok also holds, then �d[�2n; 2n℄ 4Algn(Input) 4 �d[�9 � 2n; 9 � 2n℄.Here is the main theorem of this setion; it states that the events Enxi does it andEnall piees ok our very probably whenever the stopping times � ful�ll their task spei�edby Emstop;� :Theorem 1.6.1. For some onstant 6 > 0, 5 > 0:P �Emstop;� n (Enxi does it \ Enall piees ok)� � 5e�6n: (1.6.4)



1.6. Playing Puzzle: Corretness of the Algorithm Algn 41This theorem is proven the following three subsetions. We split the proof into apurely ombinatori part and a probabilisti part. The ombinatori part (subsetion1.6.1 below for Enxi does it and subsetion 1.6.2 below for Enall piees ok) shows that wheneversome more \basi" events (named Bn::: below, where \: : :" stands for a varying label) andEmstop;� our, then the events Enxi does it and Enall piees ok our, too. In the probabilisti part(subsetion 1.6.3 below) we show that these basi events Bn::: are highly probable, at leastwhen Emstop;� ours.The Proof of Theorem 1.3.6 is an immediate onsequene of Lemma 1.6.1 andTheorem 1.6.1.1.6.1 Combinatoris onerning Enxi does itIn this subsetion, we show that a piee of � entered at the origin passes all the testsspei�ed by the Filteri, provided some basi events Bn::: (spei�ed below) hold.De�nition 1.6.2. For n 2 N we de�ne the following events:Bnsig rl := (For every right ladder path � 2 [�2 � l22n; 2 � l22n℄[0;1n=2[ andfor every admissible piee of path �0 2 AdPath(2 � l22n; 1n=2):If � Æ � = � Æ �0, then �(1n=2� 1) � �0(1n=2� 1). ) ; (1.6.5)Bnsig rr := (For every right ladder path � 2 [�2 � l22n; 2 � l22n℄[0;1n=2[ andfor every admissible piee of path �0 2 AdPath(2 � l22n; 1n=2):If � Æ � = � Æ �0, then �(0) � �0(0). ) : (1.6.6)Let Bnsig ll and Bnsig lr be de�ned just as Bnsig rl and Bnsig rr with \right ladder path" replaedby \left ladder path" and with \�" and \�" exhanged in (1.6.5) and (1.6.6). We setBnsignals := Bnsig rl \ Bnsig rr \Bnsig ll \ Bnsig lr; (1.6.7)Ensignals II := (For every ladder path � 2 [�2 � l22n; 2 � l22n℄[0;1n[ and for everyadmissible piee of path �0 2 AdPath(2 � l22n; 1n):If � Æ � = � Æ �0, then �(1n=2) = �0(1n=2). ) : (1.6.8)Lemma 1.6.2. Bnsignals � Ensignals II.Proof of Lemma 1.6.2. Assume that the event Bnsignals ours. Let � 2 [�2 � l22n; 2 �l22n℄[0;1n[ be a right ladder path and �0 2 AdPath(2 � l22n; 1n). Assume that � Æ� = � Æ�0holds. Looking at the �rst half of � and �0 only (with the �rst points (0; �(0)), (0; �0(0))dropped), we see �(1n=2) � �0(1n=2), sine Bnsig rl holds. Similarly, looking at the seondhalf of � and �0 only, we infer �(1n=2) � �0(1n=2), sine Bnsig rr holds. Therefore �(1n=2)and �0(1n=2) oinide. The ase of left ladder paths is treated similarly. This shows thatEnsignals II holds.De�nition 1.6.3. By de�nition, the event Bnall paths ours if and only if the followingholds: every admissible piee of path R 2 [�12 � 2n; 12 � 2n℄[0;31n[ ours in the randomwalk S with start at most 22n time steps after some stopping time �(k), k < 2�n. Moreformally:Bnall paths := � 8R 2 AdPaths(12 � 2n; 31n) 9k 2 [0; 2�n[ 9j 2 [0; 22n℄ :TimeShift�(k)+j(R) � S � : (1.6.9)



42 Chapter 1. Reonstruting a Random Senery : : :The following auxiliary lemma helps us to show below that the true senery � passesthe test Filter1. Roughly speaking, it tells us that suÆiently many ladder words ourin the puzzle. This is important, sine playing our puzzle game would lead to a failurewhen piees were missing.Lemma 1.6.3. Assume that the event Bnall paths \ Bnsignals \ Emstop;� holds. Let I � [�6 �2n; 6 � 2n℄ be a right (or left) ladder interval with jIj = 31n, and let w1; w2; w3 2 C1nwith (�dI)! = w1w2w3 (or (�dI) = w1w2w3 in the ase of a left ladder interval). Then(w1; w2; w3) 2 PuzzlenI (Input).Proof of Lemma 1.6.3. Assume that I is a right ladder interval; the ase ofleft ladder intervals an be treated in the same way by exhanging \left" and \right".Let I = I1 [ I2 [ I3, where I1, I2, and I3 denote the left, middle, and right third of I,respetively; thus (�dIi)! = wi, i = 1; 2; 3. Sine the event Bnall paths holds, the straightpath whih steps through the elements of I from the left to the right in 31n steps isrealized at least one by the random walk (S(t))t�0 within time 22n of a stopping time�(k), k < 2�n. Observing � along suh a straight path generates the word w1w2w3. Thus(w1; w2; w3) 2 PrePuzzlen(Input): (1.6.10)Let w02 be suh that (w1; w02; w3) 2 PrePuzzlen(Input). In order to prove the laim(w1; w2; w3) 2 PuzzlenI (Input) it remains to show: w2 = w02. When the event Emstop;�holds, the stopping times of �(k), k < 2�n, all stop the random walk (S(t))t�0 some-where in the interval [�2n; 2n℄. Within time 22n the random walk moves at most adistane l22n. Beause of w1w02w3 2 PrePuzzlen(Input), the word w1w02w3 ours some-where in the observations at most 22n time steps after a stopping time �(k), k < 2�n.Within time 22n after a stopping time, the random walk annot be further away fromthe origin than l22n + 2n � 2 � l22n, sine the event Emstop;� holds. Thus there exists anadmissible piee of path R0 : [0; 31n[! [�2 � l22n; 2 � l22n℄ suh that � Æ R0 = w1w02w3.Let R : [0; 31n[! I � [�2 � l22n; 2 � l22n℄ denote the right ladder path whih passesthrough I from the left to the right. We know � Æ R0d[0; 1n[= � Æ Rd[0; 1n[= w1 and(� Æ R0d[21n; 31n[)! = (� Æ Rd[21n; 31n[)! = w3. Furthermore, the event Ensignals II �Bnsignals holds; see Lemma 1.6.2. Abbreviating x := 1n=2 and y := 51n=2, this impliesR0(x) = R(x) and R0(y) = R(y). But Rd[x; y℄ is a right ladder path; thus R0d[x; y℄ mustbe the same right ladder path, sine only right ladder paths an travel equally fast tothe right as R does. Hene w2 = (� Æ Rd[1n; 21n[)! = (� Æ R0d[1n; 21n[)! = w02. This�nishes the proof of Lemma 1.6.3.Corollary 1.6.1. If the event Bnall paths \ Bnsignals \ Emstop;� holds, then �d[�5 � 2n; 5 � 2n℄ 2Filtern1 (Input).Proof of Corollary 1.6.1. Assume that Bnall paths \ Bnsignals \ Emstop;� holds, and letI2 � [�5 � 2n; 5 � 2n℄, jI2j = 1n, be a right ladder interval. Set I1 := I2 � 1nl! andI3 := I2 + 1nl!; these are right ladder intervals adjaent to the left and to the right ofI2, respetively. Thus I := I1 [ I2 [ I3 is a right ladder interval, jIj = 31n. Sine n � n0and n0 is large enough, we obtain I � [�6 � 2n; 6 � 2n℄. We set wi := (�dIi)!, i = 1; 2; 3.We have (w1; w2; w3) 2 PuzzlenI (Input) by Lemma 1.6.3; thus w2 2 PuzzlenII(Input). This�nishes the proof of Corollary 1.6.1.The following de�nitions are analogous to the de�nition of Filtern2 and Filtern3 , withthe \reonstruted andidate" w replaed by the true senery �, and with the domain



1.6. Playing Puzzle: Corretness of the Algorithm Algn 43[�5 � 2n; 5 � 2n℄ replaed by the larger domain [�9 � 2n; 9 � 2n℄. We insert the orrespondingstatements for left ladder intervals, too; this turns out to be useful only in the nextsubsetion.De�nition 1.6.4.Enneighbor I := (1.6.11)8><>:For all right ladder intervals I; J � [�9 � 2n; 9 � 2n℄: if I .n J , then((�dI)!; (�dJ)!) 2 Neighborsn(�; �).For all left ladder intervals I; J � [�9 � 2n; 9 � 2n℄: if I /n J , then((�dI) ; (�dJ) ) 2 Neighborsn(�; �). 9>=>; ;Enneighbor II := (1.6.12)8>>>>>>><>>>>>>>:
For all right ladder intervals I; J � [�9 � 2n; 9 � 2n℄, jIj = jJ j = 1n:if ((�dI)!; (�dJ)!) 2 Neighborsn(�; �), then there is q 2 N suh thatI .n J + ql!.For all left ladder intervals I; J � [�9 � 2n; 9 � 2n℄, jIj = jJ j = 1n:if ((�dI) ; (�dJ) ) 2 Neighborsn(�; �), then there is q 2 N suh thatI /n J � ql .

9>>>>>>>=>>>>>>>; :
Lemma 1.6.4. If the event Bnall paths holds, then the event Enneighbor I holds too, and onse-quently �d[�5 � 2n; 5 � 2n℄ 2 Filtern2 (Input).Proof of Lemma 1.6.4. Assume that the event Bnall paths holds. We treat only thease of right ladder intervals; the ase of left ladder intervals an be treated in the sameway by exhanging right with left, ! with  , and .n with /n.Let I; J � [�9 � 2n; 9 � 2n℄ be right ladder intervals suh that I .n J . We need toprove ((�dI)!; (�dJ)!) 2 Neighborsn(Input). Let il := min I, ir := max I, jl := minJ ,and jr := maxJ . Sine I .n J , there exists an admissible piee of path onsisting ofh+1 = ljMj+1 points starting in ir and ending in jl. Sine I .n J we have jIj; jJ j = 1n.Thus there exists an admissible piee of path R : [0; 21n + h � 1[! [il; jr℄ starting at iland ending in jr; furthermore we an require that Rd[0; 1n[ and Rd(1n+h�1+ [0; 1n[)are right ladder paths. Set w1 = (�dI)! and w2 = (�dJ)!; then � Æ R = w1ww2 wherew 2 Ch�1. Sine n � n0 holds and n0 is large enough, we have h � 1n. Thus thepiee of path R has length shorter than or equal to 31n. The range rng(R) of R ful�llsrng(R) � [�10 � 2n; 10 � 2n℄, and sine Bnall paths holds, the random walk (S(t))t�0 \followsthe path" R at least one within time 22n after a stopping time of � . In other words, thereexists k 2 [0; 2�n[ and j 2 [0; 22n � 21n� h+ 1℄ suh that for all i 2 [0; 21n+ h� 1[ wehave S(�(k)+j+ i) = R(i). Thus we get �ÆSd(�(k)+j+[0; 21n+h�1[) � w1ww2. Thisimplies that (w1; w2) 2 Neighborsn(Input) and thus ((�dI)!; (�dJ)!) 2 Neighborsn(Input).The following elementary number theoreti lemma serves to replae admissible pieesof path with more than h steps by admissible piees of path with h steps, up to a sequeneof maximal steps in one diretion:Lemma 1.6.5. Let s = (sj)j=1;:::;K 2 MK, K 2 N. Then there is (rj)j=1;:::;h 2 Mh withhXj=1 rj + (K � h)l! � KXj=1 sj 2 l!N : (1.6.13)



44 Chapter 1. Reonstruting a Random Senery : : :Similarly, there is (r0j)j=1;:::;h 2 Mh withhXj=1 r0j � (K � h)l � KXj=1 sj 2 �l N : (1.6.14)Proof. In order to treat (1.6.13) and (1.6.14) simultaneously, let l$ denote either l!or �l . For a 2 M let na denote the number of j = 1; : : : ; K suh that sj = a. Let n0a 2[0; jl$j[\(na + l$Z) denote the remainder of na modulo l$. Then Pa2M n0a � h. Chooseany list (rj)j=1;:::;h 2 Mh having n0a entries a for every a 2 Mnfl$g and h�Pa2Mnfl$g n0aentries l$. Set q := 1l$ Xa2M(na � n0a)(l$ � a) 2 N ; (1.6.15)note (l$ � a)=l$ � 0 and na � n0a 2 jl$jN . ThenKXj=1(l$ � sj) = Xa2Mna(l$ � a) (1.6.16)= ql$ + Xa2Mn0a(l$ � a) = ql$ + hXj=1(l$ � rj);whih implies the laim (1.6.13) or (1.6.14), respetively.Lemma 1.6.6. If the event Ensignals II \ Emstop;� holds, then the event Enneighbor II holds, too,and onsequently �d[�5 � 2n; 5 � 2n℄ 2 Filtern3 (Input).Proof. Assume that the events Ensignals II and Emstop;� hold. We treat here the ase ofright ladder intervals:Let I; J � [�9 � 2n; 9 � 2n℄ be right ladder intervals with jIj = jJ j = 1n, and assume((�dI)!; (�dJ)!) 2 Neighborsn(Input). We need to show I .n J + ql! for some q 2 N .Using De�nition 1.5.7 of Neighborsn and the abbreviations w1 := (�dI)! and w2 :=(�dJ)!, we see: There is an admissible piee of path R : [0; 21n + h � 1[! Z with thefollowing properties:� R is realized by the random walk S in during some time interval D � �(k)+[0; 22n℄,jDj = 21n + h � 1, for some k 2 [0; 2�n[. This means: R equals SdD when time-shifted bak to the origin.� Observing the senery � along R produes w1ww2 for some w 2 Ch�1; i.e.: � Æ R =w1ww2.We know j�(k)j � 2n sine the event Emstop;� holds; thus R takes all its values in [�(2n +l22n); 2n + l22n℄ � [�2 � l22n; 2 � l22n℄, sine the random walk annot travel faster thandistane l per step. We examine the �rst 1n steps of R: (� Æ Rd[0; 1n[)! = w1 =(�dI)! implies R(1n=2) = min I + 1nl!=2, sine the event Ensignals II holds; note thatx := min I + 1nl!=2 is the point in the middle of a right ladder path walking through I.The same argument applies to the last 1n steps of R: (� ÆRd(1n+ h� 1+ [0; 1n[))! =w2 = (�dJ)! implies R(31n=2 + h � 1) = minJ + 1nl!=2 =: y; y is the point inthe middle of J . The path R travels from x to y in K := 1n + h � 1 � h steps,



1.6. Playing Puzzle: Corretness of the Algorithm Algn 45using some step sizes (sj)j=1;:::;K 2 MK. As a onsequene of (1.6.13) in Lemma 1.6.5,there is (rj)j=1;:::;h 2 Mh with Phj=1 rj + (K � h)l! �PKj=1 sj = ql! for some q 2 N .Sine max I � x = (1n=2� 1)l! and y �minJ = 1nl!=2, we obtain minJ �max I =y� x� (1n� 1)l! =PKj=1 sj � (1n� 1)l! =Phj=1 rj � ql!. This means I .n (J + ql!),as we wanted to show.Summarizing, this implies �d[�5 � 2n; 5 � 2n℄ 2 Filtern3 (Input) and the �rst statement inthe de�nition of Enneighbor II, whih treats right ladder intervals.The proof for left ladder intervals an be treated analogously. Altogether, we see thatthe event Enneighbor II is valid.De�nition 1.6.5. We de�ne the eventBnseed I := 8><>:For every modulo lass Z 2 Z=l!Z there exists k 2 [0; 2�n[suh that S(�(k)+h) 2 Z, Sd(�(k)+h+[0; 31nl ℄) is a rightladder path, and Sd(�(k) + h+ 31nl + [0; 31nl!℄) is a leftladder path. 9>=>; : (1.6.17)Lemma 1.6.7. If the events Bnall paths, Bnsignals, Bnseed I and Emstop;� hold, then �d[�5 � 2n; 5 �2n℄ 2 Filtern4 (Input).Proof of Lemma 1.6.7. Assume that the event Bnall paths \Bnsignals \Bnseed I \ Emstop;�holds. Let Z 2 Z=l!Z. Sine Bnseed I holds, there exists a k 2 [0; 2�n[ suh that S(�(k) +h) 2 Z, R1 := Sd(�(k) + h + [0; 31nl ℄) is a right ladder path, and R2 := Sd(�(k) +h + 31nl + [0; 31nl!℄) is a left ladder path. Sine Emstop;� holds, we know S(�(k)) 2[�2n; 2n℄. Thus the random walk S annot leave the interval [�2 � 2n; 2 � 2n℄ during thetime interval �(k) + [h + 31nl + 31nl!℄, sine (h + 31nl + 31nl!)l < 2n, and therandom walk annot travel faster than l per step. Thus R1 and R2 take all their valuesin [�2 � 2n; 2 � 2n℄. Note that the right ladder path R1 and the left ladder path walk R2traverse preisely the same interval, R1 using step size l! to the right, and R2 with stepsize �l bak. The same is true when we restrit R1 and R2 to the smaller time intervals[t1; t01℄ := �(k)+h+1nl +[0; 2nl ℄ and [t2; t02℄ := �(k)+h+31nl +21nl!+[�2nl!; 0℄,respetively: We have S(t1) = S(t02) =: a, and S(t01) = S(t2) =: b, and Sd[t1; t01℄ is a rightladder path: it traverses [a; b℄ from the left to the right, while on Sd[t2; t02℄ it is a left ladderpath; it traverses [a; b℄ in opposite diretion. In partiular, reading only every l th letterin �d[t1; t01℄ and only every l!th letter in �d[t2; t02℄ yield the same word, only in reverseddiretion:(�d([t1; t01℄\(t1+l Z))! = (�d([a; b℄\(a+l!l Z)))! = (�d[t2; t02℄\(t1+l Z)) : (1.6.18)We onsider the words u1u2u3 := �d(t1 � 1n + [0; 31n[) and v1v2v3 := �d(t2 � 1n +[0; 31n[) with ui; vi 2 C1n; note that t1 � 1n + [0; 31n[� domain(R1) and t2 � 1n +[0; 31n[� domain(R2). We get (u1; u2; u3); (v1; v2; v3) 2 PuzzlenI (Input) by Lemma 1.6.3.Hene we obtain (w1; w2; w3) 2 SeednI (Input) by De�nition (1.5.4), sine the words u1u2u3and v1v2v3 our in the observations suÆiently lose to a stopping time �(k); morespei�ally: t1 � 1n; t2 � 1n 2 �(k) + [0; 71nl℄. Consequently u2; v2 2 SeednII(Input) byDe�nition (1.5.5). Finally we observe(u2d([0; 2nl ℄ \ l Z))! = (�d([a; b℄ \ (a + l!l Z)))! = (v2d([0; 2nl!℄ \ l!Z)) (1.6.19)



46 Chapter 1. Reonstruting a Random Senery : : :by (1.6.18). Thus we have shown u2 2 SeednIII(Input), see (1.5.6). Sine u2 = � Æ Sd(t1 +[0; 1n[), and sine Sd(t1+[0; 1n[) is a right ladder path with values in Z \ [�2 �2n; 2 �2n℄,this implies �d[�5 � 2n; 5 � 2n℄ 2 Filtern4(Input).De�nition 1.6.6. For n 2 N, we de�ne the following event:Bnunique �t := 8>><>>:For every i; j 2 f1; : : : ; l2g, every i-spaed interval I � [�11 �2n; 11 � 2n℄, and every j-spaed interval J � [�11 � 2n; 11 � 2n℄with jIj = jJ j � 2n holds (�dI) 6= (�dJ)!, and if I 6= J ,then (�dI)! 6= (�dJ)!. 9>>=>>; ; (1.6.20)Lemma 1.6.8. If the event Bnunique �t holds, then �d[�5 � 2n; 5 � 2n℄ 2 Filtern5 (Input).Proof. Using 2 � 1 (see subsetion 1.2.1), this follows immediately from De�nition1.6.6 of the event Bnunique �t, and of De�nition 1.5.4 of Filtern5 .Theorem 1.6.2. Bnall paths \Bnsignals \ Bnseed I \ Bnunique �t \ Emstop;� � Enxi does itProof. We ollet the statements of Lemmas/Corollary 1.6.2, 1.6.1, 1.6.4, 1.6.6, 1.6.7,and 1.6.8 in the following list:Bnsignals � Ensignals II;Bnall paths \Bnsignals \ Emstop;� � f�d[�5 � 2n; 5 � 2n℄ 2 Filtern1 (Input)g;Bnall paths � f�d[�5 � 2n; 5 � 2n℄ 2 Filtern2 (Input)g;Ensignals II \ Emstop;� � f�d[�5 � 2n; 5 � 2n℄ 2 Filtern3 (Input)g;Bnall paths \Bnsignals \ Bnseed I \ Emstop;� � f�d[�5 � 2n; 5 � 2n℄ 2 Filtern4 (Input)g;Bnunique �t � f�d[�5 � 2n; 5 � 2n℄ 2 Filtern5 (Input)g:The theorem is an immediate onsequene these statements, using (1.6.1) and (1.5.9).1.6.2 Combinatoris onerning Enall piees okIn this subsetion, we show that a piee w that passes all the Filteri ours in the truesenery � near the origin, provided some \basi" events Bn::: hold.De�nition 1.6.7. We de�ne the eventsBnreogn straight := (1.6.21)(For every R 2 AdPaths(11 � 2n; 1n) with R(1n� 1)�R(0) =2 f(1n� 1)l!;�(1n�1)l g there is �R 2 AdPaths(12 � 2n; 1n) suh that R(0) = �R(0), R(1n � 1) =�R(1n� 1), and � ÆR 6= � Æ �R. ) ;Enonly ladder := 8<:For all (w1; w2; w3) 2 PuzzlenI (Input) and every admissiblepiee of path R : [0; 31n[! [�11 � 2n; 11 � 2n℄ with � Æ R =w1w2w3 holds: w2 is a ladder word of �d[�11 � 2n; 11 � 2n℄. 9=; :(1.6.22)Lemma 1.6.9. We have Bnall paths \ Bnreogn straight � Enonly ladder: (1.6.23)



1.6. Playing Puzzle: Corretness of the Algorithm Algn 47Proof of Lemma 1.6.9. Assume that the event Bnall paths \ Bnreogn straight holds.Let w1w2w3 2 PuzzlenI (Input), and let R : [0; 31n[! [�11 � 2n; 11 � 2n℄ be an admissiblepiee of path with � Æ R = w1w2w3. We prove by ontradition that the event Enonly ladderholds: Assume w2 is not a ladder word of �d[�11 � 2n; 11 � 2n℄. Sine Bnreogn straight holds,there exists an admissible piee of path �R : [1n; 21n[! [�11 � 2n; 11 � 2n℄ suh thatR(1n) = �R(1n) and R(21n � 1) = �R(21n � 1), but w2 6= (� Æ �R)! =: w02. Let�R : [0; 31n[! [�11 � 2n; 11 � 2n℄ be the admissible piee of path whih on [1n; 21n[ isequal to �R and otherwise is equal to R. We have �Æ �R = w1w02w3. Sine Bnall paths holds, too,this implies that the random walk S follows the path of �R within time 22n from a stoppingtime of �(k), k < 2�n. The same is valid for R, maybe with a di�erent stopping time�(k0). In other words: w1w02w3 2 PrePuzzlen(Input) and w1w2w3 2 PrePuzzlen(Input).This implies the ontradition w1w2w3 =2 PuzzlenI (Input); thus we have proved Lemma1.6.9.De�nition 1.6.8. We de�ne the eventsBnoutside out := (1.6.24)(For every admissible piee of pathR 2 ([�2 � l22n; 2 � l22n℄ n [�10 � 2n; 10 � 2n℄)[0;1n=2[: � Æ R is not stronglyequivalent to any ladder word of length 1n=2 of �d[�9 � 2n; 9 � 2n℄. ) ;Enmodlass := (1.6.25)8>>>><>>>>:For all w 2 Filtern1 (Input) and for all right ladder intervals I � [�2 � 2n; 2 � 2n℄,jIj = 1n:If there is a right ladder interval Jr � [�2 � 2n; 2 � 2n℄ with wdI � �dJr, then�d([�2n; 2n℄ \ (Jr + l!Z)) v wd(I + l!Z) v �d([�9 � 2n; 9 � 2n℄ \ (Jr + l!Z)), andif l! = l and if there is a (left) ladder interval Jl � [�2 � 2n; 2 � 2n℄ with (wdI)$ ��dJl, then �d([�2n; 2n℄\ (Jl+ lZ)) v (wd(I+ lZ))$ v �d([�9 �2n; 9 �2n℄\ (Jl+ lZ)).
9>>>>=>>>>; :Informally speaking, the meaning of the event Enmod lass is the following: If a \reon-struted" piee of senery w ontains a orret \seed piee" wdI over a suÆiently longladder word, then the whole modulo lass generated by I is reonstruted orretly. Thereonstrution may generate the wrong orientation, but this is only allowed if left lad-der intervals and right ladder intervals oinide, and if already the \seed piee" wdI isreversed ompared with the true senery �.The next lemma formalizes the intuitive idea of \playing a puzzle game": We startwith a seed word as reonstruted piee; then we append suessively piees of our puzzlethat math to an ending of the growing reonstruted piee. This proedure ontinuesuntil the reonstruted piee is large enough.Lemma 1.6.10. We haveBnoutside out \Bnunique �t \ Enonly ladder \ Emstop;� � Enmod lass (1.6.26)Proof of Lemma 1.6.10. Assume that the events on the left hand side of (1.6.26)hold. We laim that then Enmod lass holds, too. To prove this laim, let w 2 Filtern1 (Input),and let I � [�2 � 2n; 2 � 2n℄, jIj = 1n be a right ladder interval. Assume that J �[�2 � 2n; 2 � 2n℄ is a ladder interval. We assume one of the following two ases:



48 Chapter 1. Reonstruting a Random Senery : : :A) J is a right ladder interval, and wdI � �dJ ;B) l! = l and (wdI)$ � �dJ .We treat both ases simultaneously as far as possible; in order to unify the notation, let�� denote the reversion operation �$ in ase B and the identity operation in ase A. Weset Z := J + l!Z 2 Z=l!Z; then it remains to show:�d([�2n; 2n℄ \ Z) v (wd(I + l!Z))� v �d([�9 � 2n; 9 � 2n℄ \ Z): (1.6.27)To prove the right hand side of (1.6.27), we prove by indution over all right ladderintervals I 0 with I � I 0 � [�5 � 2n; 5 � 2n℄:(wdI 0)� v �d([�9 � 2n; 9 � 2n℄ \ Z): (1.6.28)One we have proven this, the right hand side of (1.6.27) follows from the speial aseI 0 = [�5 � 2n; 5 � 2n℄ \ (I + l!Z).The indution starts with I = I 0: in this ase (1.6.28) holds sine our assumptionA) or B), respetively, implies (wdI)� v �d([�9 � 2n; 9 � 2n℄ \ Z). For the indutionstep, assume that (1.6.28) holds for some I 0. We enlarge I 0 by a single new point: letI 00 = I 0 [ fig � [�5 � 2n; 5 � 2n℄ \ (I + l!Z) be a right ladder interval, i =2 I 0. Let Ii � I 00be a right ladder interval with jIij = 1n and i 2 Ii. Using w 2 Filtern1 (Input) we seew2 := (wdIi)! 2 PuzzlenII(Input). Hene there are w1; w3 2 C1n suh that (w1; w2; w3) 2PuzzlenI (Input) � PrePuzzlen(Input). Thus w1w2w3 ours in the observation � at most 22ntime steps after a stopping time �(k), k < 2�n; say w1w2w3 is read there in � while therandom walk follows an admissible piee of path R : [0; 31n[! Z; (we shifted the timedomain of R bak to the origin). Sine the event Emstop;� holds, we have jS(�(k))j � 2n.Within time 22n the random walk annot travel farther than distane l22n; thus R has allits values in [�(2n + l22n); 2n + l22n℄ � [�2 � l22n; 2 � l22n℄. Consider the ladder intervalI 0i := Ii n fig = Ii \ I 0, jI 0ij = 1n � 1 � 1n=2: the indution hypothesis (1.6.28) implies(wdI 0i)� v �d([�9 � 2n; 9 � 2n℄ \ Z); say (wdI 0i)� � �dD0 for some right ladder intervalD0 � [�9 � 2n; 9 � 2n℄ \ Z. Furthermore, w02 := (wdI 0i)! is a subword of w2 = (wdIi)!and thus also a subword of � Æ R. Hene we see, using that the event Bnoutside out holds:R annot take all of its values outside [�10 � 2n; 10 � 2n℄; thus it has all its values in[�10 � 2n � 31nl; 10 � 2n + 31nl℄ � [�11 � 2n; 11 � 2n℄. Sine the event Enonly ladder holds,w2 = (wdIi)! is a ladder word of �d[�11 � 2n; 11 � 2n℄; say w2 = (�dD)! for some rightladder intervalD � [�11�2n; 11�2n℄ (we all this \ase A1"), or w2 = (�dD) for some leftladder interval D � [�11 � 2n; 11 � 2n℄ (all this \ase B1"). Thus w02 ours as a (possiblyreversed) ladder word� as a subword of (�dD)! in ase A1, or as a subword of (�dD) in ase B1;� as w02 = (�dD0)! in ase A, or as w02 = (�dD0) in ase B.Sine the event Bnunique �t holds, this implies D0 � D, and furthermore the reading dire-tions have to oinide: If ase A holds, then ase A1 ours, and if ase B holds, thenase B1 ours. Let T : Z ! Z denote the translation (ase A) or reetion (ase B)that transports wdIi to �dD. Then T transports wdI 0i to �dD0, and thus { using onemore that Bnunique �t holds { T is also the map that transports wdI 0 to a subpiee of



1.6. Playing Puzzle: Corretness of the Algorithm Algn 49�d([�9 � 2n; 9 � 2n℄ \ Z) aording to the indution hypothesis (1.6.28). Hene T trans-ports wd(Ii [ I 0) = wdI 00 to an equivalent subpiee of �d[�11 � 2n; 11 � 2n℄. To see thatT [wdI 00℄ is already a subpiee of �d([�9 � 2n; 9 � 2n℄ \ Z), we proeed as follows: T mapsthe nonempty seed interval I � [�2 � 2n; 2 � 2n℄ to J � [�2 � 2n; 2 � 2n℄ \ Z; thus it has theform T (z) = �z + a with jaj � 4 � 2n. Consequently T maps the domain [�5 � 2n; 5 � 2n℄of w to a subset of [�9 � 2n; 9 � 2n℄. This shows (wdI 00)� v �d([�9 � 2n; 9 � 2n℄ \ Z), whih�nishes our indution step and also the proof of the right hand side of the laim (1.6.27).To prove the left hand side of (1.6.27), we observe that T�1 maps [�2n; 2n℄ to a subsetof [�5 �2n; 5 �2n℄. Sine T maps I to J , it maps the modulo lass I+ l!Z to Z = J + l!Z;thus T�1 maps [�2n; 2n℄\Z to a subset of (I+l!Z)\[�5�2n; 5�2n℄ = (I+l!Z)\domain(w).Sine T�1 maps a subpiee of �d([�9 � 2n; 9 � 2n℄\Z) to wd(I + l!Z), this implies the lefthand side of the laim (1.6.27). This �nishes the proof of Lemma 1.6.10.De�nition 1.6.9. We de�ne the eventEnseed II := 8<:Every u 2 SeednII(Input) is a left or right ladder word of �d[�2 �2n; 2 � 2n℄. If l! 6= l , then every u 2 SeednIII(Input) is a rightladder word of �d[�2 � 2n; 2 � 2n℄. 9=; : (1.6.29)Lemma 1.6.11. We haveBnunique �t \ Bnsignals \ Bnall paths \ Bnreogn straight \ Emstop;� � Enseed II: (1.6.30)Proof of Lemma 1.6.11. Assume that the events on the left hand side of (1.6.30)hold. In order to show that the Enseed II holds, let w2 2 SeednII(Input). We need to showthat w2 is a ladder word of �d[�2 � 2n; 2 � 2n℄. Using (1.5.5), we take w1; w3 2 C1n with(w1; w2; w3) 2 SeednI (Input); thus w1w2w3 � �d(�(k) + j + [0; 31n[) for some k < 2�nand j 2 [0; 71nl℄. Sine Emstop;� holds, we have jS(�(k))j � 2n. Using 2n + 71nl2 +31ln � 2 � 2n � 1nl, we see that the random walk S is loated inside the interval[�2 � 2n + 1nl; 2 � 2n � 1nl℄ during the time interval �(k) + 71nl + [0; 31n[. The wordw1w2w3 is read along an admissible piee of path, say R 2 AdPath(2 �2n� 1nl; 31n) with�ÆR = w1w2w3; (the time interval is shifted bak to the origin). The event Enonly ladder holdsby Lemma 1.6.9, and we have (w1; w2; w3) 2 PuzzlenI (Input); hene w2 is a ladder word of�d[�11 � 2n; 11 � 2n℄; say w2 = � Æ � for a ladder path � : [0; 1n[! [�11 � 2n; 11 � 2n℄. Let�0 = Rd[1n; 21n[ be the middle piee ofR, along whih one observes (�Æ�0)! = w2 = �Æ�.Sine the event Ensignals II holds by Lemma 1.6.2, we get �0((3=2)1n) = �(1n=2); thus �takes least one value in [�(2 � 2n � 1nl); 2 � 2n � 1nl℄; therefore all the values of � are in[�2 � 2n; 2 � 2n℄. Thus w2 is a ladder word of �d[�2 � 2n; 2 � 2n℄.For the rest of the proof we assume l! 6= l and let u 2 SeednIII(Input). It remains toshow: u is a right ladder word of �d[�2 � 2n; 2 � 2n℄. Using De�nition (1.5.6) of SeednIII, wehoose v 2 SeednII(Input) with (ud(l Z \ [0; 2nl ℄))! = (vd(l!Z \ [0; 2nl!℄)) . >Fromthe �rst part of the proof we get: u and v are ladder words of �d[�2 � 2n; 2 � 2n℄, sineu; v 2 SeednII(Input). We distinguish three ases:1. u is a right ladder word;2. u and v are left ladder words;3. u is a left ladder word and v is a right ladder word.



50 Chapter 1. Reonstruting a Random Senery : : :We need to show that ase 1. holds; thus we prove that the ases 2. and 3. lead to aontradition:In ase 2., let u = (�dI) and v = (�dJ) for some left ladder intervals I; J �[�2 � 2n; 2 � 2n℄, jIj = jJ j = 1n. We get (ud(l Z \ [0; 2nl ℄))! = (�dI 0) for somel2 -spaed interval I 0 � I, jI 0j = 2n + 1. Similarly, (vd(l!Z \ [0; 2nl!℄)) = (�dJ 0)!for some l l!-spaed interval J 0 � J , jJ 0j = 2n + 1. Thus (�dI 0) = (�dJ 0)!, whih isinompatible with the event Bnunique �t.In ase 3., let u = (�dI) for some left ladder interval I � [�2 � 2n; 2 � 2n℄ andv = (�dJ)! for some right ladder interval J � [�2 � 2n; 2 � 2n℄, jIj = jJ j = 1n. We getagain (ud(l Z\ [0; 2nl ℄))! = (�dI 0) for some l2 -spaed interval I 0 � I, jI 0j = 2n+1.This time we have (vd(l!Z\ [0; 2nl!℄)) = (�dJ 0) for some l2!-spaed interval J 0 � J ,jJ 0j = 2n + 1. Sine l2 6= l2!, we have I 0 6= J 0. We obtain (�dI 0) = (�dJ 0) , whih isinompatible with the event Bnunique �t;Thus ases 2. and 3. annot our. Summarizing, we have proven that the event Enseed IIholds.De�nition 1.6.10. If l! = l , we de�ne the eventEndist := (1.6.31)(For all ladder intervals I; J � [�9 � 2n; 9 � 2n℄, jIj = jJ j = 1n: if at least oneof ((�dI)!; (�dJ)!), ((�dI)!; (�dJ) ), ((�dI) ; (�dJ)!), or ((�dI) ; (�dJ) )is in Neighborsn(Input), then distane(I; J) � 3 � l1n. )In the ase l! 6= l , we set Endist to be the sure event.Lemma 1.6.12. Bnsignals \ Emstop;� � EndistProof of Lemma 1.6.12. Assume that the event Bnsignals \ Emstop;� holds, and thatl! = l = l. Let I; J � [�9�2n; 9�2n℄, jIj = jJ j = 1n be right ladder intervals, and assumethat there is a (w1; w2) among ((�dI)!; (�dJ)!), ((�dI)!; (�dJ) ), ((�dI) ; (�dJ)!), or((�dI) ; (�dJ) ) with (w1; w2) 2 Neighborsn(Input). By de�nition (1.5.7), some wordw1ww2 with w 2 Ch�1 ours in the observations � at most 22n time steps after a stoppingtime �(k), k < 2�n. Sine Emstop;� holds, the random walk remains in the interval [�2 �l22n; 2 � l22n℄ during that time interval; say the random walk follows an admissible pieeof path R : [0; 21n+ h� 1[! [�2 � l22n; 2 � l22n℄ while produing the observations � ÆR =w1ww2; (we shifted the time domain bak to the origin). R onsists of the three piees�01 = Rd[0; 1n[, �0 = Rd(1n + [0; h � 1[), and �02 = Rd(1n + h � 1 + [0; 1n[) with� Æ�01 = w1, (� Æ�0)! = w, and (� Æ�02)! = w2. Let x1 := 1n=2 and x2 := (3=2)1n+h�1be the points in the middle of the domain of �01 and �02, respetively. Thenj�01(x1)� �02(x2)j � (1n + h� 1)l; (1.6.32)sine the path R annot travel faster than l per step. The event Ensignals II holds by Lemma1.6.2. Let �1 : [0; 1n[! I and �2 : 1n + h� 1 + [0; 1n[! J be ladder paths with rangeI and J , respetively; we hoose these paths to be left or right ladder paths aordingto whether the reading diretion is \ " or \!". Hene, using � Æ �1 = w1 = � Æ �01 and(� Æ�2)! = w2 = (� Æ�02)!, we obtain �01(x1) = �1(x1) and �02(x2) = �2(x2). Consequently(1.6.32) implies distane(I; J) � j�1(x1)� �2(x2)j � 3 � l1n: (1.6.33)



1.6. Playing Puzzle: Corretness of the Algorithm Algn 51Summarizing, we have shown that the event Endist holds.The following event Enmod  ok ompares modulo lasses (modulo some ) in \reon-struted" piees w with modulo lasses in the \true" senery �. Roughly speaking, itstates that all modulo lasses are reonstruted orretly, and either all of them are re-onstruted in the orret orientation (\ase A"), or all of them are reversed (\ase B").Even more, reversion is only allowed for symmetri maximal jumps of the random walk.Our goal is to show that this event holds for  = 1 (at least if the basi events B::: hold),but as intermediate steps, other values of  are relevant, too.De�nition 1.6.11. For all divisors  � 1 of l!, we de�ne the eventEnmod  ok := (1.6.34)8>>>>>>><>>>>>>>:
For all w 2 SolutionPieesn(Input) there is a bijetion � : Z=Z ! Z=Zsuh that (at least) one of the following two ases holds:A) 8Z 2 Z=Z: �d([�2n; 2n℄\ �(Z)) v wdZ v �d([�9 �2n; 9 �2n℄\ �(Z))B) l! = l and8Z 2 Z=Z: �d([�2n; 2n℄ \ �(Z)) v (wdZ)$ v �d([�9 � 2n; 9 � 2n℄ \�(Z))

9>>>>>>>=>>>>>>>; :
Lemma 1.6.13. For  = l!, we have Enseed II \ Enmodlass \ Endist \ Bnunique �t � Enmod l! ok.Proof of Lemma 1.6.13. Assume that the event Enseed II\Enmodlass\Endist\Bnunique �tholds. Let w 2 SolutionPieesn(Input). Let Z 2 Z=l!Z. In order to de�ne �(Z) = �l!(Z),we proeed as follows: Sine w 2 Filter4(Input), there exists a right ladder interval I �Z \ [�2 � 2n; 2 � 2n℄ suh that (wdI)! 2 SeednIII(�; �). We hoose suh an I. Then (wdI)!is a left or right ladder word of �d[�2 � 2n; 2 � 2n℄, sine the event Enseed II holds. Morespei�ally: for some right ladder interval J � [�2 �2n; 2 �2n℄, at least one of the followingtwo ases holds true: Case A(Z): wdI � �dJ ,Case B(Z): l! = l and (wdI)$ � �dJ .We de�ne �(Z) := J + l!Z 2 Z=l!Z. Sine the event Enmodlass holds, we getfor Case A(Z): �d([�2n; 2n℄ \ �(Z)) v wdZ v �d([�9 � 2n; 9 � 2n℄ \ �(Z)),for Case B(Z): �d([�2n; 2n℄ \ �(Z)) v (wdZ)$ v �d([�9 � 2n; 9 � 2n℄ \ �(Z)).We laim that one of the following two ases ours:Case A: For all modulo lasses Z 2 Z=l!Z holds Case A(Z);Case B: For all modulo lasses Z 2 Z=l!Z holds Case B(Z).This is obvious for l! 6= l , sine then Case B(Z) annot our. To prove the laim forl! = l , we proeed as follows: For Z 2 Z=lZ, let TZ : Z! Z denote a translation (CaseA(Z)) or reetion (Case B(Z)) whih transports wdZ to a subpiee of �d[�9 � 2n; 9 � 2n℄\�(Z). Let Z;W 2 Z=lZ. We hoose two right ladder intervals I1 � Z \ [4 � 2n; 5 � 2n℄,I2 � W \ [4 � 2n; 5 � 2n℄, jI1j = jI2j = 1n, with I1 .n I2; suh intervals exist, sine supp ��hmeets every modulo lass (modulo l) and sine n � n0 is large enough. We abbreviateI 01 := TZ [I1℄ and I 02 := TW [I2℄. Sine w 2 Filter2(Input) one has ((wdI1)!; (wdI2)!) 2Neighborsn(Input). Let XZ denote the symbol \!" in the Case A(Z) and \ " in the Case



52 Chapter 1. Reonstruting a Random Senery : : :B(Z). Then ((wdI1)!; (wdI2)!) = ((�dI 01)XZ ; (�dI 02)XW ). Sine the event Endist holds, thisimplies distane(I 01; I 02) � 3 � l1n. However, TZ maps [�5 �2n; 5 �2n℄ to [�9 �2n� l; 9 �2n+ l℄;(the extra summand l arises sine TZ was spei�ed only by its ation on a modulo lass).Thus it maps I1; I2 � [4 � 2n; 5 � 2n℄ to a subset of [4 � 2n � l; 9 � 2n + l℄ in the Case A(Z),and to a subset of [�9 � 2n � l;�4 � 2n + l℄ in the Case B(Z). The same statement holdswith Z replaed by W . The intervals [4 � 2n � l; 9 � 2n + l℄ and [�9 � 2n � l;�4 � 2n + l℄are farther apart than 3 � l1n � distane(I 01; I 02); thus either both TZ and TW must betranslations, or both must be reetions. Summarizing, we have shown so far that CaseA holds or Case B holds.It only remains to show that � : Z=l!Z! Z=l!Z is bijetive. Sine Z=l!Z is �nite,it suÆes to show that � is injetive: Let Z;W 2 Z=l!Z with �(Z) = �(W ). Using theabove maps TZ, TW again, we knowTZ [Z \ domain(w)℄ = TZ [Z \ [�5 � 2n; 5 � 2n℄℄ � �(Z) \ [�9 � 2n; 9 � 2n℄;(1.6.35)TW [W \ domain(w)℄ = TW [W \ [�5 � 2n; 5 � 2n℄℄ � �(W ) \ [�9 � 2n; 9 � 2n℄:(1.6.36)The sets on the right hand of (1.6.35) and (1.6.36) oinide; thus TZ[Z \ [�5 � 2n; 5 � 2n℄℄and TW [W \ [�5 � 2n; 5 � 2n℄℄ overlap at least in K \ �(Z) for some interval K of length 2n.We hoose any right ladder interval D � K \ �(Z) with jDj = 1n and set D1 := T�1Z [D℄and D2 := T�1W [D℄. ThenCase A: (wdD1)! = (�dD)! = (wdD2)!,Case B: (wdD1)! = (�dD) = (wdD2)!;thus w 2 Filter5(Input) implies D1 = D2; hene Z = D1 + l!Z = D2 + l!Z = W . Thisshows that � is indeed injetive.The next lemma ontains a \step down" proedure in order to arrange orretly largerand larger modulo lasses in a reonstruted piee of senery w. Here is a rough idea forthe rather omplex onstrution:Suppose we have already orretly reonstruted large piees of the senery � restritedto modulo lasses (mod , say) up to a translation (and possibly a global reetion for alllasses). Our task is to identify the relative translation between di�erent modulo lasses.We start with a \referene" ladder word; it ours over both, a ladder interval I inthe reonstruted \andidate" senery w, and a ladder interval J in the \true" senery �(possibly reeted). Then we look for the rightmost \neighboring" ladder words that ournot in the same modulo lass as the referene word, both in the andidate senery and inthe true senery; we use here the \estimated" neighborship relation \Neighbors". Takingthe rightmost \neighboring" words as our new starting point, we repeat this onstrutionuntil we are sure after  steps to re-enter the modulo lass that we started with; say wearrive at ladder intervals I and J , respetively. In this way we obtain two \hains" (Ii)and (Ji) of neighboring ladder intervals; (Ji) belongs to the the \true" senery, and (Ii)belongs to the \reonstruted andidate" w.Using the De�nition of the tests \Filter2=3", and of the events Eneighbor I=II, we knowthat the \estimated" and the \geometrial" neighborship relations oinide at least whentaking only rightmost neighbors as above; this holds for both, the \reonstruted" piee wand for the \true" senery �. The distane between I and I equals the distane betweenJ and J , sine this distane is not a�eted by a relative translation between di�erentmodulo lasses; reall that I and I belong to the same lass modulo , and so do J and



1.6. Playing Puzzle: Corretness of the Algorithm Algn 53J . Having identi�ed the starting point and the end point of our two hains of intervals,there also no ambiguity left for the relative position of the intervals in between in thehain; but then we have suessfully reonstruted the larger modulo lass spanned bythe whole hain (Ii).This onstrution is repeated reursively until we have orretly reonstruted thewhole piee of senery.We desribe the proedure formally:Lemma 1.6.14. Assume that the events Bnunique �t, Enneighbor I, and Enneighbor II hold true.Let  > 1 be a divisor of l! and assume that the event Enmod  ok is valid. Then there is adivisor 0 of l! with 1 � 0 <  suh that the event Enmod 0 ok is valid, too.Proof. Let  be as in the hypothesis of the lemma. Every modulo lass Z 2 Z=Z is aunion of modulo lasses Z 0 2 Z=l!Z. Furthermore, every suh modulo lass Z 0 2 Z=l!Zhas a nonempty intersetion with supp ��h. (One an see this as follows: Sine 1 is thegreatest ommon divisor of the elements of supp�, every integer an be written in theform �l! +PKj=1 sj with � 2 Z, K 2 N , and sj 2 supp � for 1 � j � K. By Lemma1.6.5 it suÆes to take K = h; thus we get Z = supp ��h + l!Z, whih is equivalent tothe above laim.)Sine we assume  > 1, the set di�erene Z n Z ontains at least one Z 2 Z=Z asa subset; thus Z n Z has at least one element in ommon with supp ��h. Let M! :=max[(Z n Z) \ supp ��h℄ and M := �min[(Z n Z) \ supp��h℄. De�ne 0 to be thegreatest ommon divisor of  and M!; thus 0 <  sine M! =2 Z.Let w 2 SolutionPieesn(Input). Aording to De�nition (1.6.34) of Enmod  ok we haveto distinguish two ases A and B; however, we treat both ases simultaneously as far aspossible. We set � := � �d[�9 � 2n; 9 � 2n℄ in ase A of (1.6.34),(�d[�9 � 2n; 9 � 2n℄)$ in ase B of (1.6.34). (1.6.37)For Z 2 Z=Z we set ~�(Z) := ��(�Z) with \+" in ase A and \�" in ase B; here thebijetion � : Z=Z! Z=Z is taken from De�nition (1.6.34) of the event Enmod  ok. Theintrodution of ~� takes are of the inversion of modulo lasses in � in ase B. Sine theevent Enmod  ok is valid, we have for all Z 2 Z=Z:�d(~�(Z) \ [�2n; 2n℄) v wdZ v �d~�(Z): (1.6.38)For Z 2 Z=Z, let TZ : Z ! Z denote the translation whih transports wdZ to someTZ [wdZ℄ � �d~�(Z); in partiular TZ [Z℄ = ~�(Z). TZ is uniquely determined, sine theevent Bnunique �t holds. Of ourse, TZ also depends on , but we suppress this in thenotation, sine  is onsidered �xed for the moment. For W 2 Z=Z, we set ~TW :=(T~��1 (W ))�1; thus ~TW [W ℄ = ~��1 (W ). For later use, we note�d(~�(Z) \ [�2n; 2n℄) � TZ[wdZ℄ � �d~�(Z): (1.6.39)We de�ne � 0 := [Z2Z=ZTZ [wdZ℄ � �: (1.6.40)



54 Chapter 1. Reonstruting a Random Senery : : :Note that [�2n; 2n℄ � domain(� 0). For (nonempty) ladder intervals I and J , we abbreviateTI := TI+Z and ~TJ := ~TJ+Z.Let the following data be given: u 2 fw; � 0g, a right ladder interval I ontained in thedomain of u with jIj = 1n, and k 2 [0; ℄. We de�ne Seq(I; u; k) to denote the set of all(I0; : : : ; Ik) with the following properties:1. I0 = I;2. I0; : : : ; Ik are right ladder intervals ontained in the domain of u with jIjj = 1n,0 � j � k.3. For all j 2 [0; k[: Ij + Z 6= Ij+1 + Z.4. For all j 2 [0; k[: ((udIj)!; (udIj+1)!) 2 Neighborsn(Input).Of ourse Seq(I; u; k) also depends on , Input, and n, but these parameters are onsidered�xed for the moment.Let MaxSeq(I; u; k) denote the set of all (Ij)j=0;:::;k 2 Seq(I; u; k) for whih min Ik �min I0 is maximal.Given a modulo lass Z 2 Z=Z, we take a �xed right ladder interval J � ~��1 (Z) \[0; (1n + 1)l!℄ � ~��1 (Z) \ domain(� 0), jJ j = 1n. Furthermore, we set I := ~TJJ �Z \ domain(w).J serves as a \referene" interval in the \true" (only possibly reeted) piee of senery� 0, while I serves as a \referene" interval in the \reonstruted" piee of senery w.We prove by indution over k:� MaxSeq(I; w; k) ontains a unique element (Ij)j=0;:::;k, namelyIj =M!j + (1n� 1)l!j + I: (1.6.41)� MaxSeq(J; � 0; k) ontains a unique element (Jj)j=0;:::;k, too, namelyJj =Mj + (1n� 1)l!j + J; (1.6.42)where M =M! in ase A and M =M in ase B.This is obvious for k = 0. Here is the indution step k � 1 7! k:If (Ij)j=0;:::;k, (Jj)j=0;:::;k are given by (1.6.41) and (1.6.42), then(Ij)j=0;:::;k 2 Seq(I; w; k) and (Jj)j=0;:::;k 2 Seq(J; � 0; k): (1.6.43)To see this, we hek the onditions 1.{4. in the de�nition of Seq:1. This is obvious.2. The only nontrivial laims are Jj � domain(� 0) and Ij � domain(w), 0 � j � k.To prove the �rst laim, we observe jminJ � minJjj � (M + 1nl)k � 21nl �21nl2; thus we obtain for all i 2 Jj: jij � 21nl2 + (1n + 1)l! � 2n; heneJj � [�2n; 2n℄ � domain(� 0). To prove the seond laim, we observe that J +[�2n=2; 2n=2℄ � [�2n; 2n℄ = domain(� 0) (reall n � n0, and n0 is large enough). Weapply the translation ~TJ to J + ([�2n=2; 2n=2℄\ Z) to obtain I + ([�2n=2; 2n=2℄ \Z) = ~TJ [J + ([�2n=2; 2n=2℄ \ Z)℄ � domain(w) = [�5 � 2n; 5 � 2n℄. This impliesI + [�2n=2 + ; 2n=2 � ℄ � [�5 � 2n; 5 � 2n℄, sine [�5 � 2n; 5 � 2n℄ is an interval;onsequently Ij � I + [�2n=2 + ; 2n=2� ℄ � domain(w), whih proves the seondlaim.



1.6. Playing Puzzle: Corretness of the Algorithm Algn 553. This is a onsequene of min Ij+1 � max Ij = M! =2 Z and minJj+1 � maxJj =M =2 Z.4. Beause of min Ij+1 � max Ij = M! 2 supp ��h we get Ij .n Ij+1; thus the fatw 2 Filtern2 (Input) implies ((wdIj)!; (wdIj+1)!) 2 Neighborsn(Input); see De�nition1.5.4. Similarly minJj+1 � maxJj = M! 2 supp��h in ase A and minJj+1 �maxJj = M 2 �supp ��h in ase B. Hene we get Jj .n Jj+1 in ase A and�Jj /n �Jj+1 in ase B; this implies ((� 0dJj)!; (� 0dJj+1)!) 2 Neighborsn(Input) inboth ases, sine the event Enneighbor I holds; see De�nition 1.6.4.Thus the onditions 1.{4. are indeed valid.To hek the de�ning property of MaxSeq, onsider another sequene(I 0j)j=0;:::;k 2 Seq(I; w; k) and (J 0j)j=0;:::;k 2 Seq(J; � 0; k): (1.6.44)Using our indution hypothesesMaxSeq(I; w; k � 1) = f(Ij)j=0;:::;k�1g; (1.6.45)MaxSeq(J; � 0; k � 1) = f(Jj)j=0;:::;k�1g (1.6.46)and (I 0j)j=0;:::;k�1 2 Seq(I; w; k � 1); (J 0j)j=0;:::;k�1 2 Seq(J; � 0; k � 1); (1.6.47)we know min Ik�1 �min I0 � min I 0k�1 �min I 00; (1.6.48)minJk�1 �minJ0 � minJ 0k�1 �minJ 00; (1.6.49)with equality only if (I 0j)j=0;:::;k�1 = (Ij)j=0;:::;k�1 or (J 0j)j=0;:::;k�1 = (Jj)j=0;:::;k�1.We treat �rst ase of the I's: Using ((wdI 0k�1)!; (wdI 0k)!) 2 Neighborsn(Input) andw 2 Filtern3 (Input) we get I 0k�1 .n I 0k + al! for some a 2 N ; thusmin I 0k �max I 0k�1 � min I 0k + al! �max I 0k�1 �M! (1.6.50)by the maximality of M! and Ik + Z 6= Ik�1 + Z; (see ondition 3. in the de�nition ofSeq, and reall l! 2 Z). Henemin I 0k �min I 00 = (min I 0k �max I 0k�1) + (1n� 1)l! + (min I 0k�1 �min I 00)(1.6.51)� M! + (1n� 1)l! + (min Ik�1 �min I0) = min Ik �min I0:This proves (Ij)j=0;:::;k 2 MaxSeq(I; w; k): (1.6.52)Furthermore, using our indution hypothesis, equality in (1.6.51) an hold only if(I 0j)j=0;:::;k�1 2 MaxSeq(I; w; k � 1) and min I 0k � max I 0k�1 = M!, whih is equivalent to(I 0j)j=0;:::;k = (Ij)j=0;:::;k.We treat (Jj)j=0;:::;k similarly: Sine the event Enneighbor II holds, ((� 0dJ 0k�1)!; (� 0dJ 0k)!) 2Neighborsn(Input) implies J 0k�1 .n J 0k + al! in ase A, (1.6.53)�J 0k�1 /n �J 0k � al in ase B (1.6.54)



56 Chapter 1. Reonstruting a Random Senery : : :for some a 2 N ; see De�nition (1.6.12). This implies in both ases A and B, analogouslyto (1.6.50): minJ 0k �maxJ 0k�1 � minJ 0k + al! �max J 0k�1 �M (1.6.55)by the maximality ofM ; reall thatM =M! in ase A andM =M in ase B, and thatl! = l 2 Z holds in ase B; furthermore reall that J 0k and J 0k�1 belong to di�erentlasses modulo . We repeat arguments similar to (1.6.51):minJ 0k �minJ 00 (1.6.56)= (minJ 0k �maxJ 0k�1) + (1n� 1)l! + (minJ 0k�1 �minJ 00)�M + (1n� 1)l! + (minJk�1 �minJ0) = minJk �minJ0;with equality only if (J 0k)j=0;:::;k 2 MaxSeq(J; � 0; k� 1) and minJ 0k �maxJ 0k�1 =M . Thisproves in analogy to (1.6.52):MaxSeq(J; � 0; k) = f(Jj)j=0;:::;kg: (1.6.57)Sine ~� is bijetive, the fats TIjIj � domain(� 0), (� 0dTIjIj)! = (wdIj)!, and (Ij)j 2Seq(I; w; k) imply (TIjIj)j 2 Seq(J; � 0; k): (1.6.58)Similarly, ~TJjJj � domain(w), (wd ~TJjJj)! = (� 0dJj)!, and (Jj)j 2 Seq(J; � 0; k) imply( ~TJjJj)j 2 Seq(I; w; k): (1.6.59)Now we set k = . Observe that I+Z = I0+Z and J+Z = J0+Z; hene TI0 = TIand ~TJ0 = ~TJ . Thus, using (1.6.52), (1.6.57), (1.6.58), (1.6.59), and the de�ning propertyof MaxSeq, we obtain min I �min I0 = minTII �minTI0I0 (1.6.60)� minJ �minJ0= min ~TJJ �min ~TJ0J0� min I �min I0:Sine the �rst and last term in (1.6.60) are idential, equality holds everywhere in (1.6.60).Hene, using (1.6.57), (1.6.58), and the de�ning property of MaxSeq again, we see(TIjIj)j 2 MaxSeq(J; � 0; ) (1.6.61)and thus (TIjIj)j = (Jj)j, sine MaxSeq(J; � 0; ) is a singleton. Furthermore the fats(1.6.41), (1.6.42),  6= 0, and TI0 = TI imply M! =M , sine0 = (min I �min I0)� (minJ �minJ0) =M! �M: (1.6.62)A side remark: onsequently ase B annot our whenever M! 6= M . Using (1.6.41)and (1.6.42) again, we see that all translations TIj , j = 0; : : : ; , oinide: TIj = TI . Weobserve (I0 [ : : : [ I) + Z = I + fjM! j j = 0; : : : ; g+ Z = I + 0Z; (1.6.63)



1.6. Playing Puzzle: Corretness of the Algorithm Algn 57reall that 0 was de�ned to be the greatest ommon divisor of M! and . Thus wehave shown: the translations TZ , Z 2 Z=Z, depend only on the rougher modulo lassZ 0 = Z + 0Z 2 Z=0Z; hene TZ+0Z := TZ and �0 : Z=0Z ! Z=0Z, �0(Z 0) :=SZ�Z0;Z2Z=Z�(Z) are well-de�ned. Sine � : Z=Z ! Z=Z is a bijetion, �0 is abijetion, too. In analogy to ~� , we introdue ~�0(Z 0) := ��0(�Z 0), (\+" in ase A, \�"in ase B). As a onsequene of (1.6.39), we obtain for all Z 0 2 Z=0Z:�d(~�0(Z 0) \ [�2n; 2n℄) � TZ0[wdZ 0℄ � �d~�0(Z 0): (1.6.64)Hene the event Enmod 0 ok is valid. This �nishes the proof of Lemma 1.6.14.Lemma 1.6.15. Enmod l! ok \ Bnunique �t \ Enneighbor I \ Enneighbor II � Enmod1 ok.Proof. Assume that Enmod l! ok \Bnunique �t \Enneighbor I \Enneighbor II holds. Let � denotethe (random) set of all divisors  � 1 of l! for whih the event Enmod  ok is valid. � 6= ?,sine Enmod l! ok holds. The smallest element of � annot be bigger than 1 by Lemma1.6.14; thus it must be equal to 1. This means that Enmod1 ok holds.Lemma 1.6.16. For  = 1, we have Enmod 1 ok � Enall piees ok.Proof. This is obvious, sine there is only the trivial \modulo lass" Z = �1(Z) = Zremaining for  = 1: In ase A, one has �d[�2n; 2n℄ v w v �d[�9 � 2n; 9 � 2n℄, and in aseB, one has �d[�2n; 2n℄ v w$ v �d[�9 � 2n; 9 � 2n℄.Theorem 1.6.3. Bnseed I\Bnunique �t\Bnall paths\Bnoutside out\Bnreogn straight\Bnsignals\Emstop;� �Enall piees okProof. We ollet the results of Lemmas 1.6.2, 1.6.4, 1.6.6, 1.6.9, 1.6.10, 1.6.11, 1.6.12,1.6.13, 1.6.15, and 1.6.16 in the following list:Bnsignals � Ensignals II;Bnall paths � Enneighbor I;Ensignals II \ Emstop;� � Enneighbor II;Bnall paths \ Bnreogn straight � Enonly ladder;Bnoutside out \Bnunique �t \ Enonly ladder \ Emstop;� � Enmodlass;Bnunique �t \ Bnsignals \Bnall paths \ Bnreogn straight \ Emstop;� � Enseed II;Bnsignals \ Emstop;� � Endist;Enseed II \ Enmodlass \ Endist \Bnunique �t � Enmod l! ok;Enmod l! ok \Bnunique �t \ Enneighbor I \ Enneighbor II � Enmod1 ok;Enmod1 ok � Enall piees ok:The laim of the theorem is a simple ombination of these inlusions.1.6.3 Probabilisti estimates for basi eventsIn this subsetion we show that the \basi events" B::: our very probably. Together withthe result of the previous subsetions this shows that the partial reonstrution algorithmsAlgn yield with high probability a orretly reonstruted piee of senery.We start with an elementary auxiliary lemma:



58 Chapter 1. Reonstruting a Random Senery : : :Lemma 1.6.17. Let f : I0 ! J be a �nite injetion without �xed points. Then there isI 0 � I0 with jI 0j � jI0j=3 and f [I 0℄ \ I 0 = ?.Proof. We onstrut reursively �nite sequenes (Ik) and (I 0k), for k � 1 < jI0j=3, ofsubsets of I0. The \loop invariants" of the reursion are: f [Ik℄ \ I 0k = ?, f [I 0k℄ \ Ik = ?,f [I 0k℄ \ I 0k = ?, Ik \ I 0k = ?, jI 0kj = k, and jIkj � jI0j � 3k.The reursion starts with the given I0 and with I 00 = ?. In the (k+1)st step, k < jI0j=3,we hoose any point x 2 Ik, and de�ne I 0k+1 := I 0k [ fxg. If f�1(x) exists, then we setIk+1 := Ik n fx; f(x); f�1(x)g; else we set Ik+1 := Ik n fx; f(x)g.Note that the validity of the above \loop invariants" is indeed preserved by the reur-sion; the fat f(x) 6= x is used for the third loop invariant.Finally we set I 0 := I 0k for k := minfj 2 N j 3j � jI0jg; then I 0 � I0 is well-de�ned andful�lls the laims in Lemma 1.6.17.Lemma 1.6.18. There exists onstants 18; 19 > 0 not depending on n suh that:P �(Bnunique �t)� � 18e�19n: (1.6.65)Proof. Let i; j 2 f1; : : : ; l2g, and let I � [�11 � 2n; 11 � 2n℄ be a i-spaed interval, andJ � [�11 � 2n; 11 � 2n℄ be a j-spaed interval with jIj = jJ j � 1. Let f : I ! J be amonotonially inreasing or dereasing bijetion, but not the identity map; thus the aseI = J an only our if f is dereasing.We laim: For some onstants 12 > 0 and 13 > 2 log 2=2 (not depending on i, j, I,or J) we have P [� Æ f = �dI℄ � 12e�13jIj: (1.6.66)Note that � Æ f = �dI is equivalent to (�dJ)! = (�dI)! if f is inreasing, and it isequivalent to (�dJ)! = (�dI) if f is dereasing.Before proving (1.6.66), let us show how it implies (1.6.65): There are at most l2hoies for (i; j), and given (i; j), there are at most (22 � 2n + 1)2 � 500 � 22n hoies for(I; J) with jIj = jJ j = 2n; �nally there is one binary hoie: f is inreasing or dereasing.If � Æ f 6= �dI holds for all of these hoies (with the trivial exeption I = J and f = id),then the event Bnunique �t is valid; note that it suÆes to onsider jIj = jJ j = 2n insteadof jIj = jJ j � 2n, sine it suÆes to onsider subintervals of I, J onsisting only of 2npoints. Hene (1.6.66) implies (1.6.65):P �(Bnunique �t)� � l2 � 500 � 22n � 2 � 12e�132n = 18e�19n; (1.6.67)where 18 := 1000l212 and 19 := 132 � 2 log 2 > 0.We prove (1.6.66) next: unless f is the identity map, it an have at most a single �xedpoint, sine it is the restrition of some aÆne-linear map to the ladder interval I. Removethis �xed point from I, if it exists; all I0 the set of all remaining points. By Lemma1.6.17, there is I 0 � I0 with jI 0j � jI0j=3 � (jIj � 1)=3 and f [I 0℄ \ I 0 = ?. Hene �df [I 0℄and �dI 0 are independent random piees of senery; thusP [� Æ f = �dI℄ � P [� Æ fdI 0 = �dI 0℄ = jCj�jI0j � jCj�(jIj�1)=3; (1.6.68)thus (1.6.66) follows with 13 := (log jCj)=3 and 12 := jCj1=3. Note that 132� 2 log 2 > 0sine 2 was required to be large enough; reall subsetion 1.2.1.



1.6. Playing Puzzle: Corretness of the Algorithm Algn 59Lemma 1.6.19. There exist onstants 20; 21 > 0 not depending on n suh that:P �(Bnall paths) \ Emstop;�� � 21e�20n: (1.6.69)Proof of Lemma 1.6.19. Let k < 2�n and R 2 AdPath(12 � 2n; 31n). We setBn;kR := n9j 2 [0; 22n℄ : TimeShift�(k)+j(R) � So ; (1.6.70)Emstop;�;k := � �k(�) < 212�nm ; jS(�k(�))j � 2nm;�j(�) + 2 � 22nm � �k(�) for j < k � ; (1.6.71)An;kR := Emstop;�;k nBn;kR : (1.6.72)Note that Bnall paths = TR2AdPath(12�2n;31n)S2�n�1k=0 Bn;kR and Emstop;� � Emstop;�;k for k � 2�n,and thus Emstop;� nBnall paths � [R2AdPath(12�2n;31n) 2�n�1\k=0 An;kR : (1.6.73)In the following, R runs over the set AdPath(12 � 2n; 31n):P �(Bnall paths) \ Emstop;�� � jAdPath(12 � 2n; 31n)jmaxR P "2�n�1\k=0 An;kR # ; (1.6.74)jAdPath(12 � 2n; 31n)j � 25 � 2njMj31n; (1.6.75)P "2�n�1\k=0 An;kR # = 2�n�1Yk=0 P "An;kR �����\j<kAn;jR # ; (1.6.76)P "An;kR �����\j<kAn;jR # � P "(Bn;kR ) �����Emstop;�;k \\j<kAn;jR # ; (1.6.77)the last statement follows from the elementary fat P [A \ BjC℄ � P [AjB \ C℄. Sine22n + 31n � 2 � 22n, we have Cn;kR := Emstop;�;k \ Tj<kAn;jR 2 F�k , i.e. one an deidewhether the event Cn;kR holds by observing � and S(0); : : : ; S(�k). Furthermore, if Cn;kRholds, then jS(�k(�))j � 2n, and as a onsequene of the loal Central Limit Theorem [5℄,Theorem 5.2 (page 132) we get: there is a onstant 22 > 0 suh that for all x; y withjxj � 12 � 2n and jyj � 2n: P [y + S(j) = x for some j 2 [0; 22n℄℄ � 222�n; note that y+Sis a random walk starting in the point y. Note that we do not need the random walkto be aperiodi; it suÆes that it an reah every integer, i.e. that the greatest ommondivisor of the elements of jMj is 1. Thus by the strong Markov property:infjxj�12�2n P hS(�(k) + j) = x for some j 2 [0; 22n℄ ��� Cn;kR i � 222�n: (1.6.78)One it is in the starting point x, the probability that S follows an admissible pathR 2 AdPath(12 �2n; 31n) for the next 31n�1 steps is bounded from below by �31nmin . Here�min := minf�(fxg) j x 2 Mg is the smallest positive probability for a jump. Therefore,using the strong Markov property again:P hBn;kR ��� Cn;kR i � 222�n�31nmin : (1.6.79)



60 Chapter 1. Reonstruting a Random Senery : : :We ombine (1.6.74){(1.6.77) and (1.6.79) to obtainP �Emstop;� nBnall paths� � 25 � 2njMj31n(1� 222�n�31nmin )2�n (1.6.80)� 25 � 2njMj31n exp ��222�n�31nmin 2�n	� 25 exp�n(log 2 + 31 log jMj)� 22en(� log 2+31 log �min�log 2)	 :Now � > 1� 31 log2 �min by our hoie of � in subsetion 1.2.1; thus the right hand sideof the last inequality onverges to 0 superexponentially fast as n ! 1. Note that wemay hoose an upper bound 21e�20n for the right hand side in 1.6.80, where neither 21nor 20 depend on � or 1. This is true sine n � n0, and n0 was hosen large enough,depending on 1 and �; reall subsetion 1.2.1. This proves the lemma.Lemma 1.6.20. There exists a onstant 23 > 0 not depending on n suh that:P [(Bnoutside out)℄ � 160e�23n: (1.6.81)Proof of Lemma 1.6.20. The set [�2 � l22n; 2 � l22n℄ n [�10 � 2n; 10 � 2n℄ ontains lessthan 4 � l � 22n points, and for every �xed starting point the number of admissible pathswith 1n=2 points is equal to jMj1n=2�1. Hene there are less than 4 � l22njMj1n=2 pathsR 2 AdPaths(2 � l22n; 1n=2) with R(i) =2 [�10 � 2n; 10 � 2n℄ for all i = 0; : : : ; 1n=2. On theother hand, there are less than 40 � 2n ladder words of length 1n=2 in [�9 � 2n; 9 � 2n℄. Theolors � Æ R that a path in R 2 AdPaths(22n; 1n=2) with R(i) =2 [�10 � 2n; 10 � 2n℄ for alli = 0; : : : ; 1n=2� 1 reads are independent of the olors inside [�9 � 2n; 9 � 2n℄. Thus theprobability that a given path R 2 AdPaths(22n; 1n=2) with R(i) =2 [�10 � 2n; 10 � 2n℄ forall i = 0; : : : ; 1n=2� 1 reads the same olors as a �xed ladder word in [�9 � 2n; 9 � 2n℄ isjCj�1n=2. Thus P [(Bnoutside out)℄ � 160l23njMj1n=2jCj�1n=2: (1.6.82)Sine jMj < jCj, the last expression beomes exponentially dereasing in n sine 1 >6= log jCjjMj sine 1 was hosen large enough; see subsetion 1.2.1. This proves the lemma.We prepare the treatment of the event Bnreognstraight by the following ombinatorilemma:Lemma 1.6.21. Let 24 := 1=(2jMj(l! + l )). There are two intervals I1; I2 � [0; 1n[with jI1j = jI2j � 241n � 1 suh that the following statement is valid: For all R 2AdPaths(11 � 2n; 1n) with R(1n � 1) � R(0) =2 f(1n � 1)l!;�(1n � 1)l g, there isI 2 fI1; I2g and an admissible path �R 2 AdPaths(12 �2n; 1n) with the following properties:� R(0) = �R(0), R(1n� 1) = �R(1n� 1).� At least one of the following holds:1. for all (i; j) 2 I � I with j < i: �R(i) =2 fR(j); �R(j)g;2. for all (i; j) 2 I � I with i < j: �R(i) =2 fR(j); �R(j)g.Proof. We de�ne k := b241n, I 0 := [1; 2k℄ � [0; 1n[, I1 := [1; k℄, and I2 :=[k + 1; 2k℄. We observe jI1j; jI2j � 241n� 1 and I1; I2 � [0; 1n[.Let R 2 AdPaths(11 � 2n; 1n) be not a ladder path. We show �rst: There are R0; R00 2AdPaths(12 � 2n; 1n) suh that R0(0) = R00(0) = R(0), R0(1n � 1) = R00(1n � 1) =



1.6. Playing Puzzle: Corretness of the Algorithm Algn 61R(1n� 1), R0dI 0 and R00dI 0 are ladder paths, and R00dI 0 = r + R0dI 0 for some r 6= 0, i.e.R00dI 0 is obtained from R0dI 0 by a spatial translation.To prove this laim, let d = (di)i=1:::;1n�1 2 M1n�1, di := R(i)�R(i�1), be the jumpsizes in R. Every other ~d 2 M1n�1 withP1n�1i=1 ~di =P1n�1i=1 di gives rise to an admissiblepath ~R 2 AdPaths(12 �2n; 1n), too, with ~R(0) = R(0), ~R(1n�1) = R(1n�1), and withjump sizes ~di = ~R(i)� ~R(i� 1); namely ~R(i) := R(0) +Pij=1 ~dj. Sine ~R has its startingpoint and end point in [�11 � 2n; 11 � 2n℄ and sine 1nl < 2n, the path ~R an indeed notleave the range [�12 � 2n; 12 � 2n℄.There are at most jMj possible values for di, but there are 1n possible indies i; thusat least one value a 2 M ours in the di at least 1n=jMj times. We hoose 2k(a+l ) � 0indies i with di = a and replae them by l!, and we hoose 2k(l!�a) � 0 di�erent indiesi with di = a and replae them by �l ; note that 2k(a+ l )+2k(l!�a) = 2k(l!+ l ) �1n=jMj. We end up with a new vetor ~d 2 M1n�1 with P1n�1i=1 ~di = P1n�1i=1 di, sine2k(l +l!)a = 2k(a+l )l!+2k(l!�a)(�l ). ~d ontains at least 2k entries with value l!,or it ontains at least 2k entries with value �l , sine already the desribed replaementproedure has produed suÆiently many suh entries. However, not all entries of ~d anequal l!; similarly not all its entries an equal �l , sine R is not a ladder path. Wepermute the entries of ~di in two di�erent ways; the resulting vetors are alled d0 and d00:First to obtain d0, permute the entries in ~d suh that the �rst 2k permuted entries d0i,i = 1; : : : ; 2k either all equal l! or all equal �l ; the order of the remaining entries isirrelevant. Seond to obtain d00, transpose the �rst entry d01 with a di�erent entry d0i 6= d01.Let R0 and R00 be admissible piees of paths with R0(0) = R00(0) = R(0) and step sizesd0i = R0(i) � R0(i � 1) and d00i = R00(i) � R00(i � 1), respetively. Reall I 0 = [1; 2k℄;then R0dI 0 and R00dI 0 are ladder paths, and R00dI 0 is obtained from translating R0dI 0 byr := d001 � d01 6= 0. Thus our �rst laim holds.R0dI 0 is a right ladder path or a left ladder path. Without loss of generality, we assumethat it is a right ladder path; the ase of left ladder paths an be treated similarly byreversing diretions in the arguments below. Furthermore, we assume without loss ofgenerality r > 0; otherwise we exhange R0 with R00.We are ready to prove the laim of the lemma; reall that k is a point in the middleof I 0. There are two ases:� If R(k) > R0(k), then we take I := I1 and �R := R0. Sine R0dI is a right ladderpath, it moves with maximal speed l! to the right. R annot move faster than thatto the right; thus R(j) > R0(i) and R0(j) > R0(i) for all i; j 2 I with i < j.� If R(k) � R0(k), then R(k) < r + R0(k) = R00(k); this time we take I := I2 and�R := R00. The same argument as above yields R(j) < R00(i) and R00(j) < R00(i) forall i; j 2 I with j < i.This proves Lemma 1.6.21.Lemma 1.6.22. There exist positive onstants 25 and 26 not depending on n suh that:P �(Bnreogn straight)� � 25e�26n: (1.6.83)Proof of Lemma 1.6.22. Given R 2 AdPaths(11 � 2n; 1n) with R(1n) � R(0) =2f(1n� 1)l!;�(1n� 1)l g, we take I = I(R) � [0; 1n[ and �R 2 AdPaths(12 � 2n; 1n) as



62 Chapter 1. Reonstruting a Random Senery : : :in Lemma 1.6.21. Without loss of generality assume that ondition 1. in Lemma 1.6.21 issatis�ed. We prove for all I 0 � I by indution on jI 0j:P [(� ÆR)dI 0 = (� Æ �R)dI 0℄ = jCj�jI0j: (1.6.84)This is obvious for I 0 = ?. For other I 0, let I 00 := I 0 n max I 0. Then �( �R(max I 0)) isindependent of (� Æ RdI 00; � Æ �RdI 00), sine they are generated by disjoint parts of thesenery. ThusP [(� ÆR)dI 0 = (� Æ �R)dI 0℄ (1.6.85)= P [�(R(max I 0)) = �( �R(max I 0))℄ � P [(� ÆR)dI 00 = (� Æ �R)dI 00℄= jCj�1jCj�jI00j = jCj�jI0j:By taking I 0 = I, we onlude P [(� ÆR)dI = (� Æ �R)dI℄ � jCj�jIj:Unfortunately, it does not suÆe to multiply the last bound with the bound 23 �2njMj1n � jAdPaths(11 � 2n; 1n)j: the produt may sometimes be bigger than 1.To overome this diÆulty, we partition AdPaths(12 � 2n; 1n) 3 R into equivalenelasses [R℄: we put two paths into the same lass if and only if they are mapped to thesame value by the map R 7! (R(0); R(1n � 1); I(R); RdI(R)); here I(R) 2 fI1; I2g istaken from Lemma 1.6.21. We bound the number of equivalene lasses from above: Forour purposes, a simple but rough bound suÆes: There are at most 25 �2n hoies for eahof R(0), R(1n�1), and R(min I(R)), and there is a binary hoie I(R) 2 fI1; I2g; �nallygiven R(min I(R)), there are not more than jMjk hoies for RdI(R), where again k =b241n = jI(R)j. Altogether the number of equivalene lasses is bounded by 2723njMjk,where 27 := 2 � 253. We may hoose a map AdPaths(11 � 2n; 1n)! AdPaths(12 � 2n; 1n),R 7! �R suh that �R depends only of the equivalene lass [R℄ and ful�lls the laim inLemma 1.6.21. We getP [(Bnreogn straight)℄ � P [9R 2 AdPaths(11 � 2n; 1n) : � ÆRdI(R) = � Æ �RdI(R)℄ (1.6.86)�X[R℄ P [� ÆRdI(R) = � Æ �RdI(R)℄� 2723n(jMj=jCj)k � 27(jCj=jMj) expf(3 log 2� 241 log(jMj=jCj))ng:We emphasize: the sum in the last but one expression runs over equivalene lasses [R℄,not over paths R; the event f� ÆRdI(R) = � Æ �RdI(R)g does not depend on the hoie ofR 2 [R℄. We have 241 log(jMj=jCj)� 3 log 2 � 1; reall from subsetion 1.2.1 that 1 islarge enough. The estimate (1.6.86) proves the lemma with 26 = 1, 25 = 27jCj=jMj.Lemma 1.6.23. There exist onstants 28 > 0, 29 > 0 suh that:P �(Bnsignals)� � 29e�28n: (1.6.87)Proof of Lemma 1.6.23. We show thatP [Bnsig rr℄ � 1� 30e�28n (1.6.88)for some onstants 30 > 0 and 28 > 0. The proof for Bnsig rl, Bnsig lr, and Bnsig ll an be doneanalogously. Take a right ladder path � 2 [�2 � l22n; 2 � l22n℄[0;1n=2[ and an admissible



1.6. Playing Puzzle: Corretness of the Algorithm Algn 63piee of path �0 2 AdPath(2 � l22n; 1n=2) with �(0) > �0(0). We show by indution overj 2 [0; 1n=2[ with the abbreviation I = [0; j + 1[ and I 0 = [0; j[:P [� Æ �dI 0 = � Æ �0dI 0℄ = jCj�j: (1.6.89)Indeed, (1.6.89) is trivial for j = 0. For the step j 7! j + 1, we observe that �(j) is rightof all �(i) and �0(i), i < j, sine � is a right ladder path and �(0) > �0(0). Thus � Æ�(j) isindependent of the family (� Æ �dI 0; � Æ �0dI 0). Therefore, using our indution hypothesis,P [� Æ �dI = � Æ �0dI℄ (1.6.90)= P [� Æ �dI 0 = � Æ �0dI 0℄ � P [� Æ �(j) = � Æ �0(j)℄ = jCj�j�1;For j = 1n=2 we obtain thatP [� Æ �d[0; 1n=2[= � Æ �0d[0; 1n=2[℄ � jCj�1n=2: (1.6.91)There are no more than 4 � l22n + 1 � 5 � l22n suh � and not more than 5 � l22njMj1n=2suh �0. Therefore P [(Bnsig r)℄ � (5 � l22n)2jMj1n=2jCj�1n=2 (1.6.92)holds; onsequently (1.6.88) is valid with 29 = 25 � l2 and 28 := 1 � 1 log(jCj=jMj)=2�4 log 2. The last inequality holds, sine jCj > jMj and 1 was hosen large enough; seesubsetion 1.2.1.Lemma 1.6.24. There exist onstants 31 > 0 and 32 > 0 suh that:P �(Bnseed I) \ Emstop;�� � 32e�31n: (1.6.93)Proof. We proeed similarly to the proof of Lemma 1.6.19. In the following, Z runsover all lasses Z 2 Z=l!Z. We set for all Z (ompare with De�nition (1.6.17) of Bnseed I):Bn;kZ := (S(�(k) + h) 2 Z, Sd(�(k) + h + [0; 31nl ℄) is a right ladderpath, and Sd(�(k) + h+ 31nl + [0; 31nl!℄) is a left ladderpath. ) ; (1.6.94)An;kZ := Emstop;�;k nBn;kZ : (1.6.95)where Emstop;�;k is given by (1.6.71). Note that Bnseed I = TZ S2�n�1k=0 Bn;kZ and still Emstop;� �Emstop;�;k for k < 2�n; thus Emstop;� nBnseed I �[Z 2�n�1\k=0 An;kZ : (1.6.96)We obtain P �Emstop;� nBnseed I� � l!maxZ P "2�n�1\k=0 An;kZ # (1.6.97)= l!maxZ 2�n�1Yk=0 P "An;kZ �����\j<kAn;jZ # ;P "An;kZ �����\j<kAn;jZ # � P "(Bn;kZ ) �����Emstop;�;k \\j<kAn;jZ # : (1.6.98)



64 Chapter 1. Reonstruting a Random Senery : : :Sine h+ 31nl + 31nl! < 2 � 22n, we have Cn;kZ := Emstop;�;k \Tj<kAn;jZ 2 F�(k). UsingLemma 1.6.5, we know l!Z + supp �h = Z; hene 33 := infx2ZP [x + S(h) 2 Z℄ > 0;(note that the random walk x+ S starts in the point x). Moreover, given that S(h) 2 Z,the probability to follow a right ladder path in Z in the subsequent 31nl steps is�(fl!g)1nl , and the probability to follow then a left ladder path in the next 31nl!steps is �(f�l g)1nl!:Thus by the strong Markov property:P hBn;kZ j Cn;kZ i � 33�(fl!g)31nl �(f�l g)31nl! = 33e�341n; (1.6.99)where 34 := �3l log�(fl!g) � 3l! log�(f�l g). We ombine (1.6.97), (1.6.98) and(1.6.99) to obtainP �Emstop;� nBnseed I� � l!(1� 33e�341n)2�n � l! exp��33e�341n2�n	 : (1.6.100)We have 341 < � log 2, sine � was hosen large enough; see subsetion 1.2.1. Thus theright hand side of the last inequality onverges to 0 superexponentially fast as n ! 1.This proves the lemma, sine n � n0 and n0 was hosen large enough.Finally we reap the results of this setion:Proof of Theorem 1.6.1. By Theorems 1.6.2 and 1.6.3 we haveEnxi does it \ Enall piees ok � (1.6.101)Bnseed I \ Bnunique �t \Bnall paths \Bnoutside out \ Bnreogn straight \Bnsignals \ Emstop;� ; (1.6.102)heneEmstop;� n (Enxi does it \ Enall piees ok) � (Bnunique �t) [ ((Bnall paths) \ Emstop;�)[ (Bnoutside out) [ (Bnreogn straight) [ (Bnsignals) [ ((Bnseed I) \ Emstop;� ): (1.6.103)Thus Theorem 1.6.1 follows from the main Lemmas 1.6.18, 1.6.19, 1.6.20, 1.6.22, 1.6.23,and 1.6.24 of this subsetion.1.7 How to �nd bak:Corretness of the stopping times TfIn this setion, we prove Theorem 1.3.5.De�nition 1.7.1. Let T = (Tk)k2N be a sequene of G-adapted stopping times. We de�nethe events Emno error;T := f8k � 0 : if Tk(�) < 212�nm , then jS(Tk(�))j � 2nm g ; (1.7.1)Emenough bak := �Up to time 212�nm=8, S visits 0 at least23�nm times � : (1.7.2)We abbreviate �mreonst;f := �� 2 CZ ����P �Emreonst;f j �� � 12� ; (1.7.3)reall De�nition (1.3.15) of the event Emreonst;f .



1.7. How to �nd bak: Corretness of the stopping times Tf 65Lemma 1.7.1. For some onstant 35 and all m � 0:1� P �Emenough bak� � 352��nm : (1.7.4)Proof of Lemma 1.7.1. Let (Xi)i�1 denote the time di�erene between the (i+1)stand the i-th visit of S at the origin. By reurrene, (Xi)i�1 is a.s. well de�ned, and bythe strong Markov property it is i.i.d. with respet to P . Sine S starts in the origin, X1is the �rst return time to the origin, and Pji=1Xi is (a.s.) the time of the j-th visit atthe origin. For the sake of this proof, we abbreviate: x = 212�nm=8 and y = 23�nm . Using�Emenough bak� = ( yXi=1 Xi � x) � 8<: yXi=1 X1=3i !3 � x9=; (1.7.5)and the Chebyshev-Markov inequality, we obtain the laim (1.7.4):1� P �Emenough bak� � P " yXi=1 X1=3i � x1=3# � x�1=3E " yXi=1 X1=3i # (1.7.6)= x�1=3yE hX1=31 i = 2E hX1=31 i 2��nm :The fat E hX1=31 i < 1 is an immediate onsequene of a lemma proved on page 382of [21℄. In our ontext, this lemma states that there exists a onstant 58 > 0 suh thatP [S(k) 6= 0; k = 1; 2; : : : ; n℄ � 58n�1=2 for all n > 0.De�nition 1.7.2. Let v(k), k � 0, denote the (k + 1)st visit of S to the origin. Weintrodue a random set T0f (�; �) and an event Em+1when bak reog:T0f (�; �) := �t 2 N �� �d[�2nm ; 2nm℄ 4 f(�t(�)) 4 �d[�9 � 2nm ; 9 � 2nm℄	 ; (1.7.7)Em+1when bak reog;f := � For more than 1=4 of the points k 2 [0; 22�nm+1[ holdsv(k2�nm+1) 2 T0f (�; �) � : (1.7.8)Lemma 1.7.2. If the event Emreonst;f holds, then Tf (�) � T0f (�; �)\[0; 212�nm+1�2�212�nm [.Proof. We know �d[�2nm; 2nm℄ 4 f(�) by Emreonst;f . Let t 2 T0f (�; �), t < 212�nm+1 �2 � 212�nm . Then we also have �d[�2nm ; 2nm℄ 4 f(�t�). Hene t 2 Tf (�); to this end reallDe�nition (1.3.12) of the random set Tf (�). This implies the lemma.Lemma 1.7.3. Assume that the events Em+1no error;Tf \ Em+1enough bak \ Em+1when bak reog;f andTf (�) � T0f (�; �) \ [0; 212�nm+1 � 2 � 212�nm [ hold. Then Em+1stop;Tf holds, too.Proof. Using Em+1enough bak, we knowv(k2�nm+1) 2 [0; 212�nm+1=8℄ � [0; 212�nm+1 � 2 � 212�nm [ (1.7.9)for all k 2 [0; 22�nm+1 [. Sine the event Em+1when bak reog;f holds, we obtain jTf (�)j �jT0f (�; �) \ [0; 212�nm+1 � 2 � 212�nm [j � 22�nm+1=4. By De�nition (1.3.13) of the stoppingtimes Tf , this yields Tf;k(�) < 212�nm+1 for all k < (22�nm+1=4)=(2�22nm+1) = 22(��1)nm+1=8.The event Em+1no error;Tf holds, and 22(��1)nm+1=8 � 2�nm+1 ; reall that � and nm+1 � n0 are



66 Chapter 1. Reonstruting a Random Senery : : :large (see Setion 1.2.1). Hene we obtain jS(Tf;k(�))j � 2nm+1 for all k 2 [0; 2�nm+1[;reall (1.7.1). Using De�nition (1.3.13) again, we see that Tf;j(�) + 2 � 22nm+1 � Tf;k(�)is automatially ful�lled for j < k whenever Tf;k(�) < 212�nm+1 , whih is the ase at leastfor k 2 [0; 2�nm+1 [. Summarizing, we have proven that the event Em+1stop;Tf holds; reall itsde�nition (1.3.14).Lemma 1.7.4. P ��Em+1when bak reog;f� \ �� 2 �mreonst;f	 � � 0:922�nm+1 .Proof. We de�ne Bernoulli random variables Yk, k � 0, by Yk := 1 if v(k2�nm+1) 2T0f (�; �), and Yk := 0 else. Note that v ((k + 1)2�nm+1) � v(k2�nm+1) � 2�nm+1 > 2 �212�nm . Also note that Em+1when bak reog;f = n2�2�nm+1P22�nm+1�1k=0 Yk � 1=4o. Beause ofthe strong Markov property of the random walk (S(k))k�0 we have that onditioned under� the variables (Yk)k�0 are i.i.d.; reall that f(�) depends at most on �d[0; 2 � 212�nm [. Iffurthermore � 2 �mreonst;f holds, then E[Yk j �℄ � 1=2. Hene we obtain for these �, usingthe exponential Chebyshev inequality for the binomial variableP22�nm+1�1k=0 Yk:P ��Em+1when bak reog;f� �� �� = P 242�2�nm+1 22�nm+1�1Xk=0 Yk � 14 ������ �35 (1.7.10)� E �e1=4�Y1 �� ��22�nm+1 � �e1=4 + e�3=42 �22�nm+1 � 0:922�nm+1 :This yields the laim of the lemma:P ��Em+1when bak reog;f� \ �� 2 �mreonst;f	 � (1.7.11)� P ��Em+1when bak reog;f� �� � 2 �mreonst;f� � 0:922�nm+1 :Lemma 1.7.5. P h(Em+1no error;Tf ) \ Emreonst;fi � 13e�nm+1 .Proof. Let �i denote the (i + 1)st time when the random walk S visits a point ofZn[�2nm+1 + 2l212�nm ; 2nm+1 � 2l212�nm ℄. We setEm+1wrong;i := �9w 2 C2�2nm : w 4 �d[�9 � 2nm; 9 � 2nm ℄ and w 4 f(��i(�))	 : (1.7.12)If the event Em+1wrong;i ours, then our proedure might fail to estimate orretly the loationof the random walk: we might be misled to think that at time �i+ 2 � 212�nm we are loseto the origin while we are not.We laim that the following holds:(Em+1no error;Tf ) \ Emreonst;f � 212�nm+1�1[i=0 Em+1wrong;i: (1.7.13)Indeed: If (Em+1no error;Tf ) holds, then jS(Tf;k(�))j > 2nm+1 for some k with Tf;k < 212�nm+1(see (1.7.1)); thus jS(Tf;k(�) � 2 � 212�nm)j > 2nm+1 � 2l212�nm , sine S annot travelfaster than speed l. This means Tf;k(�) � 2 � 212�nm = �i for some i < 212�nm+1 . Using



1.7. How to �nd bak: Corretness of the stopping times Tf 67De�nition 1.3.3 of Tf;k(�), this implies �i 2 Tf (�); hene there is w 2 C2�2nm suh thatw 4 f(�) and w 4 f(��i(�)). Assuming that the event Emreonst;f holds, too, this impliesw 4 f(�) 4 �d[�9�2nm ; 9�2nm℄; see (1.3.15). This yields that Em+1wrong;i holds; reall (1.7.12).Summarizing, we have shown that (1.7.13) holds.For all i, f(��i(�)) depends only on �d[�i; �i+2�212�nm[, and S does not visit [�9�2nm; 9�2nm℄ in this time interval [�i; �i + 2 � 212�nm [, sine the distane between [�9 � 2nm ; 9 � 2nm℄and Zn[�2nm+1+2l212�nm ; 2nm+1�2l212�nm ℄ is larger than 2l212�nm , and sine the randomwalk annot travel faster than l steps per time unit.Thus by the strong Markov property and by independene of S and �, we get: �d[�i; �i+212�nm ℄ is independent of �d[�9 �2nm; 9 �2nm℄; therefore f(��i(�)) is independent of �d[�9 �2nm; 9 � 2nm℄, too.The probability that a random word of length 2 � 2nm whih has i.i.d. letters withuniform distribution in C is equal to a word whih is independent of it is equal to jCj�2�2nm .There are at most 37�2nm words of a �xed length in �d[�9�2nm ; 9�2nm ℄ and also in f(��k(�)),ounting all reversed words, too. Thus there are at most 37222nm pairs of suh words. Itfollows that P �Em+1wrong;i� � 37222nm jCj�2�2nm : (1.7.14)Hene we get the laim of the lemma, using (1.7.13):P h(Em+1no error;Tf ) \ Emreonst;fi � 212�nm+1�1Xi=0 P �Em+1wrong;i�� 212�nm+1 � 37222nm jCj�2�2nm � 13e�nm+1: (1.7.15)For the last inequality, reall that nm � n0 is large enough, and note that jCj�2�2nm is theleading term of the last but one expression; also reall that nm+1 = 2bpnm is of a muhsmaller order than 2nm.Proof of Theorem 1.3.5. By Lemmas 1.7.2 and 1.7.3, we know Em+1no error;Tf \Em+1enough bak \ Em+1when bak reog;f \ Emreonst;f � Em+1stop;Tf . Using some Boolean algebra, thisimplies(Em+1stop;Tf ) \ Emreonst;f \ �� 2 �mreonst;f	 (1.7.16)� �Em+1enough bak� [ �(Em+1no error;Tf ) \ Emreonst;f� [ ��Em+1when bak reog;f� \ �� 2 �mreonst;f	� :Consequently, using De�nition (1.7.3) of �mreonst;f and Lemmas 1.7.1, 1.7.4, and 1.7.5:P �(Em+1stop;Tf ) \ Emreonst;f \�P �Emreonst;f j �� � 12�� (1.7.17)� P ��Em+1enough bak��+ P h(Em+1no error;Tf ) \ Emreonst;fi+ P ��Em+1when bak reog;f� \ �� 2 �mreonst;f	�� 352��nm+1 + 13e�nm+1 + 0:922�nm+1 � e�nm+1;reall that � and nm+1 � n0 are large (see Setion 1.2.1). This proves Theorem 1.3.5.



68 Chapter 1. Reonstruting a Random Senery : : :1.8 Getting started: The �rst stopping timesIn this setion, we prove Theorem 1.3.4.1.8.1 The stopping times T 0We start with the de�nition of a sequene T 0 = (T 0k )k�0 of G-adapted stopping times withvalues in [0; 212�n0℄. Roughly speaking, these times searh for long bloks of 1's in theobservation �. Here is intuitive idea behind this onstrution: Sine we onditioned on alarge blok of 1's to our in the true senery � lose to the origin, observing a long blokof 1's at a later time indiates with high probability that the random walk has returnedlose to the origin. This is true only up to a ertain time horizon, sine long bloks of 1'sin the true senery will our far from the origin, as well.De�nition 1.8.1. Let the random set T0(�) be de�ned as follows:T0(�) := �t 2 [0; 212�n0 � n70[ �� �d [t; t + n70℄ is onstant 1	 : (1.8.1)We arrange the elements of T0(�) in inreasing order: t0(0) < : : : < t0(jT0(�)j � 1). Weset T 0k (�) := � t0(2 � 22n0k) + n70 if 2 � 22n0k < jT0(�)j,212�n0 otherwise. (1.8.2)Reall De�nition (1.3.14):E0stop;T 0 = 2�n0\k=0 �T 0k (�) < 212�n0 ; jS(T 0k (�))j � 2n0; T 0j (�) + 2 � 22n0 � T 0k (�) for j < k	 :(1.8.3)Theorem 1.8.1. For some positive onstants 36 and 37 holds ~P hE0stop;T 0i � 1�36e�37n0.We prepare the proof of Theorem 1.8.1 by some De�nitions and Lemmas. We useagain the abbreviation J1 = [�2ln200 ; 2ln200 ℄.De�nition 1.8.2 (Analogue of De�nition (1.7.2)). Let I � J1 be an integer interval.We de�ne~E0enough bak;I := fUp to time 212�n0=4, S visits the interval I at least 23�n0 times g :(1.8.4)Lemma 1.8.1. For some onstants 38 > 0 and 39 > 0, the following holds: If I � J1,jIj � l, is an integer interval, then~P [ ~E0enough bak;I ℄ � 1� 38e�39n0: (1.8.5)Proof. Let TI := infft j S(t) 2 Ig be the entrane time of S into I. We show �rst:For some positive onstants 40 and 41 (depending at most on the distribution � of S(1))we have: ~P �TI � 212�n0=8� � 40e�41n0 : (1.8.6)



1.8. Getting started: The �rst stopping times 69If 0 2 I, this is trivial, sine S starts in 0. Otherwise I ontains only positive numbers, or itontains only negative numbers; without loss of generality we assume the �rst possibility.Let z = min I 2℄0; 2ln200 ℄. Consider the interval J :=℄�2n0 ; z[ � ℄�2n0 ; 2n0[, and onsiderthe exit time H := infft j S(t) =2 Jg of J . Note that H is a.s. �nite.On the one hand, we know ~P [H � t℄ � 42e�432�2n0 t (1.8.7)for some onstants 42; 43 > 0 depending at most on the variane of S(1), sine in everytime interval of size 22n0 the random walk has a positive probability to exit J , boundedaway from 0. In partiular, for t = 212�n0=8 the probability in (1.8.7) is superexponentiallysmall in n0.On the other hand, sine S is a martingale and sine S has jumps sizes bounded by l,we get ~P [S(H) > 0℄ � 1� (z + l)2�n0. Furthermore, using again that S has jumps sizesbounded by l, we know the following: If S(H) > 0, then S(H) 2 I and TI = H, sine z isthe leftmost point in I and jIj � l; the random walk annot ross I without touhing it.Altogether, we have the following upper bound for the left hand side in (1.8.6):~P [H � 212�n0=8 or S(H) < 0℄ � 40e�41n0: (1.8.8)for some positive onstants 40 and 41.Provided the random walk visits a point x 2 I, the probability to visit this point againat least 23�nm times in the subsequent 212�nm=8 time steps is at least 1� 282��n0. Thisfollows from Lemma 1.7.1, using the strong Markov property of the random walk; reallthat the law of S with respet to P and with respet to ~P oinide. Combining this with(1.8.6) yields laim (1.8.5) of Lemma 1.8.1.We remark: Lemma 1.8.1 holds not only for deterministi intervals I, but also forrandom ones, provided that I and S are independent. We use this below for the followingspei� hoie of I, whih depends on the senery �, but not on S:~P -a.s. there is a (random) integer interval J0 � J1 = [�2ln200 ; 2ln200 ℄ with jJ0j � n40suh that �dJ0 is onstant 1; reall De�nition 1.3.1. Just for de�niteness we take therightmost suh J0. LetI = I(�) := �z 2 J0 �� dist(z;Z n J0) > n40=4	 ; (1.8.9)then I is ~P -a.s. well de�ned, and it is an integer interval ontaining jIj � n40=2 � l points.De�nition 1.8.3 (Modi�ation of De�nition 1.7.2). Let w(k), k � 0, denote the(k + 1)st visit to the (random) set I(�) by the random walk S. We introdue a randomset T00 and an event ~E0when bak reog:T00 := �t 2 N �� S(t) 2 I(�) and jS(j)� S(t)j � n40=4 for 0 � j � t � n70	 ; (1.8.10)~E0when bak reog := fFor more than 1=4 of the points k 2 [0; 22�n0 [ holds w(k2�n0) 2 T00 g :(1.8.11)Lemma 1.8.2 (Modi�ation of Lemma 1.7.4). ~P h� ~E0when bak reog�i � 0:922�n0 .



70 Chapter 1. Reonstruting a Random Senery : : :Proof. We observe as in (1.4.16) by the submartingale inequality:P [jS(j)j � n40=4 for 0 � j � n70℄ � 1�42n�80 E �S(n70)2� = 1� 16Var[S(1)℄n0 � 12 ; (1.8.12)sine n0 is large enough; see Subsetion 1.2.1. Let Yk denote the indiator funtion of theevent fw(k2�n0) 2 T00g; the Yk are ~P -a.s. well de�ned. As a onsequene of the strongMarkov property, the Yk, k 2 [0; 22�n0 [, are i.i.d. Bernoulli random variables; note thatthe stopping times w(k2�n0), k 2 N , have at least the spaing 2�n0 > n70. Furthermore~P [Yk = 1℄ � 1=2, sine this probability equals the left hand side in (1.8.12). The laim ofthe Lemma now follows by the same large deviation argument as in (1.7.10).Lemma 1.8.3 (Analogue of Lemma 1.7.2). The inlusion T0 � T00 \ [0; 212�n0 � n70[holds ~P -almost surely.Proof. Assume that the event BigBlok holds; this ours ~P -almost surely. Then I(�)is well de�ned. Let t 2 T00, t < 212�n0 � n70. Then S(t) 2 I(�), and during the subsequentn70 steps, the random walk S annot leave the interval J0, sine it does not travel fartherthan n40=4 (reall de�nition (1.8.10)), and sine Zn J0 is more distant than this from I(�)(reall the de�nition of I(�)). Sine �dJ0 is onstant 1 by de�nition (1.3.4) of the eventBigBlok, this implies that Sd[t; t + n70℄ is onstant 1; i.e. t 2 T0.Reall De�nition (1.7.1):E0no error;T 0 = f8k 2 N : If T 0k (�) < 212�n0 , then jS(T 0k (�))j � 2n0g: (1.8.13)Lemma 1.8.4 (Modi�ation of Lemma 1.7.3). Assume that the eventsE0no error;T 0 \ ~E0enough bak;I(�) \ ~E0when bak reog and T0(�) � T00 \ [0; 212�n0 � n70[ hold. ThenE0stop;T 0 holds, too.Proof. The proof is almost the same as for Lemma 1.7.3. Note that the smalldi�erenes between the de�nitions of ~E0enough bak;I(�) and Em+1enough bak are not essential forthe validity of the proof.De�nition 1.8.4. We de�ne the event of seneries�0no bloks := �� 2 CZ����For every (integer) interval J � [�2l212�n0 ; 2l212�n0 ℄nJ1with jJ j = n20 holds: �dJ is not onstant 1. � (1.8.14)Lemma 1.8.5. For some positive onstants 44; 45 holds ~P [� 2 �0no bloks℄ � 1�44e�45n0.Proof. For every �xed interval J � [�2 � l212�n0 ; 2 � l212�n0 ℄ nJ1 with jJ j = n20 we have~P [�dJ is onstant 1℄ = jCj�n20; (1.8.15)whih is superexponentially small in n0. Furthermore, there are less than 4l212�n0 suhintervals. Thus ~P [� =2 �0no bloks℄ � 4l212�n0 jCj�n20 , whih is still superexponentially smallin n0. This implies the lemma. Note that we may hoose 44; 45 independent � for n0large enough, even though 4l212�n0 jCj�n20 does depend on � (see Subsetion 1.2.1.Lemma 1.8.6. For some onstants 46; 47 > 0 holds~P [(E0no error;T 0)℄ � 46e�47n0 : (1.8.16)



1.8. Getting started: The �rst stopping times 71Proof. Let X be de�ned byX := fx 2 Zjx+ [�ln70; ln70℄ � [�2l212�n0 ; 2l212�n0 ℄ n J1g: (1.8.17)As a onsequene of Lemma 1.4.2 (with the parameters k = n70 and � = n20) we know forevery � 2 CN suh that �d[�ln70; ln70℄ ontains no blok of 1's of length n20:P�[� Æ Sd[0; n70℄ is onstant 1℄ � e�7n30 : (1.8.18)Let t 2 N and let � 2 �0no bloks. Using the Markov property of the random walk, (1.8.18)implies the following:P�[� Æ Sd(t+ [0; n70℄) is onstant 1 j S(t) 2 X ℄ � e�7n30: (1.8.19)If t < 212�n0 and jS(t)j > 2n0 holds, then we know S(t) 2 X ; note that J1 = [�2ln200 ; 2ln200 ℄has a distane larger than ln70 from Z n [�2n0 ; 2n0℄, and reall that S annot travel fasterthan with speed l, and that n0 is large by Subsetion 1.2.1.Thus (1.8.19) impliesP�[(E0no error;T 0)℄ (1.8.20)� P�[There is t < 212�n0 suh that jS(t)j > 2n0 and � Æ Sd(t+ [0; n70℄) is onstant 1℄� 212�n0e�7n30 � e�n0 ;for the last inequality reall that n0 was hosen large enough, depending on � (see Sub-setion 1.2.1). Combining this with Lemma 1.8.5 yields for some positive onstants 46,47:~P [(E0no error;T 0)℄ � ~P [� =2 �0no bloks℄+ Zf�2�0no bloksg P�[(E0no error;T 0)℄ d ~P � 46e�47n0: (1.8.21)Proof of Theorem 1.8.1. >From Lemmas 1.8.3 and 1.8.4 we know that~P [(E0stop;T 0)℄ � ~P [(E0no error;T 0)℄ + ~P [( ~E0enough bak;I(�))℄ + ~P [( ~E0when bak reog)℄: (1.8.22)Hene the laim of Theorem 1.8.1 is a onsequene of Lemmas 1.8.1, 1.8.2, and 1.8.6.1.8.2 The stopping times T 1Unfortunately, the onstruted stopping times T 0 are not good enough as argumentsfor the �rst reonstrution Algorithm \Algn": We annot onstrut more than roughlyexp(onstn40) reliable stopping times based on the way we build the T 0 stopping times;in fat we use muh less than this number. Otherwise we annot guarantee that theyreally stop the random walk with high probability lose to the origin. However, thenumber exp(onst n40) is muh too small to ollet a suÆiently large puzzle for reon-struting at least the modi�ed piee �dJ1 in the senery using our reonstrution al-gorithm; to illustrate this fat, we remark that we have only roughly an upper boundd ~P=dP � exp(onstn200 ); see Lemma 1.4.3. A modi�ation of the parameters does not



72 Chapter 1. Reonstruting a Random Senery : : :solve this problem; we need an essentially improved series of stopping times T 1 to get thereonstrution algorithm started.Our onstrution of T 1 is partially parallel to the onstrution of the partial reon-strution algorithmAlgn, but it is also partially parallel to the onstrution of the stoppingtimes Tf and T 0: Roughly speaking, we ollet a set of typial signals (\a puzzle") atthe very beginning and another one at a andidate time. Instead of mathing the pieestogether, we just ompare the two puzzles: If the puzzles have a suÆiently high overlap,then they were generated with high probability at roughly the same loation.Fortunately, many onstrutions of the previous setions an be used again, up tosmall modi�ations: There are extra ompliations due to the presene of a modi�eddomain J1. We keep the presentation as lose as possible to the previous setions to showthe parallelism. Here is the formal de�nition of the \new" puzzles and of T 1:De�nition 1.8.5. We set, using the abbreviation Input := (T 0(�); �d[0; 2 � 212�n0 [) again:Puzzlen0III(�) := (1.8.23)�(w1; w2; w3) 2 Puzzlen0I (Input) ��9k 2 [0; 2�n0 [: w1w2w3 v �d(T 0k (�) + [0; 2n0=l℄)	 ;Puzzlen0IV(�) := fw2 2 C1n0 j 9w1; w3 2 C1n0 : (w1; w2; w3) 2 Puzzlen0III(�)g ; (1.8.24)T1(�) := �t 2 [0; 212�n1 � 2 � 212�n0 [ ���� jPuzzlen0IV(�)\Puzzlen0IV(�t�)j � 2n0=3and jPuzzlen0IV(�t�)j � 50 � 2n0 � : (1.8.25)Finally we de�ne another sequene T 1 = (T 1k )k�0 of G-adapted stopping times with valuesin [0; 212�n1 ℄: Let t1(0) < : : : < t1(jT1(�)j � 1) be the elements of T1(�) arranged ininreasing order. For k 2 N, we setT 1k (�) := � t1(2 � 22n1k) + 2 � 212�n0 if 2 � 22n1k < jT1(�)j,212�n1 otherwise. (1.8.26)Note that T 0(�) only depends on �d[0; 212�n0 [; thus Puzzlen0IV(�) only depends on�d[0; 2 � 212�n0 [, sine 2n0=l � 212�n0 .De�nition 1.8.6. Using the abbreviation J1 = [�2ln200 ; 2ln200 ℄ from De�nition 1.3.1 again,we de�ne the following random sets:CorPaths :=8><>:R 2 Z[0;1n0[ �������R is an admissible piee of path, for every admissible piee ofpath R0 : [0; 1n0[! Z with R0(0) = R(0) and R0(1n0 � 1) =R(1n0 � 1) holds � ÆR0 = � ÆR, and there is suh a path R0whih takes at least one value in J1. 9>=>; ; (1.8.27)Corrupted := f� ÆR 2 C1n0 jR 2 CorPathsg ; (1.8.28)CenterI := fw 2 C1n0 j w is a (left or right) ladder word of �d([�11 � 2n0; 11 � 2n0℄ n J1)g ;(1.8.29)CenterII := CenterI [ Corrupted; (1.8.30)CenterIII := �w 2 C1n0 j w is a right ladder word of�d([�2 � 2n0=2; 2 � 2n0=2℄ n [�2n0=2; 2n0=2℄) � : (1.8.31)



1.8. Getting started: The �rst stopping times 73Some of the de�nitions and lemmas below are only small modi�ations of previousde�nitions and lemmas, respetively. We underline the new piees to show the di�erenes.De�nition 1.8.7 (Modi�ation of De�nition 1.6.6). We de�ne:~Bn0unique �t := 8>><>>:For every i; j 2 f1; : : : ; l2g, every i-spaed intervalI � [�11 � 2n0; 11 � 2n0 ℄ n J1, and every j-spaed intervalJ � [�11 � 2n0; 11 � 2n0℄ n J1 with jIj = jJ j � 2n0 holds(�dI) 6= (�dJ)!, and if I 6= J , then (�dI)! 6= (�dJ)!. 9>>=>>; ;(1.8.32)Lemma 1.8.7 (Modi�ation of Lemma 1.6.18). There exists onstants 18; 19 > 0suh that the following holds: ~P h( ~Bn0unique �t)i � 18e�19n0: (1.8.33)Proof. The proof of Lemma 1.6.18 remains literally true when we replae P by ~P , butadditionally restrit I and J to be disjoint from J1, sine the distributions of �d(Z n J1)with respet to ~P and with respet to P oinide; see Lemma 1.3.2.Lemma 1.8.8. jCenterIj � 46 � 2n0 , jCorruptedj � n410 , and thus jCenterIIj � 50 � 2n0 . Ifthe event ~Bn0unique �t holds, then jCenterIIIj � 2n0=3.Proof. The �rst statement is obvious, sine there are at most 23 � 2n0 hoies for theleftmost point of a ladder interval in [�11 � 2n0 ; 11 � 2n0 ℄, and there is the binary hoie\left" or \right".We show jCorruptedj � n410 next: The number of pairs (R(0); R(1n0 � 1)) 2 Z2 withR 2 CorPaths is bounded by (jJ1j + 1n0l)2 � n410 ; reall that n0 was hosen to be large(see Subsetion 1.2.1). Furthermore, every suh pair gives rise to at most a single elementof Corrupted, sine di�erent paths R;R0 2 CorPaths with the same starting point andthe same end point generate the same word � Æ R = � Æ R0 by De�nition (1.8.27). Thisshows jCorruptedj � n410 � 4 � 2n0, sine n0 is large enough by Subsetion 1.2.1. Using thede�nition of CenterII, we obtain jCenterIIj � 50 � 2n0.Finally we show jCenterIIIj � 2n0=3. We observe that [�2�2n0=2; 2�2n0=2℄n[�2n0=2; 2n0=2℄ isdisjoint from J1. Assuming that ~Bn0unique �t holds, this implies that all right ladder intervalsI1; I2 � [�2 � 2n0=2; 2 � 2n0=2℄ n [�2n0=2; 2n0=2℄, with I1 6= I2 jI1j = jI2j = 1n0 � 2n0generate pairwise di�erent ladder words (�dI1)! 6= (�dI2)!. Sine there are at least2n0=2� 1n0 � 2n0=3 suh ladder intervals (n0 is large enough; see Subsetion 1.2.1), thereare as least as many ladder words w 2 CenterIII.Lemma 1.8.9. For every x 2 Z with jxj > 2 � 2n0 + 2l212�n0 and for every t 2 [0; 212�n1[holds:~P �S(t) = x, jPuzzlen0IV(�t�)j � 50 � 2n0, and jCenterII \ Puzzlen0IV(�t�)j � 2n0=3 �� expf�2n0=4g: (1.8.34)Proof. We setOutsidex;t := � Puzzlen0IV(�t�) if S(t) = x and jPuzzlen0IV(�t�)j � 50 � 2n0,? else. (1.8.35)



74 Chapter 1. Reonstruting a Random Senery : : :The random set Puzzlen0IV(�t�) only depends on �d[t; t + 2 � 212�n0 [, and the random walkannot travel a longer distane than 2l212�n0 during the time interval [t; t + 2 � 212�n0 [.Given S(t) = x and jxj > 2 � 2n0 + 2l212�n0 , the random walk S annot enter the interval[�2 �2n0; 2 �2n0℄ during the time interval [t; t+2 �212�n0[; thus Outsidex;t depends only on Sand �d(Zn[�2�2n0; 2�2n0℄). Hene, using Lemma 1.3.2 and J1 � [�2�2n0; 2�2n0℄, the randompiee of senery �d[�2 � 2n0; 2 � 2n0℄ and the random set Outsidex;t are independent withrespet to ~P . Let Ir denote the set of all right ladder intervals I � ([�2 � 2n0; 2 � 2n0℄ n J1)with jIj = 1n0. We de�ne Il similarly with \right ladder intervals" replaed by \leftladder intervals". We partition Ir into 1n0l! subsets, I 0r(1); : : : ; I 0r(1n0l!):I 0r(k) := fI 2 Ir j min I 2 k + 1n0l!Zg (1.8.36)Let k 2 [1; 1n0l!℄ be �xed. Note that the ardinality N := jI 0r(k)j ful�lls the bounds2n01n0l! � 4 � 2n01n0l! � jJ1j � 2 � N � 4 � 2n01n0l! : (1.8.37)Furthermore, the elements of I 0r(k) are pairwise disjoint; thus the family (�dI)I2I0r(k) isi.i.d. and independent of Outsidex;t (with respet to ~P ). For I 2 Ir, we set XrI := 1 for(�dI)! 2 Outsidex;t, and XrI := 0 otherwise. Similarly for J 2 Il, let X lJ denote theindiator funtion of the event f(�dJ) 2 Outsidex;tg. Then, onditioned on a given valueof Outsidex;t, the Bernoulli random variables XrI, I 2 I 0r(k), are i.i.d. with respet to~P [ � jOutsidex;t℄. Furthermore we have, using jOutsidex;tj � 50 � 2n0:~P [XrI = 1 j Outsidex;t℄ � jOutsidex;tjjCj�jIj � 50e(log 2�1 log jCj)n0 =: p: (1.8.38)We set Y rk :=PI2I0r(k)XrI . Consequently this random variable is stohastially dominatedby a Binomial(N; p){distributed random variable; note that Y rk is binomially distributedwith respet to the onditioned measure ~P [ � jOutsidex;t℄. A rough but simple largedeviation estimate suÆes for our purposes: Using the exponential Chebyshev inequality,we have for a > 0 and � := log(a=p) > 0:~P [Y rk � Na℄ � E[e�Y rk�Na℄ � (pe�(1�a) + (1� p)e��a)N = ((1 + a� p)paa�a)N (1.8.39)� (eapaa�a)N = expfNa(1� log(a=p))gIn partiular, we obtain for the hoie a = N�12n0=3=(41n0l!) � 2�2n0=3=16 (where wehave used (1.8.37)), using (1.8.38): � = log(a=p) � (1 log jCj � 53 log 2)n0 � log 800 �1(log jCj)n0=2 + 1; the last inequality holds by our hoie of 1 and n0 (see Subsetion1.2.1). Hene we obtain:~P "XI2IrXrI � 2n0=34 # � 1n0l!Xk=1 ~P [Y rk � Na℄ � 1n0l! expfNa(1� log(a=p))g� 1n0l! exp�� log jCj8l! 2n0=3� � 12 expf�2n0=4g: (1.8.40)The same argument works for left ladder intervals, too:~P "XJ2IlX lJ � 2n0=34 # � 12 expf�2n0=4g: (1.8.41)



1.8. Getting started: The �rst stopping times 75Combining (1.8.41), (1.8.40), and jCorruptedj � n410 � 2n0=3=2 (see Lemma 1.8.8), weobtain~P �jCenterI \ Outsidex;tj � 2n0=3� � ~P �jCenterII \ Outsidex;tj � 2n0=32 � (1.8.42)� ~P "XI2IrXrI � 2n0=34 #+ ~P "XJ2IlX lJ � 2n0=34 # � expf�2n0=4g:The laim (1.8.34) is an immediate onsequene of this bound.Due to the presene of the \modi�ed" part �dJ1, we de�ne the following modi�ationof Bn0reogn straight, whih is a little weaker than the original version:De�nition 1.8.8 (Modi�ation of De�nition 1.6.7).~Bn0reogn straight := (1.8.43)8><>:For every R 2 AdPaths(11 � 2n0; 1n0) with R(1n0 � 1) � R(0) =2 f(1n0 �1)l!; (1n0� 1)l g there is �R 2 AdPaths(12 � 2n0; 1n0) suh that R(0) = �R(0),R(1n0 � 1) = �R(1n0 � 1), and ( �R takes at least one value in J1, or � Æ R 6=� Æ �R). 9>=>; ;
~En0only ladder := 8>><>>:For all (w1; w2; w3) 2 Puzzlen0I (Input) and every admissiblepiee of path R : [0; 31n0[! [�11 � 2n0; 11 � 2n0 ℄ with � ÆR =w1w2w3 holds: w2 is a ladder word of �d[�11 � 2n0 ; 11 � 2n0℄,or w2 2 Corrupted. 9>>=>>; :(1.8.44)Lemma 1.8.10 (Modi�ation of Lemma 1.6.22). There exist positive onstants 25and 26 not depending on n0 suh that:~P h( ~Bn0reogn straight)i � 25e�26n0 : (1.8.45)Proof. The proof of Lemma 1.6.22 requires only a small modi�ation: Given R 2AdPaths(11 � 2n0 ; 1n0), there are two ases: Either some �R 2 AdPaths(12 � 2n0; 1n0) with�R(0) = R(0) and �R(1n0 � 1) = R(1n0 � 1) touhes J1 (\ase 1"), or no suh �R touhesJ1 (\ase 2").� In the �rst ase, the underlined new ondition in de�nition (1.8.43) of ~Bn0reogn straightis ertainly satis�ed.� In the seond ase, we may proeed further just as in the proof of Lemma 1.6.22,with P replaed by ~P : formula (1.6.84) remains true in this ase, sine neitherRdI(R) nor �RdI(R) touhes J1. Reall that �d(Z n J1) has the same distributionwith respet to P as with ~P .The rest of the proof of Lemma 1.6.22 still remains true when we replae P by ~P butremove all paths R from AdPaths(11 � 2n0; 1n0) and AdPaths(12 � 2n0; 1n0) that belong tothe �rst ase.Lemma 1.8.11 (Modi�ation of Lemma 1.6.9). We haveBn0all paths \ ~Bn0reogn straight � ~En0only ladder: (1.8.46)



76 Chapter 1. Reonstruting a Random Senery : : :Proof. We desribe the modi�ations required in the proof of Lemma 1.6.9: Assumethe event Bn0all paths \ ~Bn0reogn straight holds, and let w1w2w3 2 Puzzlen0I (Input), and R 2AdPaths(11 � 2n0; 31n0), � Æ R = w1w2w3 as in the proof of Lemma 1.6.9. Again, weprove by ontradition that ~En0only ladder holds: Assume that w2 is not a ladder word of�d[�11 � 2n0 ; 11 � 2n0℄ and w2 =2 Corrupted. We distinguish two ases: Either the middlepiee Rd[1n0; 21n0[ of R belongs to CorPaths when being time-shifted bak to the origin(\ase 1"), or it does not (\ase 2").� In ase 1, w2 = (� Æ Rd[1n0; 21n0[)! 2 Corrupted by De�nition (1.8.28), whihontradits our assumption.� In ase 2, using De�nition (1.8.27), there is an admissible piee of path R0 : [1n0;21n0[! Z with R0(1n0) = R(1n0) and R0(21n0 � 1) = R(21n0 � 1) suh thatw02 := (� Æ R0)! 6= (� Æ Rd[1n0; 21n0[)! (\ase 2.1"), or all admissible paths R0 :[1n0; 21n0[! Z with R0(1n0) = R(1n0) and R0(21n0 � 1) = R(21n0 � 1) do nottouh J1 and ful�ll � ÆR0 = � ÆRd[1n0; 21n0[ (\ase 2.2").{ In ase 2.1 we proeed just as in the proof of Lemma 1.6.9; this yields theontradition w1w2w3 =2 Puzzlen0I (Input).{ In ase 2.2, we use that Rd[1n0; 21n0[ is not a ladder path, sine w2 is nota ladder word of �d[�11 � 2n0; 11 � 2n0℄. Using De�nition (1.8.43), this ase isontraditory, too, sine ~Bn0reogn straight holds.Thus all ases lead to a ontradition; this proves the Lemma.Lemma 1.8.12. If ~En0only ladder \ E0stop;T 0 holds, then Puzzlen0IV(�) � CenterII.Proof. Assume that ~En0only ladder \ E0stop;T 0 holds, and let w2 2 Puzzlen0IV(�). Takew1; w3 2 C1n0 with (w1; w2; w3) 2 Puzzlen0III(�) by (1.8.24). Then by (1.8.23), (w1; w2; w3) 2Puzzlen0I (Input), and w1w2w3 ours in the observations � at most 2n0=l time steps aftersome stopping time T 0k (�), 0 � k < 2�n0. Sine E0stop;T 0 holds, we have jS(T 0k )j � 2n0;thus w1w2w3 is read in � while the random walk follows some admissible piee of path Rwith values in [�2 � 2n0; 2 � 2n0℄ � [�11 � 2n0 ; 11 � 2n0℄. Sine ~En0only ladder holds, this implies:w2 is a ladder word of �d[�11 � 2n0; 11 � 2n0℄, or w2 2 Corrupted. In the next argument,we use the following fat: If � is a ladder path and �� is an admissible piee of path withthe same length, starting point, and end point as �, then �� = �. Using this fat and theDe�nitions (1.8.27) and (1.8.28), we see: if w2 is a ladder word of �d[�11 �2n0; 11 �2n0℄, butnot of �d([�11 �2n0; 11 �2n0℄nJ1), then w2 2 Corrupted, too. Thus we obtain w2 2 CenterII.This proves the lemma.Lemma 1.8.13 (Modi�ation of Lemma 1.6.19). There exist onstants 20; 21 > 0suh that: ~P �(Bn0all paths) \ E0stop;T 0� � 21e�20n0 : (1.8.47)Proof. Again, the proof of Lemma 1.6.19 remains literally true when we replae Pby ~P and � by T 0; in partiular note that the event Bn0all paths depends only on the randomwalk S, but not on the senery �, and the strong Markov property for S still holds withrespet to ~P .Reall De�nition (1.7.1):E1no error;T 1 = f8k 2 N : If T 1k (�) < 212�n1 , then jS(T 1k (�))j � 2n1g:



1.8. Getting started: The �rst stopping times 77Lemma 1.8.14. For some onstants 48; 49 > 0 holds ~P hE1no error;T 1i � 1� 48e�49n0 .Proof. Using De�nition 1.8.5 of T 1 and Lemmas 1.8.11, 1.8.12, and 1.8.9, we obtain(see also the explanations below):~P �E1no error;T 1� (1.8.48)� ~P �For all t 2 [0; 212�n1 [ holds: if jPuzzlen0IV(�) \ Puzzlen0IV(�t�)j � 2n0=3 andjPuzzlen0IV(�t�)j � 50 � 2n0, then jS(t+ 212�n0)j � 2n1 �� ~P [Puzzlen0IV(�) � CenterII℄� 212�n1�1Xt=0 ~P 24jCenterII \ Puzzlen0IV(�t�)j � 2n0=3,jPuzzlen0IV(�t�)j � 50 � 2n0 , and2 �2n0+2l212�n0 < jS(t)j � l212�n135� ~P [Bn0all paths \ ~Bn0reogn straight \ E0stop;T 0℄� 212�n1 � 2l212�n1 � expf�2n0=4g� ~P [E0stop;T 0℄� ~P [(Bn0all paths) \ E0stop;T 0 ℄� ~P [( ~Bn0reogn straight)℄� 2l expf24(log 2)�n1 � 2n0=4g� 1� 48e�49n0for some onstants 48; 49 > 0. For the seond inequality in (1.8.48), note that the randomwalk S annot travel farther than l212�n1 within time 212�n1 ; thus jS(t + 212�n0)j � 2n1or 2 � 2n0 + 2l212�n0 < jS(t)j � l212�n1 holds for all t 2 [0; 212�n1 [. In the last step of(1.8.48) we used Theorem 1.8.1, Lemmas 1.8.10 and 1.8.13, and the fat n1 = 2bpn0(reall De�nition 1.3.2); espeially expf24(log 2)�n1 � 2n0=4g is superexponentially smallin n0. The onstants 48 and 49 need not depend on �, sine n0 was hosen large and�-dependent (see Subsetion 1.2.1).De�nition 1.8.9. We de�ne the eventBn0all paths II := � 8R 2 AdPaths(3 � 2n0=2; 31n0) 9k 2 [0; 2�n0[ 9j 2 [0; 2n0=l℄ :TimeShiftT 0k (�)+j(R) � S � : (1.8.49)Lemma 1.8.15 (Yet another modi�ation of Lemma 1.6.19). There exist onstants50; 51 > 0 not depending on n0 suh that:~P �(Bn0all paths II) \ E0stop;T 0� � 50e�51n0: (1.8.50)Proof. The proof is almost the same as the proof of Lemma 1.6.19; we only explainthe di�erenes. This time, some of the parameters in the proof of Lemma 1.6.19 mustbe hanged: We replae (1.6.70) by Bn;kR := n9j 2 [0; 2n0=l℄ : TimeShift�(k)+j(R)o andAdPath(12 �2n; 31n) by AdPaths(3 �2n0=2; 31n0); then the estimate (1.6.75) is replaed byjAdPaths(3 � 2n0=2; 31n0)j � 7 � 2n0=2jMj31n0. Then (1.6.78) hanges toinfjxj�3�2n0=2 ~P hS(�(k) + j) = x for some j 2 [0; 2n0=l℄ ��� Cn0;kR i � 522�n0=2 (1.8.51)for some onstant 52 > 0. Hene the right hand side of (1.6.79) gets replaed by thebound 522�n0=2�31n0min . We end up with the following modi�ed version of (1.6.80):~P �E0stop;T 0 nBn0all paths II� (1.8.52)� 7 exp�n0� log 22 + 31 log jMj�� 52en0(� log 2+31 log �min�(log 2)=2)� ;whih still onverges superexponentially fast to 0 as n0 !1. This proves the Lemma.



78 Chapter 1. Reonstruting a Random Senery : : :De�nition 1.8.10 (Modi�ation of De�nition 1.6.2).~Bn0signals := 8>>><>>>:For every right ladder path � 2 ([�2l22n0 ; 2l22n0℄ n J1)[0;1n0=2[and for every admissible piee of path �0 2AdPath(2l22n0 ; 1n0=2):If � Æ � = � Æ �0, then �(0) � �0(0) and �(1n0=2 � 1) ��0(1n0=2� 1).
9>>>=>>>; ;(1.8.53)~En0signals II := 8<:For every ladder path � 2 ([�2l22n0 ; 2l22n0℄ n J1)[0;1n0[ andfor every admissible piee of path �0 2 AdPath(2l22n0 ; 1n0):If � Æ � = � Æ �0, then �(1n0=2) = �0(1n0=2). 9=; : (1.8.54)Note that �0 in the last two de�nitions may well have some of its values in J1.Lemma 1.8.16 (Modi�ation of Lemma 1.6.23). There exist onstants 28 > 0,29 > 0 not depending on n0 suh that:~P h( ~Bn0signals)i � 29e�28n0: (1.8.55)Proof. The proof of Lemma 1.6.23 remains literally true when we onsider paths� 2 ([�2l22n0 ; 2l22n0℄ n J1)[0;1n0[ (1.8.56)only, but replae P by ~P . Note that in the indution step in proof of Lemma 1.6.23� Æ �(j) is independent of the family (� Æ �dI 0; � Æ �0dI 0) with respet to ~P , too, even if �0touhes the \orrupted" domain J1; see (1.6.90) and a few lines before this formula. Thisis true beause � does not touh J1, and �dJ1 is independent of �d(Z n J1) by Lemma1.3.2. Thus formula (1.6.90) remains true when P is replaed by ~P .Lemma 1.8.17 (Modi�ation of Lemma 1.6.2). ~Bn0signals � ~En0signals II.Proof. When we onsider paths � only whih do not to touh J1, the proof of Lemma1.6.2 remains literally true in this modi�ed ase, too.Lemma 1.8.18 (Modi�ation of Lemma 1.6.3).Assume that the event Bn0all paths \ ~Bn0signals \E0stop;T 0 holds. Let I � [�6 � 2n0; 6 � 2n0℄ n J1 bea right ladder interval with jIj = 31n0, and let w1; w2; w3 2 C1n0 with (�dI)! = w1w2w3.Then (w1; w2; w3) 2 Puzzlen0I (Input).Proof. The proof of Lemma 1.6.3 remains literally true when we onsider only inter-vals I that are disjoint from J1, n = n0, and replae Bn0signals and En0signals II by their modi�edversions; note that the ladder path R in the proof of Lemma 1.6.3 does not touh J1, butwe need not assume this for R0.Lemma 1.8.19. If the event Bn0all paths\Bn0all paths II\ ~Bn0signals\E0stop;T 0 holds, then CenterIII �Puzzlen0IV(�).Proof. Assume that Bn0all paths \ Bn0all paths II \ ~Bn0signals \ E0stop;T 0 holds, and let w2 2CenterIII. Then w2 = (�dI)! for some right ladder interval I � [�2 � 2n0=2; 2 � 2n0=2℄ n[�2n0=2; 2n0=2℄, jIj = 1n0. We take the larger right ladder interval I 0 � I, jI 0j = 31n0,with 1n0 extra points to the left of I and another 1n0 extra points to the right of I; then



1.8. Getting started: The �rst stopping times 79I 0 � [�3 �2n0=2; 3 �2n0=2℄nJ1 � [�6 �2n0; 6 �2n0℄nJ1; note that dist(J1;Zn [�2n0=2; 2n0=2℄) >1n0l and dist([�2 � 2n0=2; 2 � 2n0=2℄;Z n [�3 � 2n0=2; 3 � 2n0=2℄) > 1n0l; reall that n0 ishosen large enough (Subsetion 1.2.1). Then (�dI 0)! = w1w2w3 for some w1; w3 2 C1n0,and Lemma 1.8.18 implies (w1; w2; w3) 2 Puzzlen0I (Input). Let R denote the (unique)right ladder path R : [0; 31[! I 0. Sine Bn0all paths II holds, the random walk S followsR (time-shifted) at most 2n0=l time steps after some stopping time T 0k (�), k 2 [0; 2�n0[.Then � Æ R = w1w2w3; thus (w1; w2; w3) 2 Puzzlen0III(�) by De�nition (1.8.23); henew2 2 Puzzlen0IV(�) by De�nition (1.8.24). This proves the lemma.De�nition 1.8.11. We setE1enter := �jCenterIII \ Puzzlen0IV(�)j � 2n0=3 and jPuzzlen0IV(�)j � 50 � 2n0 	 ; (1.8.57)�1enter := �� 2 CZ����P [E1enter j �℄ � 12� : (1.8.58)The sets E1enter and �1enter play an analogous role for the stopping times T 1 as Emreonst;fand �mreonst;f play for the \higher level" stopping times in Setion 1.7.Lemma 1.8.20. For some positive onstants 53 and 54 holds ~P [� 2 �1enter℄ � 1 �53e�54n0 .Proof. If the events Bn0all paths, Bn0all paths II, ~Bn0signals, E0stop;T 0, ~En0only ladder, and ~Bn0unique �thold, then we have jCenterIII \ Puzzlen0IV(�)j = jCenterIIIj � 2n0=3 and jPuzzlen0IV(�)j �jCenterIIj � 50 � 2n0 by Lemmas 1.8.12, 1.8.19, and 1.8.8. By Lemma 1.8.11, we anreplae ~En0only ladder in the above list of events by ~Bn0reogn straight. Thus we have~P �E1enter� � ~P hBn0all paths \ Bn0all paths II \ ~Bn0signals \ E0stop;T 0 \ ~Bn0reogn straight \ ~Bn0unique �ti(1.8.59)� 1� 55e�54n0for some positive onstants 55 and 54 by Theorem 1.8.1 and Lemmas 1.8.13, 1.8.15,1.8.10, 1.8.16, and 1.8.7.Hene we obtain the following:12 ~P [� =2 �1enter℄ = 12 ~P �P [(E1enter) j �℄ > 12� � ~P [(E1enter)℄ � 55e�54n0; (1.8.60)reall that ~P [�j�℄ and P [�j�℄ oinide.De�nition 1.8.12 (Yet another modi�ation of De�nition 1.7.2).Let v(k) denote again the (k + 1)st visit of S to the origin. We de�neT10(�; �) := �t 2 N ���� jCenterIII \ Puzzlen0IV(�t�)j � 2n0=3and jPuzzlen0IV(�t�)j � 50 � 2n0 � ; (1.8.61)E1when bak reog := � For more than 1=4 of the points k 2 [0; 22�n1 [holds v(k2�n1) 2 T10(�; �) � : (1.8.62)Lemma 1.8.21 (Yet another analogue to Lemma 1.7.2). If the eventBn0all paths\Bn0all paths II\ ~Bn0signals\E0stop;T 0 holds, then T1(�) � T10(�; �)\ [0; 212�n1�2 �212�n0 [.



80 Chapter 1. Reonstruting a Random Senery : : :Proof. Assuming that the event Bn0all paths \Bn0all paths II \ ~Bn0signals \E0stop holds, we knowCenterIII � Puzzlen0IV(�) by Lemma 1.8.19; thus jPuzzlen0IV(�)\Puzzlen0IV(�t�)j � jCenterIII\Puzzlen0IV(�t�)j for all t. This implies the laim T1(�) � T10(�; �)\ [0; 212�n1 � 2 � 212�n0 [ ofthe lemma; reall De�nition (1.8.25) of T1(�).Lemma 1.8.22 (Yet another modi�ation of Lemma 1.7.3). Assume that the eventsE1no error;T 1 \E1enough bak \E1when bak reog and T1(�) � T10(�; �)\ [0; 212�n1 � 2 � 212�n0 [ hold.Then E1stop;T 1 holds, too.Proof. Replaing T(0)f by T1(0) and Tf by T 1, the proof of Lemma 1.7.3 remains literallytrue.Lemma 1.8.23 (Yet another modi�ation of Lemma 1.7.4). We have the bound~P ��E1when bak reog� \ �� 2 �1enter	 � � 0:922�n1 : (1.8.63)Proof. The proof of Lemma 1.7.4 remains literally true when one replaes Em+1when bak reog;fby E1when bak reog, �mreonst;f by �1enter, m+ 1 by 1, and P by ~P ; reall P [�j�℄ = ~P [�j�℄.Proof of Theorem 1.3.4. By Lemmas 1.8.21 and 1.8.22 we knowE1no error;T 1 \ E1enough bak \ E1when bak reog \ Bn0all paths \ Bn0all paths II \ ~Bn0signals \ E0stop;T 0� E1stop;T 1: (1.8.64)Sine E1enough bak depends only on S but not on �, we have~P [(E1enough bak)℄ = P [(E1enough bak)℄: (1.8.65)Thus, using Lemmas 1.8.14, 1.7.1, 1.8.23, 1.8.20, 1.8.13, 1.8.15, 1.8.16, and Theorem 1.8.1,we know~P [(E1stop;T 1)℄ (1.8.66)� ~P [(E1no error;T 1)℄ + ~P [(E1enough bak)℄ + ~P ��E1when bak reog� \ �� 2 �1enter	�+ ~P �� =2 �1enter�+ ~P [(Bn0all paths) \ E0stop;T 0℄ + ~P [(Bn0all paths II) \ E0stop;T 0℄+ ~P [( ~Bn0signals)℄ + ~P [(E0stop)℄� 48e�49n0 + 352��n1 + 0:922�n1 + 53e�54n0 + 21e�20n0+ 50e�51n0 + 29e�28n0 + 36e�37n0� e�4n0 ;sine n0 is hosen large enough (see Subsetion 1.2.1)Referenes[1℄ Itai Benjamini and Harry Kesten. Distinguishing seneries by observing the seneryalong a random walk path. J. Anal. Math., 69:97{135, 1996.
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Chapter 2Reonstruting a random seneryobserved with random errors along arandom walk pathProbab. Theory Related Fields, 125(4):539{577, 2003.By Heinrih Matzinger, and Silke Rolles,We show that an i.i.d. uniformly olored senery on Z observed along a random walk pathwith bounded jumps an still be reonstruted if there are some errors in the observa-tions. We assume the random walk is reurrent and an reah every point with positiveprobability. At time k, the random walker observes the olor at her present loation withprobability 1� Æ and an error Yk with probability Æ. The errors Yk, k � 0, are assumed tobe stationary and ergodi and independent of senery and random walk. If the numberof olors is stritly larger than the number of possible jumps for the random walk and Æis suÆiently small, then almost all seneries an be almost surely reonstruted up totranslations and reetions. 12.1 Introdution and resultWe all a oloring of the integers Z with olors from the set C := f1; 2; : : : ; Cg a senery.Let (Sk; k 2 N0) be a reurrent random walk on Z. At time k the random walker observesthe olor �(Sk) at her urrent loation. Given the olor reord � := (�(Sk); k 2 N0),an we almost surely reonstrut the senery � without knowing the random walk path?This problem is alled senery reonstrution problem. In general, one an only hope toreonstrut the senery up to equivalene, where we all two seneries � and �0 equivalentand write � � �0 if � is obtained from �0 by a translation and/or reetion.Early work on the senery reonstrution problem was done by Kesten in [14℄. Heproved that a single defet in a 4-olor random senery an be deteted if the senery1MSC 2000 subjet lassi�ation: Primary 60K37, Seondary 60G10, 60J75.Key words: Senery reonstrution, jumps, stationary proesses, random walk, ergodi theory.83



84 Chapter 2. Reonstruting a senery with errors in the observationsis i.i.d. uniformly olored. Reonstrution of typial 2-olor seneries was proved byMatzinger in his Ph.D. thesis [23℄ (see also [25℄ and [24℄): Almost all i.i.d. uniformlyolored seneries observed along a simple random walk path (with holding) an be almostsurely reonstruted. In [15℄, Kesten notied that the proof in [23℄ heavily relies on theskip-freeness of the random walk. In [22℄, L�owe, Matzinger, and Merkl showed that seneryreonstrution is possible for random walks with bounded jumps if there are suÆientlymany olors.In this artile, we prove that senery reonstrution still works if the observations areseen with ertain random errors. We make the same assumptions on senery and randomwalk as in [22℄: The random walk an reah every integer with positive probability andis reurrent with bounded jumps, and there are stritly more olors than possible singlesteps for the random walk. To keep the exposition as easy as possible, we assume inaddition that for the random walk maximal jump length to the left and maximal jumplength to the right are equal; we believe that the results of this paper remain true withoutthis assumption. At time k the random walker observes olor �(Sk) with probability1� Æ, whereas she observes an error Yk with probability Æ. If the errors are independentof senery and random walk, the ourenes of errors are i.i.d. Bernoulli with parameterÆ and Yk, k � 0, is stationary and ergodi, then for all Æ suÆiently small, almost allseneries an be almost surely reonstruted up to translations and reetions.More preisely, we onsider the following setup: Let Æ 2℄0; 1[. Let � be a probabilitymeasure over Z with �nite support M. With respet to a probability measure PÆ, letS = (Sk; k 2 N0) be a random walk starting at the origin with independent �-distributedinrements. We assume that E[S1℄ = 0 andM has greatest ommon divisor 1; hene Sis reurrent and an reah every z 2 Z with positive probability. Let � = (�k; k 2 Z) bea family of i.i.d. random variables, uniformly distributed over C. Let X := (Xk; k 2 N0)be a sequene of i.i.d. random variables taking values in f0; 1g, Bernoulli distributedwith parameter Æ, and let Y := (Yk; k 2 N0) be as sequene of random variables takingvalues in C whih is stationary and ergodi under PÆ. We assume that (�; S;X; Y ) areindependent. The senery observed with errors along the random walk path is the proess~� := (~�k; k 2 N0) de�ned by ~�k := �k = �(Sk) if Xk = 0 and ~�k := Yk if Xk = 1. Ourmain theorem reads as follows:Theorem 2.1.1. If jCj > jMj, then there exists Æ1 > 0 and a map A : CN0 �! CZ whihis measurable with respet to the anonial sigma algebras, suh that PÆ (A(~�) � �) = 1for all Æ 2℄0; Æ1[.If Æ = 0, there are no errors in the observations. In this ase, the assertion of Theorem8.1.2 was proved by L�owe, Matzinger, and Merkl in [22℄.Closely related oin tossing problems have been investigated by Harris and Keane[7℄, Levin, Pemantle, and Peres [18℄, and Levin and Peres [17℄. The present paper hasto a large extend been motivated by their work and a question of Peres who asked forgeneralizations of the existing random oin tossing results for the ase of many biasedoins.Let �0 := (�0k; k 2 N0) be a oin tossing reord, obtained in one of the following ways:a) a (two-sided) fair oin is tossed i.i.d., or b) at renewal times of a renewal proess a oinwith bias � is tossed and at all other times a fair oin. Can we almost surely determinefrom �0 whether we are in ase a) or b)?



2.1. Introdution and result 85Let un denote the probability of a renewal at time n. Harris and Keane in [7℄ showedthat ifP1n=1 u2n =1 then we an almost surely determine how �0 was produed, whereasthis is not possible if P1n=1 u2n < 1 and � is small enough. Levin, Pemantle, and Peresin [18℄ showed that to distinguish between a) and b) not only the square-summability of(un) but also � is relevant. They proved that for some renewal sequene (un) there is aphase transition: There exists a ritial parameter � suh that for j�j > � we an almostsurely distinguish between a) and b), whereas for j�j < � this is not possible.The problem we address in this paper an be seen as a generalization of the followingoin tossing problem: We have C di�erent oins 1; 2; : : : ; C eah one with C di�erentfaes 1; 2; : : : ; C. Coin i has distribution �i whih gives probability 1� Æ+ Æ=C to fae iand probability Æ=C to eah remaining fae. For all z 2 Zwe hoose i.i.d. uniformly among1; 2; : : : ; C a oin �(z). Let (Sk; k 2 N0) be a random walk on Z ful�lling the onditionsdesribed above, independent of �. We generate a oin tossing reord �0 := (�0k; k 2 N0)by tossing the oin �(Sk) at loation Sk at time k. Then �0 has the same distribution as ~�de�ned above, if we hoose Yk i.i.d. uniformly distributed over C. Theorem 8.1.2 impliesthat we an almost surely determine � up to equivalene from the oin tossing reord �0,as long as Æ is small enough.Researh on random seneries started by work by Keane and den Hollander ([13℄ and[5℄) who studied ergodi properties of a olor reord seen along a random walk. Theirquestions were motivated among others by the work of Kalikow [12℄ in ergodi theory.More reently, den Hollander, Steif [4℄, and Heiklen, Ho�man, Rudolph [8℄ ontributedto this area.A preform of the senery reonstrution problem is the senery distinguishing problem(for a desription of the problem see [15℄) whih started with the question whether anytwo non-equivalent seneries an be distinguished. This question was asked by Benjaminiand independently by den Hollander and Keane. The problem has been investigated byBenjamini and Kesten in [2℄ and [14℄. Howard in [11℄, [10℄, [9℄ also ontributed to thisarea. Reently, Lindenstrauss [19℄ showed the existene of unountably many senerieswhih annot be reonstruted.L�owe and Matzinger [21℄ proved that two-dimensional seneries an be reonstrutedif there are enough olors. In the ase of a 2-olor senery and simple random walk withholding, the authors ([27℄, see also [26℄) showed that the reonstrution an be done inpolynomial time. By a result of L�owe and Matzinger [20℄, reonstrution is possible inmany ases even if the senery is not i.i.d., but has some orrelations. In [16℄, Lenstraand Matzinger showed that senery reonstrution is still possible if the random walkmight jump more than distane 1 with very small probability and the tail of the jumpdistribution deays suÆiently fast.The exposition is organized as follows. In Setion 9.2, we introdue some notation andwe formally desribe our setup. Setion 2.3 desribes the struture of the proof of Theorem8.1.2: By an ergodiity argument, it suÆes to �nd a partial reonstrution algorithm A0whih reonstruts orretly with probability > 1=2. To onstrut A0, we build partialreonstrution algorithms Am, m � 1, whih reonstrut bigger and bigger piees ofsenery around the origin. Setion 2.4 ontains the proofs of the theorems from Setion2.3. The ore of the reonstrution is an algorithm Algn whih reonstruts a �nite pieeof senery around the origin given as input �nitely many observations, stopping times,and a small piee of senery whih has been reonstruted earlier. Setion 2.5 ontains thede�nition of Algn. In Setion 2.6, we show that Algn ful�lls its task with high probability.



86 Chapter 2. Reonstruting a senery with errors in the observations2.2 Notation and setupIn this setion, we ollet frequently used notation.Sets and funtions: The ardinality of a set D is denoted by jDj. We write f jD for therestrition of a funtion f to a set D. For a sequene S = (si; i 2 I) we write jSj := jIjfor the number of omponents of S. If si is an entry of S, we write si 2 S; sometimes wewrite s(i) instead of si. For events Bk, k � 1, we write lim infk!1Bk := [1n=1 \1k=n Bkfor the event that all but �nitely many Bk's our.Integers and integer intervals: N denotes the set of natural numbers; by de�nition,0 =2 N. We set N0 := N [ f0g. If x 2 R, we denote by bx the largest integer � x. Unlessexpliitly stated otherwise, intervals are taken over the integers, e.g. [a; b℄ = fn 2 Z : a �n � bg, [a; b[= fn 2 Z : a � n < bg.Seneries: We �x C � 2, and denote by C := f1; :::; Cg the set of olors. A senery isan element of CZ. A piee of senery is an element of CI for a subset I of Z; here I neednot be an integer interval. The ardinality of the set I is alled the length of the piee ofsenery. We denote by (1)I the piee of senery in CI whih is identially equal to 1. ForI = fi1; i2; : : : ; ikg � Z with i1 < i2 < : : : < ik and a piee of senery � 2 CI we de�ne �!to be the piee of senery � read from left to right and � to be � read from right to left:�! := (�(ij); j 2 [1; k℄) and � := (�(ik�j+1); j 2 [1; k℄).Equivalene of seneries: Let  2 CI and  0 2 CI0 be two piees of seneries. Wesay that  and  0 are equivalent and write  �  0 i� I and I 0 have the same length andthere exists a 2 Z and b 2 f�1; 1g suh that for all k 2 I we have that a + bk 2 I 0 and k =  0a+bk. We all  and  0 strongly equivalent and write  �  0 if I 0 = a+ I for somea 2 Z and  k =  0a+k for all k 2 I. We say  ours in  0 and write  v  0 if  �  0jJfor some J � I 0. We write  �  0 if  �  0jJ for some J � I 0. If the subset J is unique,we write  �1  0.Random walks, random seneries, and random errors: Let � be a probabilitymeasure on Z with �nite support M. We assume that jMj < jCj, i.e. the number ofolors is stritly larger than the number of possible jumps of the random walk. We assumemaxM = jminMj, and we write L := maxM for the maximal jump length of the randomwalk. Let 
2 � ZN0 denote the set of all paths with jump sizes Sk+1 � Sk 2 M for allk 2 N0 . We denote byQx the distribution on (
2)N0 of a random walk (Sk; k 2 N0) startingat x with i.i.d. inrements distributed aording to �. We assume that Pk2M k�(k) = 0and M has greatest ommon divisor 1, onsequently the random walk is reurrent andan reah every integer with positive probability.The senery � := (�k; k 2 Z) is i.i.d. with �k uniformly distributed on C. Let X :=(Xk; k 2 N0) be a sequene of i.i.d. Bernoulli random variables with values in f0; 1g. IfXk = 0, then at time k the random walk observes olor �(Sk), whereas if Xk = 1 an errorours in the observations at time k: the random walker observes Yk, where Y := (Yk; k 2N0) is a sequene of random variables taking values in C. We assume that (�; S;X; Y )are independent and realized as anonial projetions on 
 := �CZ;
2; f0; 1gN0 ; CN0� withthe produt �-algebra generated by the anonial projetions and probability measuresPÆ;x := �
Z
Qx
B
N0Æ 
�, Æ 2 [0; 1℄, x 2 Z; here � denotes the uniform distribution onC, BÆ the Bernoulli distribution with parameter Æ on f0; 1g and � a probability measureon CN0 suh that the left-shift is measure-preserving and ergodi with respet to �. Weabbreviate PÆ := PÆ;0 and P := P0. .



2.2. Notation and setup 87We all � := (�k := �(Sk); k 2 N0) the senery observed along the random walk path;sometimes we write � Æ S instead of �. We de�ne ~� := (~�k; k 2 N0), the senery observedwith errors along the random walk path, by~�k := � �k if Xk = 0;Yk if Xk = 1:For a �xed senery � 2 CZwe set P �Æ := Æ�
Q0
B
N0Æ 
�, where Æ� denotes the Dirameasure at �. Thus P �Æ is the anonial version of the onditional probability PÆ(�j�).We use P �Æ and PÆ(�j�) as synonyms; i.e. we never work with a di�erent version of theonditional probability PÆ(�j�).Admissible paths: Let I = [i1; i2℄ be an integer interval. We all a path R 2 ZIadmissible if Ri+1�Ri 2 M for all i 2 [i1; i2� 1℄. We all R(i1) the starting point, R(i2)the endpoint, and jIj the length of R.Words: We all the elements of C� := [n2N0Cn words. If w 2 Cn, we say that w haslength n and write jwj = n.Ladder intervals, ladder paths, and ladder words: A ladder interval is a set of theform I \ (a + LZ) with a bounded interval I and a modulo lass a + LZ 2 Z=LZ. Let Ibe a ladder interval. We all a path R of length jIj whih traverses I from left to right orfrom right to left a ladder path or a straight rossing of I. The ladder words of a senery� over I are (�jI)! and (�jI) .Filtration and shift: We de�ne a �ltration over 
: G := (Gn;n 2 N0) with Gn :=�(~�k; k 2 [0; n℄) is the natural �ltration of the observations with errors. We de�ne theshift � : CN0 ! CN0 , � 7! �(�+ 1).2.2.1 Conventions about onstantsAll onstants keep their meaning throughout the whole artile. Unless otherwise stated,they depend only on C and �. Constants �, , ", �", 1, 2, and n1 play a speial rolein the onstrutions below; we state here how they are hosen. All other onstants aredenoted by i, i � 3, Æi, "i, i � 1.� We hoose  > 0.� We hoose 2 2℄1; CC�1 [ and �" 2℄0; �"max[ with�"max := minf1=30; "1=90; [lnC � ln 2 � ln(C � 1)℄=(90 lnC)g ;where "1 is as in Lemma 2.6.7.� We hoose 1 2 N to be a multiple of 36 with 1 � 27=[lnC � ln 2 � ln(C � 1) �90�" lnC℄.� We set " := 1�".� We hoose � > max f; 1 +  � [31 ln�min℄=ln 2g, where we abbreviate �min :=minf�(i) : i 2 Mg.� Finally we hoose n1 2 N , n1 � minf25; 3g, large enough that 2n � 1L2bpn for alln � n1 and "2(n1) + (2"3(n1))1=2 +P1m=2 4e�5nm < 1=2 holds, where 3 is de�nedin Theorem 2.3.5, "2(n1) in Lemma 2.4.3, "3(n1) in Theorem 2.3.3, and 4 and 5 inLemma 2.4.4.



88 Chapter 2. Reonstruting a senery with errors in the observations2.3 The struture of the reonstrutionIn order to prove Theorem 8.1.2, we redue the problem of reonstruting the senerysuessively to simpler problems. Theorems 2.3.1 and 2.3.2 below show that it suÆesto �nd algorithms whih do only partial reonstrutions. Proofs are postponed to latersetions: Setions 2.5 and 2.6 are dediated to the proof of Theorem 2.3.5, all otherstatements of this setion are proved in Setion 2.4. Our �rst theorem states that itsuÆes to �nd a reonstrution algorithmA0 whih reonstruts orretly with probability> 1=2:Theorem 2.3.1. If there exist Æ1 > 0 and a measurable map A0 : CN0 �! CZ suh thatPÆ (A0(~�) � �) > 1=2 for all Æ 2℄0; Æ1[, then there exists a measurable map A : CN0 �! CZsuh that PÆ (A(~�) � �) = 1 for all Æ 2℄0; Æ1[.The idea is to apply the reonstrution algorithm A0 to all the shifted observations�i(~�), i � 0. By the hypothesis and an ergodiity argument, as k tends to in�nity theproportion of seneries A0(�i(~�)) for i 2 [0; k[ whih are equivalent to � is stritly biggerthan the proportion of seneries whih are not equivalent to �. Therefore we are able toreonstrut the senery.We build the algorithm A0 required by Theorem 2.3.1 by putting together a hierarhyof partial reonstrution algorithms Am, m � 1. The algorithm Am tries to reonstruta piee of senery around the origin of length of order 2nm with (nm;m 2 N) reursivelyde�ned as follows: We hoose n1 as in Setion 2.2.1, and we set for m � 1nm+1 := 2bpnm: (2.3.1)De�nition 2.3.1. For m � 1 and a measurable map f : CN0 ! C [�3�2nm ;3�2nm ℄ we de�neEmreonst;f := f�j[�2nm; 2nm℄ � f(~�) � �j[�4 � 2nm; 4 � 2nm℄g : (2.3.2)Emreonst;f is the event that the reonstrution proedure f reonstruts orretly apiee of senery of length of order 2nm around the origin. Note that any �nite pieeof senery ours somewhere with probability 1 beause the senery is i.i.d. uniformlyolored. Therefore it is ruial to reonstrut a piee of senery around the origin.Theorem 2.3.2. Suppose there exist Æ1 > 0 and a sequene of measurable maps Am :CN0 ! C [�3�2nm ;3�2nm ℄, m � 1, suh that for all Æ 2℄0; Æ1[lim infm!1 Emreonst;Am = lim infm!1 �Emreonst;Am \ Em+1enter� PÆ � a.s.; (2.3.3)where Em+1enter := fAm+1(~�)j[�3 � 2nm ; 3 � 2nm℄ = Am(~�)g. Suppose further thatPÆ 1[m=1 �Emreonst;Am�! < 1=2 for all Æ 2℄0; Æ1[: (2.3.4)Then there exists a measurable map A0 : CN0 �! CZ suh that PÆ (A0(~�) � �) > 1=2 forall Æ 2℄0; Æ1[.



2.3. The struture of the reonstrution 89In the following, we explain how we onstrut maps Am satisfying the assumptions ofTheorem 2.3.2. The task of A1 is to reonstrut a piee of senery of length of order 2n1around the origin with high probability. It is shown by L�owe, Matzinger, and Merkl in[22℄ that the whole senery an be reonstruted with probability one in ase there are noerrors in the observations. They only prove existene of a reonstrution proedure, but donot expliitly onstrut an algorithm. In [28℄ we onstrut an algorithm whih even worksin polynomial time: A �nite piee of senery around the origin an be reonstruted withhigh probability from �nitely many error-free observations; the number of observationsneeded is polynomial in the length of the piee of senery whih is reonstruted. Weprove:Theorem 2.3.3. For in�nitely many n 2 N there exists a measurable mapAninitial : C[0;2�212�n[ ! C [�3�2n;3�2n℄ suh that"3(n) := P ���j[�2n; 2n℄ � Aninitial ��j[0; 2 � 212�n[� � �j[�4 � 2n; 4 � 2n℄	�satis�es limn!1 "3(n) = 0.As an immediate onsequene of Theorem 2.3.3 a piee of senery around the originan be reonstruted with high probability even if there are errors in the observations.As long as the probability Æ to see an error at a partiular time is suÆiently small, theprobability to see no errors in the �rst 2 � 212�n observations is lose to 1. The followingorollary makes this preise:Corollary 2.3.1. Let Aninitial and "3(n) be as in Theorem 2.3.3. There exist Æ2(n) > 0suh that for all Æ 2℄0; Æ2(n)[PÆ ���j[�2n; 2n℄ � Aninitial �~�j[0; 2 � 212�n[� � �j[�4 � 2n; 4 � 2n℄	� � 2"3(n):We will hoose A1 := An1initial. The maps Am, m � 2, will be de�ned indutively. Givena partial reonstrution algorithm Am we de�ne stopping times whih tell us when therandom walker is in some sense \lose" to the origin: We ompare Am(~�) with Am(�t(~�)),i.e. we ompare the output of Am if the input onsists of the observations olleted bythe random walker starting at the origin and the observations starting at time t. If bothoutputs agree up to equivalene on a suÆiently large subpiee, then with a high hane,the random walker is - on an appropriate sale - lose to the origin.The stopping times onstruted from Am are used to reonstrut a piee of seneryaround the origin of length of order 2nm+1 whih is muh larger than the piee of seneryreonstruted by Am; reall our hoie of nm (2.3.1). Whenever the stopping times in-diate that the random walk is \lose" to the origin, we ollet signi�ant parts of theobservations of length 1nm. If we have suÆiently many stopping times, the randomwalk will walk over the same piee of senery over and over again. This allows us to �lterout the errors in the observations. One this is done, the obtained words are put togetherlike in a puzzle game. The words are used to extend the piee of senery of length oforder 2nm whih has been reonstruted by Am.Formally we de�ne stopping times in the following way:De�nition 2.3.2. For m 2 N and a measurable map f : CN0 ! C [�3�2nm ;3�2nm ℄ with theproperty that f(~�) depends only on ~�j[0; 2 � 212�nm [, we de�neTm+1f (~�) := �t 2 [0; 212�nm+1 � 2 � 212�nm [ : 9w 2 C [�2nm ;2nm ℄suh that w � f(~�) and w � f(�t(~�)) � :



90 Chapter 2. Reonstruting a senery with errors in the observationsLet t(1) < t(2) < � � � be the elements of Tm+1f (~�) arranged in inreasing order. We de�nethe sequene Tm+1f (~�) := �Tm+1f;k (~�); k � 1� byTm+1f;k (~�) := � t(2 � 22nm+1k) + 2 � 212�nm if 2 � 22nm+1k � ��Tm+1f (~�)�� ;212�nm+1 otherwise.Tm+1f (~�) is a sequene of G-adapted stopping times with values in [0; 212�nm+1 ℄; thestopping times depend only on ~�j [0; 212�nm+1[. We de�ne the event that a sequene ofstopping times ful�ls the task of stopping the random walk \lose" to the origin (on arather rough sale).De�nition 2.3.3. For n 2 N and a sequene � = (�k; k � 1) of G-adapted stopping timeswe de�ne the event En;�stop :=2�n\k=1��k(~�) < 212�n; jS(�k(~�))j � 2n; �j(~�) + 2 � 22n � �k(~�) for j < k	 :The next theorem states that given an appropriate partial reonstrution algorithmf , the stopping times Tm+1f ful�l their task with a high probability. By the de�nitionof Tm+1f , we stop at time t + 2 � 212�nm i� f(~�) and f(�t(~�)) agree on a large enoughsubpiee. Therefore, for the stopping times to stop the random walk lose to the origin,it is neessary that f(~�) is a orretly reonstruted piee of senery around the origin.Sine we apply f often to obtain enough stopping times, we need that given a senery �,there is a high enough hane for the random walk on � to be stopped orretly, i.e. fmust reonstrut orretly with high enough probability onditional on �. This is why weneed the event �PÆ �Emreonst;f j �� � 12	 in the following theorem.Theorem 2.3.4. Let m � 1, and let f : CN0 ! C [�3�2nm ;3�2nm ℄ be a measurable map withthe property that f(~�) depends only on ~�j[0; 2 � 212�nm [. We have for all Æ 2℄0; 1[PÆ ��Emreonst;f n Enm+1;Tm+1fstop � \�PÆ �Emreonst;f j �� � 12�� � e�nm+1 :The next theorem shows that there exist partial reonstrution algorithms Algn (thereader should think of n = nm) with the following properties: Given stopping times whihstop the random walk lose to the origin, �nitely many observations with errors and asmall piee of senery  lose to the origin, Algn reonstruts with high probability apiee of senery around the origin of length of order 2n. If the reonstrution is suesful,the output of Algn ontains  in the middle. The reader should think of  as a piee ofsenery that has been reonstruted before.Theorem 2.3.5. For all n 2 N there exists a measurable mapAlgn : [0; 212�n℄N � C2�212�n � [k�1L C [�kn;kn℄ ! C [�3�2n;3�2n℄with the following property: There exist onstants 3; Æ3; 6; 7 > 0 suh that for all n � 3,Æ 2℄0; Æ3[ and for any sequene � = (�k; k � 1) of G-adapted stopping times with values in[0; 212�n℄ PÆ �En;�stop n En;�reonstrut� � 6e�7n;



2.4. Proofs 91where En;�reonstrut :=8<:For all  2 C [�kn;kn℄ with k � 1L and  � �j [�2n; 2n℄ wehave �j[�2n; 2n℄ � Algn(�; ~�j [0; 2 � 212�n[ ;  ) � �j[�4 � 2n; 4 �2n℄. 9=; :Furthermore if �j[�2n; 2n℄ � Algn(�; ~�j [0; 2 � 212�n[ ;  ) � �j[�4 � 2n; 4 � 2n℄ holds,  2C[�kn;kn℄ with k � 1L,  � �j [�2n; 2n℄ and �j [�2n; 2n℄ 6= (1)[�2n;2n℄, then we onludethat Algn(�; ~�j [0; 2 � 212�n[ ;  )j[�kn; kn℄ =  .To motivate the allowed range for the abstrat arguments � in this theorem, reallthat the Tmf;k(~�)'s in De�nition 2.3.2 take their values in [0; 212�nm ℄. We are now able tode�ne Am, m � 1, whih ful�ll the requirements of Theorem 2.3.2.De�nition 2.3.4. We de�neAm : CN0 ! C [�3�2nm ;3�2nm ℄ and sequenes Tm+1 = �Tm+1k ; k � 1�reursively for m � 1 in the following way:� A1(~�) := An1initial (~�j[0; 2 � 212�n1 [) with n1 as in Setion 2.2.1 and An1initial as in The-orem 2.3.3,� Tm+1(~�) := Tm+1Am (~�) with Tm+1Am as in De�nition 2.3.2,� Am+1(~�) := Algnm+1 (Tm+1(~�); ~�j[0; 2 � 212�nm+1 [;Am(~�)) with Algnm+1 as in Theo-rem 2.3.5.Theorem 2.3.6. There exists Æ1 > 0 suh that the sequene (Am;m 2 N) de�ned inDe�nition 2.3.4 ful�ls (2.3.3) and (2.3.4) for all Æ 2℄0; Æ1[.All theorems of this setion together yield the proof of our main theorem:Proof of Theorem 8.1.2. By Theorem 2.3.6, the assumptions of Theorem 2.3.2 are satis-�ed. Hene the assumptions of Theorem 2.3.1 are satis�ed and Theorem 8.1.2 follows.2.4 ProofsIn this setion, we prove the statements from Setion 2.3 with the exeption of Theorem2.3.5 whih will be proved in Setions 2.5 and 2.6.Lemma 2.4.1. The shift � : 
! 
,(�; S;X; Y ) 7! (�(�+ S(1)); S(�+ 1)� S(1); X(�+ 1); Y (�+ 1))is measure-preserving and ergodi with respet to PÆ for all Æ 2℄0; 1[.Proof. Let Æ 2℄0; 1[. By assumption, Yk, k � 0, is stationary and ergodi under PÆ.Xk, k � 0, is i.i.d., hene stationary and ergodi under PÆ. By Lemma 4.1 of [22℄,(�; S) 7! (�(� + S(1)); S(� + 1) � S(1)) is measure-preserving and ergodi with respetto P . The laim follows from these three observations and the fat that (�; S;X; Y ) areindependent.



92 Chapter 2. Reonstruting a senery with errors in the observationsProof of Theorem 2.3.1. Let Æ1 and A0 : CN0 ! CZ be as in the hypothesis of the theorem,and let Æ 2℄0; Æ1[. We de�ne for k 2 N measurable maps A0k : CN0 ! CZ as follows: Ifthere exists j 2 [0; k[ suh that���i 2 [0; k[: A0(�i(~�)) � A0(�j(~�))	�� > ���i 2 [0; k[: A0(�i(~�)) 6� A0(�j(~�))	�� ;then let j0 be the smallest j with this property, and de�ne A0k(~�) := A0(�j0(~�)). Otherwisede�ne A0k(~�) to be the onstant senery (1)j2Z. Finally we de�ne A : CN0 ! CZ byA(~�) := � limk!1A0k(~�) if this limit exists pointwise,(1)j2Z else.As a limit of measurable maps, A is measurable. For k 2 N we de�neZk := 1k k�1Xi=0 1�A0(�i(~�)) � �	;here 1B denotes the indiator funtion of the event B. It follows from Lemma 2.4.1 thatthe sequene 1�A0(�k(~�)) � �	, k � 0, is stationary and ergodi beause it an be writtenas a measurable funtion of the sequene �k(�; S;X; Y ), k � 0; note that � � �(�+ Sk).Hene we an use the ergodi theorem and our assumption to obtain PÆ-almost surely:limk!1Zk = PÆ (A0(~�) � �) > 1=2: (2.4.1)Note that if Zk > 1=2, then A0k(~�) � �. By (2.4.1) there exists a.s. a (random) k0 suhthat Zk > 1=2 for all k � k0, and hene A0k(~�) = A0k0(~�) � �; reall that we hose thesmallest possible j0 in the de�nition of A0k. Thus a.s. A(~�) � �.Proof of Theorem 2.3.2. We say a sequene (�m;m 2 N) of piees of seneries onvergespointwise to a senery � if lim infm!1 domain(�m) = Z, and for every z 2 Z there ismz > 0 suh that �m(z) = �(z) for all m � mz.Let Æ1 and Am be as in the hypothesis of the theorem, and let Æ 2℄0; Æ1[. We setA0(~�) := limm!1Am(~�) if this limit exists pointwise on Z; otherwise we set A0(~�) :=(1)j2Z. Being a pointwise limit of measurable maps, A0 : CN0 ! CZ is measurable. Weabbreviate Em := Emreonst;Am , and de�ne the eventsEm1�t := f�j[�2nm; 2nm℄ 41 �j[�4 � 2nm+1; 4 � 2nm+1℄g :We laim:1. lim infm!1Em1�t holds PÆ-a.s.,2. If the event (lim infm!1Em1�t) \T1m=1 Em holds, then A0(~�) � �.Together with the assumption PÆ [[1m=1 (Em)℄ < 1=2 these two statements imply thatPÆ (A0(~�) � �) > 1=2 whih yields the laim of the theorem.Proof of laim 1: We show for any integer intervals I1 6= I2 with jI1j = jI2jP (�jI1 � �jI2) � 2 � C�jIjj=3: (2.4.2)



2.4. Proofs 93First we de�ne fj : [0; jIjj[! Ij for j = 1; 2 to be the unique translation whih maps[0; jIjj[ onto Ij. An argument similar to the proof of (2.6.26) below shows that thereexists a subset J � [0; jIjj[ of ardinality jJ j � jIjj=3 with f1(J) \ f2(J) = ?. Sine �k,k 2 Z, are i.i.d. with a uniform distribution, we onludeP (�jI1 � �jI2) � P (�jf1(J) = �jf2(J)) = C�jJj � C�jIjj=3:Sine �jI1 � �jI2 means �jI1 � �jI2 or �jI1 � (�jI2)$ with (�jI2)$ denoting the piee ofsenery obtained from �jI2 by reetion, estimate (2.4.2) follows.We apply (2.4.2) for I1 = [�2nm ; 2nm℄ and all integer intervals I2 � [�4�2nm+1 ; 4�2nm+1℄,I1 6= I2, of length jI1j = jI2j = 2 � 2nm +1; there are not more than 8 � 2nm+1 hoies for I2.We obtain P ((Em1�t)) � 8 � 2nm+1 � 2 �C�(2�2nm+1)=3 � 16 � 22pnm�2�2nm=3;whih is summable over m; reall C � 2 and (2.3.1). Hene by the Borel-Cantelli lemma(Em1�t) ours PÆ-a.s. only �nitely many times ; this proves laim 1.Proof of laim 2: By the assumption of this laim, there is a (random) M suh thatthe events Em1�t and Em hold for all m � M . By the assumption of Theorem 2.3.2,M an be hosen in suh a way that Em+1enter holds for all m � M , too. Consequently,Am+1(~�)j [�3 � 2nm; 3 � 2nm℄ = Am(~�) for all m �M and it follows thatA0(~�)j[�k; k℄ = Am(~�)j[�k; k℄ (2.4.3)for all k � 1 and all m large enough. In partiular, limm!1Am(~�) exists.Sine Em and Em1�t hold, Am(~�) �1 �j[�4 � 2nm; 4 � 2nm℄. Hene there exists a uniquemap hm : Z ! Z of the form x 7! am + bmx with am 2 Z and bm 2 f�1; 1g that mapsAm(~�) onto a subpiee of �j[�4�2nm; 4�2nm℄. It follows from (2.4.3) that hm is independentof m and maps A0(~�) to �. This �nishes the proof of laim 2.Proof of Theorem 2.3.3. By Theorem 1.1 of [28℄, we know that there exists � > 0 and forin�nitely many n 2 N there exists a measurable map Anini : C[0;2n7+2�212�n[ ! C [�5�2n;5�2n℄suh that limn!1 P ([Enini℄) = 0, whereEnini := ��j ��2n�1; 2n�1� 4 Anini ��j[0; 2n7 + 2 � 212�n[� 4 �j [�10 � 2n; 10 � 2n℄	 :Small modi�ations in the proof of Theorem 1.1 in [28℄ prove our laim. We remark thatalternatively, we ould work diretly with the maps Anini from [28℄ without adjusting theonstants; all proofs in the remainder of the artile go through, but the notation beomesmore umbersome.Proof of Corollary 2.3.1. We estimate the probability under onsideration by intersetingwith the event B0 := fXk = 0 for all k 2 [0; 2 � 212�n[g that there are no errors in the �rst2 � 212�n observations: For any Æ > 0 we have1� PÆ ��j[�2n; 2n℄ � Aninitial �~�j[0; 2 � 212�n[� � �j[�4 � 2n; 4 � 2n℄�� 1� PÆ ���j[�2n; 2n℄ � Aninitial �~�j[0; 2 � 212�n[� � �j[�2n+2; 2n+2℄	 \ B0�= 1� Æ(n)P ��j[�2n; 2n℄ � Aninitial ��j[0; 2 � 212�n[� � �j[�2n+2; 2n+2℄�= 1� Æ(n)(1� "3(n));



94 Chapter 2. Reonstruting a senery with errors in the observationswith Æ(n) := (1� Æ)2�212�n and "3(n) as in Theorem 2.3.3. We hoose Æ2(n) > 0 suh thatthe last expression is bounded above by 2"3(n) for all Æ 2℄0; Æ2(n)[.Proof of Theorem 2.3.4. The proof is very similar to the proof of Theorem 3.11 in setion7 of [22℄ (Our Theorem 2.3.4 is the analogon of their Theorem 3.11 for our setting).The errors in the observations do not require adaptations of their arguments; note thatthe errors are independent of senery and random walk and ourenes of errors arei.i.d. Bernoulli.The remainder of this setion is dediated to the proof of Theorem 2.3.6. Throughoutwe assume Am, m � 1, are as in De�nition 2.3.4, and we set Æ1 := minfÆ3; Æ2(n1)g withÆ3 as in Theorem 2.3.5 and Æ2(n1) as in Corollary 2.3.1. We set for m � 1Em := Emreonst;Am : (2.4.4)De�nition 2.4.1. For Æ 2℄0; Æ1[ we de�ne events of seneries�Æ1 := �� 2 CZ : PÆ �(E1)�� �� � (2"3(n1))1=2	 ;�Æ2 := 1\m=2�� 2 CZ : PÆ �Em�1j�� � 12 ) PÆ hEm�1 n Enm;Tmstop ��� �i � e�nm2 �= 1\m=2�� 2 CZ : PÆ �hEm�1 n Enm;Tmstop i \�PÆ �Em�1 j �� � 12����� �� � e�nm2 � ;�Æ3 := 1\m=2n� 2 CZ : PÆ hEm�1 \ �Enm;Tmstop n Em� ��� �i � (6)1=2e� 7nm2 o ;�Æ := �Æ1 \ �Æ2 \ �Æ3;where "3(n1) is as in Theorem 2.3.3 and 6 and 7 are as in Theorem 2.3.5.Note the similarity between these events and the bounds in Corollary 2.3.1, Theorems2.3.4 and 2.3.5. The following lemma provides a link between bounds with and withoutonditioning on the senery �:Lemma 2.4.2 ([22℄, Lemma 4.6). Let A be an event, r � 0, and let Q be a probabilitymeasure on 
. If Q(A) � r2, then Q (Q(Aj�) > r) � r.Lemma 2.4.3. For all n 2 N there exist "2(n) > 0 with limn!1 "2(n) = 0 suh thatPÆ �� =2 �Æ� � "2(n1) for all Æ 2℄0; Æ1[.Proof. Let Æ 2℄0; Æ1[. Using Corollary 2.3.1 and Lemma 9.7.2 for Q = PÆ, we obtainPÆ �� =2 �Æ1� � (2"3(n1))1=2: (2.4.5)An appliation of Theorem 2.3.4 with f = Am yields for m � 2PÆ ��Em�1 n Enm;Tmstop � \�PÆ �Em�1 j �� � 12�� � e�nm:



2.4. Proofs 95An appliation of Lemma 9.7.2 with Q = PÆ yieldsPÆ �� =2 �Æ2� � 1Xm=2 e�nm=2 � e�8n1 (2.4.6)for some onstant 8 > 0, reall our hoie of nm (2.3.1). Let m � 2, and reall thede�nition of the event Enm;Tmreonstrut from Theorem 2.3.5. By De�nition 2.3.4, we have thatAm(~�) = Algnm (Tm(~�); ~�j[0; 2 � 212�nm [;  ) with  := Am�1(~�). By our hoie of n1,(j j � 1)=2 = 3 � 2nm�1 � 1nmL. If Em�1 holds, then  � �j [�2nm; 2nm ℄. Hene theinlusion Em�1 \ �Em;Tmstop n Em� � Em;Tmstop n Enm;Tmreonstrut (2.4.7)holds. Together with Theorem 2.3.5 the last inlusion impliesPÆ �Em�1 \ �Enm;Tmstop n Em�� � PÆ �Em;Tmstop n Enm;Tmreonstrut� � 6e�7nm:Another appliation of Lemma 9.7.2 yields for some onstant 9 > 0PÆ �� =2 �Æ3� � 1Xm=2(6)1=2e�7nm=2 � e�9n1: (2.4.8)The laim of the lemma follows from (2.4.5), (2.4.6), and (2.4.8); reall "3(n) ! 0 asn!1.Lemma 2.4.4. For all Æ 2℄0; Æ1[, � 2 �Æ, and m � 2 the following holds for someonstants 4; 5 > 0: PÆ(Em�1 j �) � 1� (2"3(n1))1=2 � m�1Xk=2 4e�5nk � 12 ; (2.4.9)PÆ(Em�1 n Em j �) � 4e�5nm: (2.4.10)Proof. Let Æ 2℄0; Æ1[ and � 2 �Æ. We prove (2.4.9) and (2.4.10) simultaneously by indu-tion over m: For m = 2 it follows from � 2 �Æ1PÆ(E1 j �) = 1� PÆ ��E1� j �� � 1� (2"3(n1))1=2 � 1=2; (2.4.11)reall our hoie of n1 from Setion 2.2.1. Thus (2.4.9) holds for m = 2.Suppose (2.4.9) holds for some m � 2. Then we havePÆ[Em�1 n Emj�℄ � PÆ h(Em�1 n Em) \ Em;Tmstop ��� �i+ PÆ hEm�1 n Em;Tmstop ��� �i� (6)1=2e� 7nm2 + e�nm=2 � 4e�5nm (2.4.12)for some onstants 4; 5 > 0; for the �rst term we used � 2 �Æ3 and for the seond termwe used � 2 �Æ2 and our indution hypothesis (2.4.9). Using (2.4.12) and our indutionhypothesis (2.4.9) we obtainPÆ(Em j �) � PÆ(Em�1 j �)� PÆ(Em�1 n Em j �)� 1� (2"3(n1))1=2 � mXk=2 4e�5nk � 12;for the last inequality we used our hoie of n1. This ompletes the indution step.



96 Chapter 2. Reonstruting a senery with errors in the observationsProof of Theorem 2.3.6. Let Æ 2℄0; Æ1[; reall our hoie Æ1 = minfÆ3; Æ2(n1)g. By The-orem 2.3.5 we know that whenever the events Em�1 and Em hold and �j[�2nm ; 2nm℄ 6=(1)[�2nm ;2nm ℄, then Ementer holds. Sine PÆ-a.s. � 6= (1)Z, relation (2.3.3) holds. UsingLemma 2.4.3 we havePÆ  1[m=1(Em)! � PÆ �� =2 �Æ�+ PÆ  f� 2 �Æg \ 1[m=1(Em)!� "2(n1) + Zf�2�Æg PÆ 1[m=1(Em) ����� �! dPÆ: (2.4.13)To bound the integrand, we use Lemma 2.4.4: For all � 2 �Æ and k � 1, we obtainPÆ k[m=1(Em) ����� �! � PÆ �(E1) j ��+ k+1Xm=2PÆ(Em�1 n Em j �)� (2"3(n1))1=2 + k+1Xm=2 4e�5nm ; (2.4.14)and taking limits as k!1, we onludePÆ  1[m=1(Em) ����� �! � (2"3(n1))1=2 + 1Xm=2 4e�5nm:Together with (2.4.13) the last estimate yields (2.3.4):PÆ 1[m=1(Em)! � "2(n1) + (2"3(n1))1=2 + 1Xm=2 4e�5nm < 12; (2.4.15)for the last inequality we used that n1 is hosen as in Setion 2.2.1.2.5 The key algorithm of the reonstrutionIn this setion, we de�ne algorithms Algn for whih Theorem 2.3.5 holds. We �x n 2 N .For two words w;w0 2 C� of the same length we de�ne their distaned(w;w0) := jfk 2 [1; jwj℄ : wk 6= w0kgj; (2.5.1)d(w;w0) is the number of plaes where w and w0 disagree. Clearly, d is a metri.When the random walk observes a piee of senery and Æ is small, the observationswith errors di�er \typially" from the errorfree observations in only a small proportion ofthe letters beause the probability to see an error at a partiular time is small under PÆ.Sine the random walk observes a given piee of senery very often, we are able to �lterout the errors using a majority rule f �.The following notions will be used in this ontext. For w = w1w2 : : : wm 2 Cm wede�ne Cut(w) := w2 : : : wm�1; Cut(w) is obtained from w by utting o� the �rst and thelast letter.



2.5. The key algorithm of the reonstrution 97De�nition 2.5.1. Let W = (wj; 1 � j � K) 2 (C1n)K be a vetor onsisting of K wordsof length 1n. For i 2 [1; 1n℄ we de�ne fi(W ), the favorite letter at position i, to be theelement in C whih most of the �rst 2n words in W have at position i. If there is nounique letter with this property, then we de�ne the favorite letter to be the smallest one.Formally, we setfi(W ) = k i� jfj 2 [1; 2n℄ : wj(i) = kgj = maxk02C jfj 2 [1; 2n℄ : wj(i) = k0gjand k is the smallest element in C satisfying the last equality; here wj(i) denotes the ithletter of the word wj. We set f(W ) := f1(W )f2(W ) : : : f1n(W ). Furthermore, we de�nef �(W ) :=� Cut(f(W )); if K � 2n and maxj2[1;2n ℄ d(Cut(wj);Cut(f(W ))) � "n(�1)[1;1n�2℄; otherwise.f �(W ) equals the word Cut(f(W )) whih is omposed of the favorite letters i� thevetor W has suÆiently many omponents and eah of the �rst 2n words in W di�ersfrom f(W ) in not more than "n letters. In the proof of Lemma 2.6.9 below it will beessential that we use Cut(f(W )) and not f(W ) in the de�nition of f �(W ). Note that�1 =2 C so that (�1)[1;1n�2℄ di�ers from all words w 2 C1n�2.The algorithm Algn whih will be de�ned below takes input data� 2 �0; 212�n�N ; � 2 C2�212�n ; and  2 [k�1L C[�kn;kn℄: (2.5.2)First we de�ne the set of all observations of length 31n whih are olleted within atime horizon of length 22n after a time �k; k 2 [1; 2�n℄:De�nition 2.5.2. We de�ne Colletionn(�; �) :=�(w1; w2; w3) 2 (C1n)3 : 9k 2 [1; 2�n℄ suh that w1w2w3 v �j[�k; �k + 22n[	 :The set PrePuzzlen(�; �) ontains only (w1; w2; w3) 2 Colletionn(�; �) with the follow-ing property: If (w01; w02; w03) 2 Colletionn(�; �) and w01 and w03 are \not too di�erent"from w1 and w3 respetively, then w02 is \not too di�erent" from w2. Formally:De�nition 2.5.3. We de�ne PrePuzzlen(�; �) :=8<:(w1; w2; w3) 2 Colletionn(�; �) : If (w01; w02; w03) 2Colletionn(�; �) with d(w1; w01) � 2"n and d(w3; w03) � 2"n,then d(w2; w02) � 2"n. 9=; :De�nition 2.5.4. For an element (w1; w2; w3) 2 PrePuzzlen(�; �) we denote by Sn�;�(w1; w2; w3)the sequene of (random) times s 2 [2�nk=1 [�k; �k + 22n � 31n℄ suh that w01w02w03 := �j[s; s+31n[ 2 PrePuzzlen(�; �), d(w1; w01) � 2"n, and d(w3; w03) � 2"n; we assume that the ele-ments of the sequene Sn�;�(w1; w2; w3) are arranged in inreasing order. We de�neListn�;�(w1; w2; w3) := ��j[s+ 1n; s+ 21n[; s 2 Sn�;�(w1; w2; w3)�to be the sequene with omponents �j[s+1n; s+21n[ indexed by the set Sn�;�(w1; w2; w3).We set PuzzleListsn(�; �) := �Listn�;�(w1; w2; w3) : (w1; w2; w3) 2 PrePuzzlen(�; �)	 :



98 Chapter 2. Reonstruting a senery with errors in the observationsClearly, w2 2 Listn�;�(w1; w2; w3). Note that Listn�;�(w1; w2; w3) is a sequene, and not aset. If by oinidene observations �j[s+ 1n; s+21n[ oinide for two di�erent values ofs, we want to keep them both. The omponents of Listn�;�(w1; w2; w3) are lose to w2 ind-distane beause we assumed (w1; w2; w3) 2 PrePuzzlen(�; �).De�nition 2.5.5. We de�ne Puzzlen(�; �) := ff �(W ) : W 2 PuzzleListsn(�; �)g.Puzzlen(�; �) is the set of all words of length 1n�2 whih are obtained by the majorityrule f � from the lists in PuzzleListsn(�; �). We use the words in Puzzlen(�; �) like thepiees in a puzzle game to reonstrut a piee of senery. We want the piee of seneryreonstruted by Algn to ontain in the middle the piee of senery  from the input dataof the algorithm.De�nition 2.5.6. For  2 C [�kn;kn℄ we de�ne SolutionPieen(�; �;  ) :=8<:w 2 C [�3�2n;3�2n℄ : wj[�kn; kn℄ =  and for all ladder intervalsI � [�3 � 2n; 3 � 2n℄ with jIj = 1n � 2 we have (wjI)! 2Puzzlen(�; �) 9=; :We will see in the proof of Lemma 2.6.4 below that under appropriate onditions,there is preisely one element in SolutionPieen(�; �;  ).De�nition 2.5.7. We de�neAlgn : [0; 212�n℄N � C2�212�n � [k�1L C [�kn;kn℄ ! C [�3�2n;3�2n℄as follows: If SolutionPieen(�; �;  ) is not empty, then we de�ne Algn(�; �;  ) to be itslexiographially smallest element. Otherwise we de�ne Algn(�; �;  ) to be the onstantsenery (1)[�3�2n;3�2n℄.2.6 The key algorithm reonstruts orretlyIn this setion, we prove Theorem 2.3.5. Throughout we �x n 2 N . We assume that� 2 [0; 212�n℄N is a sequene of G-adapted stopping times. Reall that " was hosen inSetion 2.2.1.2.6.1 De�nition of the key eventsIn this subsetion, we ollet the de�nitions of all the \basi" events whih we willneed to prove the orretness of Algn. The event Bn;�all paths holds if the random walktraverses all paths of length 31n in the region where we want to do the reonstru-tion. Bnfew mistakes makes sure that there are not too many mistakes in the words inColletionn(�; �). Bnladder di� gives a lower bound for the d-distane of two di�erent ladderwords in the neighborhood of the origin. Bn;�majority garanties that the majority deisionf � is not orrupted by the errors in the observations. If Bnoutside out holds, then we andistinguish ladder words from the region where we want to reonstrut from observationswhih are read further outside. Bnsignals implies that there are "signal words" whih anbe read only left from a ertain point z 2 Z or only right from a ertain z 2 Z; this



2.6. The key algorithm reonstruts orretly 99event allows use to reonstrut all ladder words in a region around the origin. Bn;�straight oftenguarantees that ertain ladder paths are traversed often enough.We arranged the de�nitions of the events in alphabetial order so that the reader aneasily �nd them while following the proofs in the next two subsetions. We suggest tohave a quik look at the de�nitions, and then to skip ahead to the next subsetion andlook up de�nitions when needed.De�nition 2.6.1. For z 2 Z and n suh that 1n 2 N, we denote by wz;!;n the ladderword of length 1n starting at z read from left to right, and by wz; ;n the word wz;!;n readfrom right to left:wz;!;n := (�(z + kL); k 2 [0; 1n[)! and wz; ;n := (wz;!;n) :Note that wz�(1n�1)L;!;n is the ladder word of length 1n ending at z.De�nition 2.6.2. We de�neBn;�all paths := 8>><>>:For any admissible piee of path R 2 Z[0;31n[with starting point in [�7 � 2n; 7 � 2n℄ there existst 2 [2�nk=1[�k; �k+22n�31n℄ suh that R(i) = S(t+i)for all i 2 [0; 31n[ 9>>=>>; :De�nition 2.6.3. We de�neBnfew mistakes := ( tXk=t�1n+1Xk � "n for all t 2 �1n� 1; 2 � 212�n�) :De�nition 2.6.4. We de�neBnladder di� := 8<:8z1; z2 2 [�8 � 2n; 8 � 2n℄ and 8i1; i2 2f ;!g with (z1; i1) 6= (z2; i2) we haved(wz1;i1;n=3; wz2;i2;n=3) � 10"n 9=; :De�nition 2.6.5. Let IL denote the set of ladder intervals I � [�7 � 2n; 7 � 2n℄ of length1n. For w1; w3 2 C1n and I 2 IL, we denote by SI!w1;w3 := �sI!i ; i � 1� (SI w1;w3 :=�sI i ; i � 1�) the sequene of all times s 2 [2�nk=1 [�k; �k + 22n � 31n℄ suh that Sj[s+1n; s+21n[ is a straight rossing from left to right (right to left) of I and d(~�j[s+(i�1)1n; s+i1n[; wi) � 2"n for i = 1; 3. We assume that the omponents of SI!w1;w3 and SI w1;w3 arearranged in inreasing order. We de�neBn;�majority := \w1;w32C1n \I2IL �Bn;�;I!maj (w1; w3) \Bn;�;I maj (w1; w3)� withBn;�;I!maj (w1; w3) := 8<:If ��SI!w1;w3�� � 2n, then 8j 2 [1; 1n� 1[the following holds: P2ni=1XsI!i +1n+j <2n=2 9=;and Bn;�;I maj (w1; w3) de�ned analogously.



100 Chapter 2. Reonstruting a senery with errors in the observationsDe�nition 2.6.6. We de�ne Bnoutside out :=8<:8z 2 [�5 � 2n; 5 � 2n℄, for any admissible piee of path R 2([�2L � 22n; 2L � 22n℄ n [�6 � 2n, 6 � 2n℄)[0;1n=2[ and 8i 2 f ;!gwe have that d(� ÆR;wz;i;n=2) � 3"n 9=; :De�nition 2.6.7. We de�ne Bnreogn straight :=8>><>>:For any admissible piee of path R1 2 [�7�2n; 7�2n℄[0;1n[ whihis not a ladder path there exists an admissible piee of pathR2 2 [�8 � 2n; 8 � 2n℄[0;1n[ with R2(0) = R1(0), R2(1n� 1) =R1(1n� 1) and d(� ÆR1; � ÆR2) � 5"n 9>>=>>; :De�nition 2.6.8. We de�neBnsignals := Bnsign;l;! \ Bnsign;r;! \ Bnsign;l; \ Bnsign;r; withBnsign;l;! := 8><>:8z 2 [�6 �2n; 6 �2n℄ and for any admissible pieeof path R 2 [�2L�22n; 2L�22n℄[0;1n[ with R(1n�1) > z we have that d(� Æ R;wz�(1n�1)L;!;n) �5"n 9>=>; ;Bnsign;r;! := 8<:8z 2 [�6 �2n; 6 �2n℄ and for any admissible pieeof path R 2 [�2L�22n; 2L�22n℄[0;1n[ with R(0) <z we have that d(� ÆR;wz;!;n) � 5"n 9=; ;Bnsign;l; := 8<:8z 2 [�6 �2n; 6 �2n℄ and for any admissible pieeof path R 2 [�2L�22n; 2L�22n℄[0;1n[ with R(0) >z we have that d(� ÆR;wz�(1n�1)L; ;n) � 5"n 9=; ;Bnsign;r; := 8<:8z 2 [�6 �2n; 6 �2n℄ and for any admissible pieeof path R 2 [�2L�22n; 2L�22n℄[0;1n[ with R(1n�1) < z we have that d(� ÆR;wz; ;n) � 5"n 9=; :De�nition 2.6.9. We denote the olletion of ladder intervals I � [�6 � 2n; 6 � 2n℄ oflength 31n by JL. For I 2 JL, we denote by S!(I) (S (I)) the sequene of all timess 2 [2�nk=1[�k; �k+22n�31n℄ suh that Sj[s; s+31n[ is a straight rossing from left to right(right to left) of I; we assume that the omponents of S!(I) and S (I) are arranged ininreasing order. We de�neBn;�straight often := \I2JL fjS!(I)j � 2n and jS (I)j � 2ng :2.6.2 CombinatorisIn this subsetion, we prove that Algn reonstruts orretly in the sense that the eventEn;�reonstrut holds, under the assumption that En;�stop and all the \basi" events de�ned inthe previous subsetion hold. We abbreviate~�n := ~��� �0; 2 � 212�n� :The task is split in four parts: Lemma 2.6.1 states a property of the elements in the setPrePuzzlen(�; ~�n). Lemma 2.6.2 shows that all words in Puzzlen(�; ~�n) whih are observedwhile the random walk is approximately in the region of the senery whih we want toreonstrut, are ladder words. Lemma 2.6.3 states that Puzzlen(�; ~�n) ontains all theladder words we need. Finally Lemma 2.6.4 shows that the reonstrution works.



2.6. The key algorithm reonstruts orretly 101De�nition 2.6.10. We say (w1; w2; w3) 2 Colletionn(�; ~�n) is read while the randomwalk is walking on J � Z if there exists t 2 [2�nk=1 [�k; �k + 22n � 31n℄ suh that S(t+j) 2 Jfor all j 2 [0; 31n[ and w1w2w3 = ~�j[t; t + 31n[. If we know the time t, we say that(w1; w2; w3) is read during [t; t + 31n[.De�nition 2.6.11. We de�ne En;�pre ladder :=8>><>>:If (w1; w2; w3) 2 PrePuzzlen(�; ~�n) and there exists t 2[2�nk=1[�k; �k + 22n � 31n℄ suh that (w1; w2; w3) is readduring [t; t + 31n[ while the random walk is walking on[�7 � 2n; 7 � 2n℄, then Sj[t+ 1n; t+ 21n[ is a ladder path. 9>>=>>; :Lemma 2.6.1. For all n 2 N the following holds:En;�pre ladder � Bn;�all paths \ Bnfew mistakes \ Bnreogn straight:Proof. Suppose the events Bn;�all paths, Bnfew mistakes, and Bnreogn straight hold. Let (w1; w2; w3) 2PrePuzzlen(�; ~�n), and suppose there exists t 2 [2�nk=1[�k; �k+22n�31n℄ suh that the triple(w1; w2; w3) is read during [t; t+31n[ while the random walk is walking on [�7 � 2n; 7 � 2n℄.Let Ri(j) := S(t+ (i� 1)1n+ j) for j 2 [0; 1n[ and i = 1; 2; 3. Then jRi(j)j � 7 � 2nfor all j 2 [0; 1n[ and d(� ÆRi; wi) � "n for i = 1; 2; 3 (2.6.1)beause Bnfew mistakes holds. We have to show that R2 is a ladder path. Suppose not. SineBnreogn straight holds, there exists an admissible piee of path R02 2 [�8 � 2n; 8 � 2n℄[0;1n[ withthe same starting and endpoint as R2 andd(� ÆR2; � ÆR02) � 5"n: (2.6.2)Sine Bn;�all paths holds and the onatenation R1R02R3 is an admissible piee of path withstarting point in [�7 � 2n; 7 � 2n℄, there exists t0 2 [2�nk=1[�k; �k + 22n � 31n℄ suh thatR1R02R3(i) = S(t0 + i) for all i 2 [0; 31n[. Using the triangle inequality, we obtaind(w2; ~�j[t0 + 1n; t0 + 21n[) � d(w2; �j[t0 + 1n; t0 + 21n[)� "n= d(w2; � ÆR02)� "n� d(� ÆR2; � ÆR02)� d(w2; � ÆR2)� "n� 5"n� "n� "n = 3"n; (2.6.3)for the �rst inequality we used that Bnfew mistakes holds, and for the last inequality we used(2.6.2) and (2.6.1). The fat that Bnfew mistakes holds together with inequality (2.6.1) yieldsd(w1; ~�j[t0; t0 + 1n[) � d(w1; �j[t0; t0 + 1n[) + "n= d(w1; � ÆR1) + "n � 2"n:By the same argument, d(w3; ~�j[t0 + 21n; t0 + 31n[) � 2"n. Together with (2.6.3) thisontradits (w1; w2; w3) 2 PrePuzzlen(�; ~�n). Hene R2 is a ladder path.



102 Chapter 2. Reonstruting a senery with errors in the observationsDe�nition 2.6.12. We de�nePuzzlen1 (�; ~�n) := 8>>>>>><>>>>>>:
f � �Listn�;~�n(w1; w2; w3)� 2 C1n�2 :(w1; w2; w3) 2 PrePuzzlen(�; ~�n) and9(w01; w02; w03) 2 PrePuzzlen(�; ~�n) suh thatd(w1; w01) � 2"n, d(w3; w03) � 2"n and(w01; w02; w03) is read while the random walkis walking on Z n [�6 � 2n; 6 � 2n℄.

9>>>>>>=>>>>>>; ;Puzzlen2 (�; ~�n) := Puzzlen(�; ~�n) n �Puzzlen1 (�; ~�n) [ �(�1)[1;1n�2℄	� :Note that Puzzleni (�; ~�n), i = 1; 2, together with �(�1)[1;1n�2℄	, form a partition ofthe set Puzzlen(�; ~�n). If we are given an element of Puzzlen(�; ~�n), we annot deide towhih set of the partition it belongs. Nevertheless the sets Puzzleni (�; ~�n), i = 1; 2, will beuseful in the following.De�nition 2.6.13. We de�neEn;�only ladder := �If w2 2 Puzzlen2 (�; ~�n), then w2 ��j [�7 � 2n; 7 � 2n℄ and w2 is a ladder word � :Let 10 > 0 be hosen in suh a way that for all n � 1031nL � 2n: (2.6.4)Lemma 2.6.2. For all n � 10 the following holds:En;�only ladder � En;�pre ladder \Bnfew mistakes \ Bnladder di� \ Bn;�majority:Proof. Let n � 10, and suppose the events En;�pre ladder, Bnfew mistakes, Bnladder di� and Bn;�majorityhold. Let (w1; w2; w3) 2 PrePuzzlen(�; ~�n) and abbreviate W := Listn�;~�n(w1; w2; w3).Suppose f �(W ) 2 Puzzlen2 (�; ~�n). Let w02 2 W . Then there exist w01; w03 suh that(w01; w02; w03) 2 PrePuzzlen(�; ~�n), d(w1; w01) � 2"n, and d(w3; w03) � 2"n. By de�ni-tion of Puzzlen2 (�; ~�n), at least one the random walk is in [�6 � 2n; 6 � 2n℄ while it reads(w01; w02; w03). Sine the random walk jumps at most a distane of L in eah step, it anmove in 31n steps at most a distane of 31nL � 2n. Hene (w01; w02; w03) is observed whilethe random walk is walking on [�7 � 2n; 7 � 2n℄. Using that En;�pre ladder holds, we obtain thatw02 is observed while the random walk is walking on a ladder word. Sine Bnfew mistakesholds, there exists a ladder word bw2 � �j [�7 � 2n; 7 � 2n℄ suh thatd(w02; bw2) � "n: (2.6.5)Suppose w002 2 W . Then by the above argument, there exists a ladder word �w2 ��j [�7 � 2n; 7 � 2n℄ suh that d(w002 ; �w2) � "n: (2.6.6)Sine (w1; w2; w3) 2 PrePuzzlen(�; ~�n), we have that d(w02; w2) � 2"n and d(w2; w002) � 2"n.Hene d(w02; w002) � 4"n: (2.6.7)Using the triangle inequality, (2.6.5), (2.6.7) and (2.6.6) we obtaind(bw2; �w2) � d(bw2; w02) + d(w02; w002) + d(w002 ; �w2)� "n+ 4"n+ "n = 6"n: (2.6.8)



2.6. The key algorithm reonstruts orretly 103If bw2 6= �w2, then it follows from Bnladder di� that d(bw2; �w2) � 10"n, whih ontradits(2.6.8). Hene bw2 = �w2.We have shown that any w02 2 W is observed while the random walk reads the ladderword bw2. Hene for j 2 [0; 1n[, w02(j) equals bw2(j) or an error in the observations. Sineby assumption, f �(W ) 6= (�1)[1;1n�2℄,W has at least 2n omponents; reall the de�nitionof f � (De�nition 2.5.1). An appliation of Bn;�;Imaj (w1; w3) with I equal to the ladder intervalunderlying bw2 shows that more than half of the �rst 2n words in W have jth letter equalto bw2(j). Consequently, f(W ) = bw2, and sine Bnfew mistakes holds, f �(W ) = Cut(bw2).De�nition 2.6.14. We de�ne En;�all ladder :=f8z 2 [�5 � 2n; 5 � 2n℄ : Cut(wz;!;n);Cut(wz; ;n) 2 Puzzlen(�; ~�n)g :Lemma 2.6.3. For all n � 10 the following holds:En;�all ladder � Bn;�all paths \ Bnfew mistakes \ Bn;�majority \Bnsignals\Bn;�straight often \ En;�stop:Proof. Let n � 10 and z 2 [�5 � 2n; 5 � 2n℄. Suppose the events Bn;�all paths, Bnfew mistakes,Bn;�majority, Bnsignals, Bn;�straight often, and En;�stop hold. We will prove Cut(wz;!;n) 2 Puzzlen(�; ~�n).The proof for wz; ;n is similar. We de�new1 := wz�1nL;!;n; w2 := wz;!;n; w3 := wz+1nL;!;n:Clearly, w1w2w3 is the ladder word of length 31n starting at z � 1nL and ending atz+ (21n� 1)L. We de�ne R : [0; 31n[! Z by R(i) = z� 1nL+ iL. Then R is a ladderpath with starting point z � 1nL � �6 � 2n and endpoint z + (21n� 1)L � 6 � 2n by ourhoie of z and n; reall (2.6.4). Furthermore � ÆR = w1w2w3. Sine Bn;�all paths holds, thereexists t 2 [2�nk=1[�k; �k + 22n � 31n℄ suh that R = Sj[t; t+ 31n[. We setbwi;t := e�j[t + (i� 1)1n; t+ i1n[ for i = 1; 2; 3: (2.6.9)Sine Bn;�straight often holds, there are at least 2n di�erent t's with this property. Fixt. Clearly, ( bw1;t; bw2;t; bw3;t) 2 Colletionn(�; ~�n). We want to show (bw1;t; bw2;t; bw3;t) 2PrePuzzlen(�; ~�n). The word bwi;t di�ers from wi only by errors in the observations. SineBnfew mistakes holds, d(wi; bwi;t) � "n for i = 1; 2; 3: (2.6.10)Suppose (w01; w02; w03) 2 Colletionn(�; ~�n) and d(w0i; bwi;t) � 2"n for i = 1; 3. Then thereexists t0 2 [2�nk=1[�k; �k + 22n � 31n℄ suh that w01w02w03 = ~�j[t0; t0 + 31n[. Using (2.6.10)and the triangle inequality, we obtaind(w0i; wi) � d(w0i; bwi;t) + d(bwi;t; wi) � d(w0i; bwi;t) + "n � 3"n for i = 1; 3:We set I1 := [t0; t0 + 1n[, I3 := [t0 + 21n; t0 + 31n[. Sine Bnfew mistakes holds,d(� Æ SjIi; wi) � d(� Æ SjIi; w0i) + d(w0i; wi)� "n+ d(w0i; wi) � 4"n for i = 1; 3: (2.6.11)Sine En;�stop holds, jS(�k)j � 2n, and for all i 2 [0; 22n[, jS(�k + i)j � 2n+L � 22n � 2L � 22nbeause eah jump of the random walk has length � L. Hene we an use that Bnsign;l;!



104 Chapter 2. Reonstruting a senery with errors in the observationsholds for w1 = wz�1nL;!;n (note that jz � Lj � 6 � 2n) and SjI1 to onlude from (2.6.11)that S(t0+1n�1) � z�L. Similarly, we an use that Bnsign;r;! holds for w3 = wz+1nL;!;n(note that jz + 1nLj � 6 � 2n) and SjI3 to onlude that S(t0 + 21n) � z + 1nL. Theonly path of length 1n+2 from z�L to z+1nL is the ladder path whih visits preiselythe points z + iL, 0 � i � 1n� 1. Hene w02 is observed with errors by the random walkwalking on the ladder word w2. Using the fat that Bnfew mistakes holds and (2.6.10), weobtain d(w02; bw2;t) � d(w02; w2) + d(w2; bw2;t) � "n+ "n = 2"n:Consequently, (bw1;t; bw2;t; bw3;t) 2 PrePuzzlen(�; ~�n). We setW := Listn�;~�n(bw1;t; bw2;t; bw3;t):Clearly, W 2 PuzzleListsn(�; ~�n). Consider bwi;s for s 6= t. Reall that there are at least2n�1 di�erent s with this property. By the triangle inequality and (2.6.10), d(bwi;s; bwi;t) �d(bwi;s; wi) + d(wi; bwi;t) � 2"n for i = 1; 2; 3. Consequently, ( bw1;s; bw2;s; bw3;s) 2 W , and weonlude that W has at least 2n omponents.Suppose w02 2 W . Then there exist w01; w03 with d(w0i; bwi;t) � 2"n for i = 1; 3 and(w01; w02; w03) 2 PrePuzzlen(�; ~�n). We have shown above (after (2.6.10)) that under theseonditions, w02 must be observed while the random walk reads the ladder word w2. Inpartiular, for j 2 [0; 1n[, w02(j) = w2(j) or w02(j) is an error in the observations. SineBn;�;Imaj ( bw1;t; bw3;t) holds for the ladder interval I = fz + iL; i 2 [0; 1n[g, in more than halfof the words inW the jth letter equals w2(j). Consequently, the jth letter of f(W ) equalsw2(j), and we have proved that Cut(w2) 2 Puzzlen(�; ~�n).Reall the de�nition of En;�reonstrut from Theorem 2.3.5.Lemma 2.6.4. For all n � 10 with 10 as in (2.6.4) the following holds:En;�reonstrut � En;�only ladder \ En;�all ladder \ Bnfew mistakes \ Bnladder di�\Bnoutside out \ En;�stop:Proof. Let n � 10, and suppose all the events En;�only ladder, En;�all ladder, Bnladder di� , Bnfew mistakes,Bnoutside out, and En;�stop hold. Let  2 C [�kn;kn℄ for some k � 1L, and suppose  ��j [�2n; 2n℄. There exist a 2 [�2n; 2n℄ and b 2 f�1; 1g suh that for all j 2 [�kn; kn℄ (j) = �(a+ bj) and a+ bj 2 [�2n; 2n℄ : (2.6.12)First we show w := (�(a+ bj); j 2 [�3 � 2n; 3 � 2n℄) 2 SolutionPieen(�; ~�n;  ). By (8.5.13), = wj[�kn; kn℄. Let I � [�3 �2n; 3 �2n℄ be a ladder interval of length 1n�2. The imageof I under the map j 7! a + bj is a ladder interval whih is ontained in [�4 � 2n; 4 � 2n℄beause jaj � 2n. Sine En;�all ladder holds, (wjI)! 2 Puzzlen(�; ~�n). Consequently, w 2SolutionPieen(�; ~�n;  ), and in partiular, SolutionPieen(�; ~�n;  ) is not empty.It remains to show that �j [�2n; 2n℄ � w � �j[�4 � 2n; 4 � 2n℄ for any element w 2SolutionPieen(�; ~�n;  ). Let w 2 SolutionPieen(�; ~�n;  ). Then wj[�kn; kn℄ =  , and itfollows from (8.5.13) that for all j 2 [�kn; kn℄w(j) = �(a+ bj): (2.6.13)



2.6. The key algorithm reonstruts orretly 105Suppose we prove (8.5.14) for all j 2 [�3 � 2n; 3 � 2n℄. Then we know there is preiselyone element in SolutionPieen(�; ~�n;  ). Sine  � �j[�2n; 2n℄, there are more than 2 � 2nletters to the left and to the right of  in w, and onsequently �j[�2n; 2n℄ � w. On theother hand, in w, there are less than 3 � 2n letters to the left and to the right of  . Henew � �j[�4 � 2n; 4 � 2n℄.Thus, to �nish the proof, it suÆes to verify (8.5.14) for all j 2 [�3 � 2n; 3 � 2n℄. Wehave already seen that (8.5.14) holds for all j 2 [�kn; kn℄. Suppose we know that (8.5.14)holds for all j 2 [�s; s℄ for some s 2 [kn; 3 � 2n � 1℄. We setwl := (wjIl)! with Il := (�s� 1 + iL; i 2 [0; 1n� 2[) ;wr := (wjIr)! with Ir := (s+ 1 + (i� 1n + 3)L; i 2 [0; 1n� 2[) ;note that Il denotes the ladder interval of length 1n � 2 whih ontains �s � 1 asleftmost point, and Ir denotes the ladder interval of length 1n� 2 whih ontains s + 1as rightmost point. The words wl and wr are well de�ned beause 1nL � j j = 2kn+ 1.Sine w 2 SolutionPieen(�; ~�n;  ), we have wl; wr 2 Puzzlen(�; ~�n). Note that wl and wrhave both preisely 1n � 3 points in ommon with wj[�s; s℄; wl extends wj[�s; s℄ oneletter to the left, and wr extends wj[�s; s℄ one letter to the right.Suppose wl 2 Puzzlen1 (�; ~�n). Then we have wl = f �(W ) for someW = Listn�;~�n(w1; w2; w3)and there exists (w01; w02; w03) 2 PrePuzzlen(�; ~�n) suh that d(wi; w0i) � 2"n, for i = 1; 3and (w01; w02; w03) is read while the random walk is walking on Z n [�6 � 2n; 6 � 2n℄. Thus,there exists t 2 [2�nk=1 [�k; �k + 22n � 31n℄ suh that jS(t+j)j > 6�2n for all j 2 [0; 31n[ andw02 = ~�jJ with J = [t+ 1n; t+ 21n[. Using that En;�stop holds, we know that jS(�k)j � 2nfor all k. Sine the random walk jumps a distane � L in eah step, it follows thatjS(t+ j)j � 2n +L � 22n � 2L � 22n for all j 2 [0; 31n[. For a word w = w1w2 : : : wm 2 Cmof length m � 1n=2, we de�ne Last(w) := wm�1n=2+1 : : : wm to be the word onsistingof the last 1n=2 letters of w. Let z 2 [�5 � 2n; 5 � 2n℄ and i 2 f ;!g. Sine Bnfew mistakesand Bnoutside out hold, we obtaind(Last(Cut(w02)); wz;i;n=2) = d(Last(Cut(~�jJ)); wz;i;n=2) (2.6.14)� d(Last(Cut(�jJ)); wz;i;n=2)� "n � 3"n� "n = 2"n:By de�nition of f �(W ), d(Cut(f(W ));Cut(w)) � "n for all w 2 W . Hened(Last(wl); Last(Cut(w02))) � "n: (2.6.15)Combining (2.6.14) and (2.6.15), we obtaind(Last(wl); wz;i;n=2) � d(Last(Cut(w02)); wz;i;n=2)� d(Last(wl); Last(Cut(w02)))� 2"n� "n = "n: (2.6.16)Reall that wl is a ladder word of w of length 1n� 2 and the 1n� 3 right-most lettersof wl overlap with wj[�s; s℄. Using that (8.5.14) holds for all j 2 [�s; s℄ together withjaj � 2n and jsj � 3 � 2n, yields Last(wl) � �j [�4 � 2n; 4 � 2n℄. This ontradits (2.6.16),whih implies that Last(wl) is di�erent from any ladder word of �j[�4 � 2n; 4 � 2n℄. Weonlude wl 2 Puzzlen2 (�; ~�n). Sine En;�only ladder holds, wl � �j [�7 � 2n; 7 � 2n℄, and wl is aladder word of �.Suppose (8.5.14) does not hold for j = �s�1. Let Il;� denote the image of Il under themap j 7! a + bj. Then �jIl;� 6= wl; more preisely, �jIl;� and wl disagree in preisely one



106 Chapter 2. Reonstruting a senery with errors in the observationspoint, namely the leftmost point �(a+b(�s�1)) 6= wl(0). Thus we found two ladder wordsof length 1n� 2 in �j[�7 � 2n; 7 � 2n℄ whih disagree in preisely one point. Consequently,there exist z; z0 2 [�8 � 2n; 8 � 2n℄, i; i0 2 f ;!g with (z; i) 6= (z0; i0) suh that �jIl;� =Cut(wz;i;n) and wl = Cut(wz0;i0;n). Consequently, there exist z1; z2 2 [�8 � 2n; 8 � 2n℄,i1; i2 2 f ;!g with (z1; i1) 6= (z2; i2) suh that the two ladder words onsisting of thelast 1n=3 letters of �jIl;� and wl respetively, equal wz1;i1;n=3, wz2;i2;n=3, respetively. SineBnladder di� holds, wz1;i1;n=3 6= wz2;i2;n=3 whih is a ontradition. We onlude that (8.5.14)holds for j = �s� 1.To see that (8.5.14) holds for j = s+1, one applies the above argument with �w de�nedby �w(j) := w(�j) for j 2 [�3 � 2n; 3 � 2n℄ in plae of w. By the indution priniple, (8.5.14)holds for all j 2 [�3 � 2n; 3 � 2n℄.2.6.3 The basi events have high probabilitiesIn this subsetion, we prove that the events Bn::: de�ned in Subsetion 2.6.1 have a prob-ability whih is exponentially small in n. For some events Bn::: this is only true under theassumption that En;�stop holds, i.e. if the stopping times stop orretly. We treat the eventsfrom Subsetion 2.6.1 in alphabetial order.Reall that unless otherwise stated, onstants depend only on the distribution of therandom walk inrements and the number of olors of the senery. In partiular, theonstants i in this setion do not depend on n.Lemma 2.6.5. There exists a onstant 11 > 0 suh that for all n � 11,P �En;�stop nBn;�all paths� � e�n:Proof. We have P (S0 = S2 = 0) > 0 beause the random walk has a positive probabilityto make �rst a step of maximal length L to the right and then a step of maximal length Lto the left. Hene 2 divides the period of the random walk, and the period must be 1 or 2.Therefore there exists 12 > 0 suh that for all n � 12 and for all x; z 2 [�7 � 2n; 7 � 2n℄,the random walk starting at x an reah z with positive probability in 22n�1 or 22n�1 + 1steps: Px �S(22n�1) = z or S(22n�1 + 1) = z� > 0: (2.6.17)We denote by R the set of all admissible piees of path R 2 Z[0;31n[ with startingpoint in [�7 � 2n; 7 � 2n℄. For R 2 R and t 2 N0 , we de�ne the eventE(t; R) := fS(t+ i) = R(i) 8i 2 [0; 31n[ or S(t + 1 + i) = R(i) 8i 2 [0; 31n[g :Let n � maxf12; 10g with 10 as in (2.6.4), and let k 2 [1; 2�n℄. We set tk;n := �k +22n�1and we de�ne random variables Yk(R) as follows: If jS(�k)j � 2n and E(tk;n; R) does nothold, then we set Yk(R) = 0. Otherwise we set Yk(R) = 1. Using the de�nitions of En;�stopand Bn;�all paths, we see thatEn;�stop nBn;�all paths � [R2REn;�stop \( 2�nXk=1 Yk(R) = 0) � [R2RE2�n(R) (2.6.18)with EM(R) := M\k=1 fjS�k j � 2n; �k�1 + 2 � 2n � �k; Yk(R) = 0g



2.6. The key algorithm reonstruts orretly 107for M 2 [1; 2�n℄. Let R 2 R. Sine n � 10, we have 31nL � 2n by (2.6.4). Henetk;n + 1 + 31nL = �k + 1 + 22n�1 + 31nL � �k + 22n. Consequently, f�k + 2 � 22n <�k+1g \ E(tk;n; R) 2 F�k+1; here Fk := �(Si; ~�i; i 2 [0; k℄) denotes the natural �ltrationof random walk and observations with errors. Using the strong Markov property at time�M , we obtainP [EM(R)℄ = P �EM�1(R) \ �jS�M j � 2n; �M�1 + 2n+1 � �M ; YM(R) = 0	��P [EM�1(R) \ fjS (�M)j � 2ng \ E(tM;n; R)℄�P �EM�1(R) \ fjS (�M )j � 2ngPS(�M )(E(22n�1; R))��P [EM�1(R)℄ maxx2[�2n;2n℄Px[E(22n�1; R)℄:An indution argument yieldsP (E2�n(R)) � � maxx2[�2n;2n℄Px(E(22n�1; R))�2�n : (2.6.19)To estimate the right-hand side of (2.6.19), let b 2 N be minimal and let h 2 Nbe maximal suh that P (S1 � S0 2 b + hZ) = 1. We set �2 := E[(S1 � S0)2℄, andLm := f(mb + hy)=pm : y 2 Zg. By the loal entral limit theorem ([6℄, page 132,Theorem (5.2)),limm!1 supy2Lm ����pmh P � Smpm = y�� 1p2��2 exp�� y22�2����� = 0:We apply this with m 2 f22n�1; 22n�1+1g, y := (R0�x)=pm and R0 equal to the startingpoint of R. Note that jR0j � 7 � 2n so that jR0� xj=pm � 16 for all x 2 [�2n; 2n℄. Heneminx2[�2n;2n℄;R2R exp�� (R0�x)22m�2 � > 0. We onlude that there exist onstants 13 > 0 and14 � maxf12; 10g suh that for all n � 14minx2[�2n;2n℄;R2RPx �S(22n�1) = R0 or S(22n�1 + 1) = R0�= minx2[�2n;2n℄;R2RP �S(22n�1)p22n�1 = R0 � xp22n�1 or S(22n�1 + 1)p22n�1 + 1 = R0 � xp22n�1 + 1�� 132�n (2.6.20)We set �min := minf�(j) : j 2 Mg; reall that � is the distribution of the random walkinrements Sk+1 � Sk. The probability that the random walk starting at R0 follows thepath R for the next 31n� 1 steps is bounded below by �31n�1min . Thus, (2.6.20) yieldsminx2[�2n;2n℄;R2RPx(E(22n�1; R)) � 132�n�31n�1min = 152�n�31nminwith 15 := 13��1min. Combining the last inequality with (2.6.18) and (2.6.19), we obtainP �En;�stop nBn;�all paths� � jRj �1� 152�n�31nmin �2�n� (14 � 2n + 1)jMj31n�1 exp �2�n ln �1� 152�n�31nmin �� : (2.6.21)Note that hoosing a path in R one has 14 �2n+1 possible starting points and jsupp(�)j =jMj possibilities for eah step of the path. Using the estimate ln(1� x) � �x, we obtain(2:6:21) � 2n+4jMj31n exp ��152(��1)n�31nmin � = 2n+4jMj31n exp [�15e16n℄



108 Chapter 2. Reonstruting a senery with errors in the observationsand the last expression is � e�n for all n suÆiently large beause 16 = (� � 1) ln 2 +31 ln�min > 0 by our hoie of �.Lemma 2.6.6. There exist Æ4 > 0 suh that for all n 2 N and Æ 2℄0; Æ4[PÆ ((Bnfew mistakes)) � e�n:Proof. Using De�nition 2.6.3 and our onvention " = 1�" we obtain(Bnfew mistakes) = [t2[1n�1;2�212�n[( tXk=t�1n+1Xk > 1�"n) : (2.6.22)Reall that Xk, k � 0, are i.i.d. Bernoulli random variables with parameter Æ under PÆ.Hene EÆ �Ptk=t�1n+1Xk� = 1Æn. By the large deviation priniple (see e.g. [3℄), we havefor all Æ 2℄0; �"[ PÆ tXk=t�1n+1Xk > 1�"n! � exp (�IÆ(�"� Æ)1n) (2.6.23)with rate funtion IÆ(x) = (1� x) log�1� x1� Æ� + x log�xÆ � ; x 2℄0; 1[: (2.6.24)Combining (2.6.22) with (2.6.23) we obtain for all Æ 2℄0; �"[PÆ ((Bnfew mistakes)) � exp ([1 + 12�n℄ ln 2� IÆ(�"� Æ)1n) :SinelimÆ!0 IÆ(�"� Æ) = limÆ!0(1� �"+ Æ) log �1� �"+ Æ1� Æ �+ (�"� Æ) log � �"� ÆÆ � = +1;there exists Æ4 2℄0; �"[ suh that [1 + 12�℄ ln 2 � IÆ(�" � Æ)1 < �1 for all Æ 2℄0; Æ4[. Theassertion of the lemma follows.We will need the following lemma in the proofs of Lemmas 2.6.8, 2.6.10, and 2.6.13.Lemma 2.6.7. There exist "1; 17("0) > 0 suh that for all m with 1m 2 N, "0 2℄0; "1[,w 2 C [0;1m[, and for any admissible piee of path R 2 Z[0;1m[ the following holds:P (d(� ÆR;w) < 1"0m) � 17("0)(2)1mmaxJ P ((� ÆR)jJ = wjJ);where the maximum is taken over all subsets J � [0; 1m[ with ardinality jJ j = 1m �b1"0m and 2 is as in Setion 2.2.1.Proof. Let m be suh that 1m 2 N , let w 2 C [0;1m[, and let R 2 Z[0;1m[ be an admissiblepiee of path. If d(� Æ R;w) < 1"0m, then 1m � b1"0m letters of � Æ R and w agree.Sine there are � 1mb1"0m� possibilities of hoosing 1m�b1"0m out of 1m letters, we haveP (d(� ÆR;w) < 1"0m) � � 1mb1"0m�maxJ P ((� ÆR)jJ = wjJ);



2.6. The key algorithm reonstruts orretly 109where the maximum is taken over all subsets J � [0; 1m[ with ardinality 1m�b1"0m.By Stirling's formula ([1℄, p.24, formula (3.9)) we have for k 2 N , k! = p2�kk+1=2e�k+�(k)with �(k) 2℄0; 1[ and limk!1 �(k) = 0. Thus� 1mb1"0m� � 17("0)'�b1"0m1m �1mwith '(x) = x�x(1�x)�(1�x) and some onstant 17("0) > 0 independent of m. Note that' is ontinuous at 0 with '(0) = 1, and reall that 2 2℄1; C=(C�1)[. There exists "1 suhthat '(x) < 2 for all x 2℄0; "1[. Note that b1"0m=(1m) � "0. The laim follows.Lemma 2.6.8. There exists a onstant 18 > 0 suh that for all n 2 NP ((Bnladder di�)) � 18e�n:Proof. LetJ := �(z1; i1; z2; i2) 2 ([�8 � 2n; 8 � 2n℄� f ;!g)2 : (z1; i1) 6= (z2; i2)	 :By De�nition 2.6.4,(Bnladder di�) = [(z1;i1;z2;i2)2Jfd(wz1;i1;n=3; wz2;i2;n=3) < 10"ng: (2.6.25)Let (z1; i1; z2; i2) 2 J . For k = 1; 2 we set ok := +1 if ik =!, ok := �1 if ik = , andwe set fk(j) := zk + okjL for j 2 [0; 1n=3[. First we prove that there exists a subsetJ � [0; 1n=3[ of ardinality jJ j � 1n=9 suh thatf1(J) \ f2(J) = ?: (2.6.26)We distinguish two ases. Case z1 = z2: By assumption, i1 6= i2. Hene o1 6= o2, and weonlude that (2.6.26) is satis�ed for J =℄0; 1n=3[.Case z1 6= z2: We show by indution over k 2 [1; 1n=9℄ that there exists J withjJ j � k suh that (2.6.26) holds. For k = 1 the set J = f0g has the required property.Suppose there exists J 0 with jJ 0j = k 2 [1; 1n=9 � 1℄ suh that (2.6.26) holds. The setsJ 0i := fi(J 0), i = 1; 2, have ardinality jJ 0ij = jJ 0j � 1n=9� 1. We set�J := fj 2 [0; 1n=3[: f1(j) 62 J 01 [ J 02; f2(j) 62 J 01; and f1(j) 6= f2(j)g :Then j �J j � 1n=3� jJ 01 [ J 02j � jJ 01j � 1 = 1n=3� 3(1n=9� 1)� 1 = 2; note that thereexists at least one j with f1(j) 6= f2(j). In partiular �J is not empty. Let j 2 �J , and setJ := J 0[fjg. Sine f1(j) 62 J 01, we have jJ j = jJ 0j+1. It follows from f1(j) 62 J 02[ff2(j)gthat f1(j) 62 f2(J). Similarly, it follows from f2(j) 62 J 01 [ ff1(j)g that f2(j) 62 f1(J), andwe have proved that (2.6.26) holds for J . By the indution priniple, (2.6.26) holds for aset J � [0; 1n=3[ of ardinality jJ j = 1n=9.Let J � [0; 1n=3[ with jJ j = 1n=9 suh that (2.6.26) holds. Then the wordswzk;ik;n=3jfk(J), k = 1; 2, are independent. Note that P (�k = �k0) = 1=C for k 6= k0.We use Lemma 2.6.7 with m := n=9, "0 := 90"=1 and R equal to the ladder path under-lying wz1;i1;n=3 to obtain P (d(wz1;i1;n=3; wz2;i2;n=3) < 10"n)� P �d(wz1;i1;n=3jf1(J); wz2;i2;n=3jf2(J)) < 10"n�� 17(90"=1)(2)1n=9Cb10"n�1n=9: (2.6.27)



110 Chapter 2. Reonstruting a senery with errors in the observationsSine the intersetion in (2.6.25) is taken over 4(16 �2n+1)2 possible pairs (z1; i1), (z2; i2),it follows from (2.6.27) thatP ((Bnladder di�)) � 4(16 � 2n + 1)217(90"=1)(2)1n=9Cb10"n�1n=9:Note that Cb10"n � exp (10"n lnC). Let 18 > 0 be hosen in suh a way that 4(16 � 2n +1)217(90"=1) � 1822n. ThenP ((Bnladder di�)) � 18en[2 ln 2+10" lnC+(1=9)[ln 2�lnC℄℄:Sine 2 ln 2 + 10" lnC + (1=9)[ln 2 � lnC℄ < �1 by our hoie of " and 1, the laimfollows.Lemma 2.6.9. There exist onstants 19; Æ5 > 0 suh that for all n � 19 and Æ 2℄0; Æ5[PÆ ��Bn;�majority�� � e�n:Proof. Reall the notation from De�nition 2.6.5. Let w1; w3 2 C1n, I 2 IL. Let ri,i � 1, denote all the times s 2 [2�nk=1 [�k + 1n; �k + 22n � 21n℄ suh that Sj[ri; ri + 1n[ isa straight rossing of I from left to right. Clearly, the intervals [ri; ri + 1n[, i � 1, arepairwise disjoint. Let H := �(ri; �i; i � 1). Sine S and X are independent, we know thatonditioned on H, the random variables Xri+j, i � 1, j 2 [0; 1n[, are i.i.d. Bernoulli withparameter Æ under PÆ.We obtain the random variables sI!i + 1n, i � 1, from ri, i � 1, by heking whetherd(~�j[ri + (k � 2)1n; ri + (k � 1)1n[; wk) � 2"n for k = 1; 3. Sine at time ri + 1n � 1the random walk is at the right endpoint of I and at time ri+1 at the left endpoint ofI, the time interval [ri + 1n � 1; ri+1℄ has length � 1n. Consequently, the time inter-vals [ri; ri + 1n[, [ri+1; ri+1 + 1n[ have a distane � 1n � 2 from eah other. Sine�; S; Y are independent of X, we onlude that ~�j[sI!i + k1n; sI!i + (k + 1)1n[, k = 0; 2,i � 1, is independent of �(XsI!i +1n+j; j 2 [1; 1n � 1[; i � 1). Hene onditioned on�H := � �sI!i + 1n; �i; ~�j[sI!i + k1n; sI!i + (k + 1)1n[; i � 1; k = 0; 2� the random vari-ables XsI!+1n+j, j 2 [1; 1n� 1[, are i.i.d. Bernoulli with parameter Æ under PÆ.By the large deviation priniple (see e.g. [3℄), we have for all Æ 2℄0; 1=2[ and n 2 NPÆ-almost surely on the set �jSI!w1;w3j � 2n	PÆ  2nXi=1 Xsi+1n+j � 2n=2����� �H! � exp (�IÆ(1=2� Æ)2n) (2.6.28)with rate funtion IÆ given by (2.6.24). SinelimÆ!0 IÆ(1=2� Æ) = limÆ!0(1/2+Æ) log h1=2+Æ1�Æ i+(1=2�Æ) log h1=2�ÆÆ i = +1;there exists Æ5 > 0 suh that IÆ(1=2�Æ) > 1 for all Æ 2℄0; Æ5[. It follows from (2.6.28) that for all Æ 2℄0; Æ5[ PÆ-almost surely onthe set �jSI!w1;w3j � 2n	PÆ  2nXi=1 Xsi+1n+j � 2n=2����� �H! � exp (�2n) : (2.6.29)



2.6. The key algorithm reonstruts orretly 111Consequently, PÆ �P2ni=1Xsi+1n+j � 2n=2� � exp (�2n). By De�nition 2.6.5, Bn;�majority =Bn;�maj;! \ Bn;�maj; with Bn;�maj;! = \w1;w32C1n \I2ILBn;�;I!maj (w1; w3)and Bn;�maj; de�ned analogously. The event Bn;�;I!maj (w1; w3) holds if and only if eitherjSI!w1;w3j < 2n or jSI!w1;w3j � 2n and P2ni=1XsI!i +1n+j < 2n=2 for all j 2 [1; 1n � 1[.Thus, if Bn;�;I!maj (w1; w3) does not hold, then jSI!w1;w3j � 2n and there exists j 2 [1; 1n� 1[suh that P2ni=1XsI!i +1n+j � 2n=2. Hene�Bn;�maj;!� � [w1;w32C1n [I2IL [j2[1;1n�1[(jSI!w1;w3j � 2n; 2nXi=1 XsI!i +1n+j � 2n2 ) :Sine there are less than 14 � 2n ladder intervals in IL, it follows thatPÆ ��Bn;�maj;!�� � 14 � 2n1nC21n exp (�2n) :We hoose 19 > 0 large enough that 14 � 2n1nC21n exp (�2n) � e�n=2 for all n � 19.The laim follows.Lemma 2.6.10. There exist onstants 20; 21 > 0 suh that for all n � 10 (with 10 asin (2.6.4)) P ((Bnoutside out)) � 21e�20n:Proof. We setJ := 8<:(z; i; R) : R 2 ([�2L �22n; 2L �22n℄n [�6 �2n; 6 �2n℄)[0;1n=2[admissible piee of path, z 2 [�5 � 2n; 5 � 2n℄, i 2 f ;!g 9=; :By De�nition 2.6.6,(Bnoutside out) = [(z;i;R)2J �d(� ÆR;wz;i;n=2) < 3"n	 ;and onsequently,P ((Bnoutside out)) � jJ j max(z;i;R)2J P �d(� ÆR;wz;i;n=2) < 3"n� : (2.6.30)Let (z; i; R) 2 J , and let n � 10. The piee of senery � Æ R depends only on �j[�2L �22n; 2L � 22n℄n [�6 � 2n; 6 � 2n℄, whereas wz;i;n=2 depends only on �j[�5 � 2n� 1nL=2; 5 � 2n+1nL=2℄. Sine n � 10, 1nL=2 � 2n by (2.6.4), and therefore wz;i;n=2 depends only on�j[�6 � 2n; 6 � 2n℄. Sine the senery � is i.i.d. uniformly olored, � Æ R and wz;i;n=2 areindependent and P (�j = �j0) = 1=C for j 6= j 0. ThusP ��(R(j)) = wz;i;n=2(j) 8j 2 J� = Cb3"n�1n=2



112 Chapter 2. Reonstruting a senery with errors in the observationsfor any subset J � [0; 1n=2[ with ardinality jJ j = 1n=2�b3"n. Applying Lemma 2.6.7with "0 = 6"=1 and m = n=2, we obtainP �d(� ÆR;wz;i;n=2) < 3"n� � 17(6"=1)(2)1n=2Cb3"n�1n=2: (2.6.31)The ardinality of jJ j satis�esjJ j � 2(10 � 2n + 1)4L � 22n (C � 1)1n=2 (2.6.32)for the following reason: There are 10 � 2n+ 1 possible values for z, 2 possible values for iand at most 4L�22n possible starting points for R. An admissible piee of path has at eahstep at most jMj � C � 1 possible steps; reall that there are stritly more olors thanpossible steps for the random walk. Hene the number of possible paths R is bounded by4L � 22n (C � 1)1n=2.Clearly, Cb3"n � e(3"n lnC). We hoose 21 > 0 suh that 17(6"=1)2(10�2n+1)4L�22n �21 � 23n. Combining (2.6.30), (2.6.31), and (2.6.32), we obtainP ((Bnoutside out)) � 21en(3 ln 2+3" lnC) �2(C � 1)C �1n=2 :Finally, we set 20 := ��3 ln 2 + 3" lnC + (1=2) ln� 2(C�1)C ��, and the laim followsbeause 20 > 0 by our hoie of " and 1.We will need the following lemma in the proof of Lemma 2.6.12.Lemma 2.6.11. There exists 22 suh that for all n � 22 and for any admissible piee ofpath R 2 Z[0;1n[ with R(0) � R(1n�1) there exists an admissible piee of path �R 2 Z[0;1n[suh that �R(0) = R(0), �R(1n� 1) = R(1n� 1), and the �rst 1n=3 steps of �R are stepsof maximal length L to the right.Proof. Let R 2 Z[0;1n[ be an admissible piee of path. We set x := R(0), y := R(1n�1);note x � y.Suppose R ontains at least 1n=3 steps of maximal length L to the right. Then wede�ne �R 2 Z[0;1n[ to be the admissible piee of path starting at x and ending at y obtainedfrom R by permuting the order of the steps in suh a way that all the steps of maximallength L to the right are at the beginning.If R ontains less than 1n=3 steps of maximal length L to the right, theny � x � �1n3 � 1�L + 21n3 (L� 1) � 1nL� 21n3 : (2.6.33)In this ase, let R1 2 Z[0;t1[ denote the path whih starts at x and goes with maximumsteps to the right until it reahes the interval ℄y � L; y℄. In other words, R1(0) = x,R1(t1 � 1) 2℄y � L; y℄, and for all s 2 [0; t1 � 1[ we have that R1(s+ 1)�R1(s) = L. Lety0 := R1(t1 � 1) be the endpoint of R1. We have (t1� 1)L � y� x and using (2.6.33), weobtain t1 � y � xL + 1 � 1n� 21n3L + 1: (2.6.34)As we notied already in the proof of Lemma 2.6.5, the random walk has period 1 or2. Thus there exists 23 suh that for all z 2℄y � L; y℄ there exists an admissible piee



2.6. The key algorithm reonstruts orretly 113of path of length � 23 starting at z and ending at y. If furthermore the random walkis aperiodi, then 23 an be hosen in suh a way that for all z 2℄y � L; y℄ there existadmissible piees of path of even and odd length � 23 starting at z and ending at y. Wehoose 22 suh that min� 1n3 � 2; 21n3L � 2	 > 23 for all n � 22.Case 1: The random walk is periodi (with period 2). Let R3 2 Z[0;t3[ be an admissiblepiee of path starting at y0, ending at y with t3 � 23. The onatenation R1R3 is anadmissible piee of path starting at x, ending at y of length t1 + t3 � 1n� 1 by (2.6.34).By assumption, R also starts at x and ends at y. Thus by periodiity we have thatl := jRj � jR1R3j � 0 is even. Let R2 be the admissible piee of path starting and endingat y0 whih makes �rst l=2 steps of length L to the right and then l=2 steps of length Lto the left. We set �R := R1R2R3. We have jR1R2j � 1n � 23 � 2 + 21n=3. Sine allsteps of R1 and half of the steps of R2 are maximum steps to the right, �R ontains atleast 1n=3 steps of maximal length L at the beginning. By onstrution, �R starts at xand ends at y.Case 2: The random walk is aperiodi. Let R3 2 Z[0;t3[ be an admissible piee ofpath starting at y0, ending at y of length t3 � 23. We may assume that t3 is even i�1n � t1 is even. Then 1n � t1 � t3 is even, and we an de�ne R2 as before. The sameargument as above shows that �R := R1R2R3 ful�lls the laim.Lemma 2.6.12. There exists 24 suh that for all n � 24P ��Bnreogn straight�� � 18e�n;18 is spei�ed in Lemma 2.6.8.Proof. Let 24 := max f10; 22g with 22 as in Lemma 2.6.11, and let n � 24. We willshow that the following inlusion holds:Bnladder di� � Bnreogn straight: (2.6.35)The laim follows then from Lemma 2.6.8.Suppose the event Bnladder di� holds. Let R1 2 [�7 � 2n; 7 � 2n℄[0;1n[ be an admissiblepiee of path whih is not a ladder path. We set x := R1(0) and y := R1(1n � 1). Wehave to show that there exists an admissible piee of path R2 2 [�8 � 2n; 8 � 2n℄[0;1n[ withstarting point x, endpoint y, and d(� ÆR1; � ÆR2) � 5"n. We assume that x � y. The asex > y is redued to this ase by onsidering the reversed path k 7! R1(1n � 1� k). ByLemma 2.6.11 applied to R1, there exists an admissible piee of path R3 2 Z[0;1n[ suhthat R3(0) = x, R3(1n�1) = y and the �rst 1n=3 steps of R3 are steps of maximal lengthL to the right. Sine y�x 6= (1n� 1)L, at least one step of R3 is not a step of maximumlength to the right. We onstrut an admissible piee of path R4 by permuting the stepsof R3. We set R4(0) := x. The �rst step of R4 is the �rst step of R3 whih is not a step ofmaximum length to the right. Formally we set j := minfi 2 [1; 1n[: R3(i)�R3(i�1) 6= Lg,and de�ne R4(i) := � R3(i); if i 2 [0; 1n[n[1; j℄R3(i� 1) +R3(j)�R3(j � 1); if i 2 [1; j℄:Clearly, R4 is an admissible piee of path of length 1n with R4(0) = x and R4(1n�1) = y.Using that R4 jumps in eah step at most a distane of L, we obtain that jR4(i)j �



114 Chapter 2. Reonstruting a senery with errors in the observationsjR4(0)j+ 1nL = x+ 1nL � 8 � 2n for all i 2 [0; 1n[ beause 1nL � 2n for n � 10. Thesame is true for R3.Sine R3 starts with 1n=3 steps of maximum length L to the right, we have that� ÆR3j[1; 1n=3℄ = wx+L;!;n=3, and by de�nition of R4, we have � ÆR4j[1; 1n=3℄ = wx0;!;n=3with x0 = x+R3(j)�R3(j�1). By onstrution, R3(j)�R3(j�1) 6= L so that x+L 6= x0.Sine R3 and R4 take only values in [�8 � 2n; 8 � 2n℄, we have that x+L; x0 2 [�8 � 2n; 8 � 2n℄.Using that Bnladder di� holds, yields d(wx+L;!;n=3; wx0;!;n=3) � 10"n, and by the triangleinequality, we get that � ÆR1 annot have a distane smaller than 5"n to both � ÆR3 and� Æ R4. Hene there exists i 2 f3; 4g suh that d(� Æ R1; � Æ Ri) � 5"n. Let R2 := Ri inthe de�nition of Bnreogn straight.Lemma 2.6.13. There exist onstants 25; 26 > 0 suh that for all n 2 NP ��Bnsignals�� � 25e�26n:Proof. We show that there exist 25; 26 > 0 suh that for all nP ��Bnsign;r;!�� � 254 e�26n: (2.6.36)Analogously, one proves statements for Bnsign;l;!, Bnsign;l; , and Bnsign;r; . The laim followsfrom these four inequalities and the de�nition of Bnsignals. We setR := 8<:(z; R) : z 2 [�6 � 2n; 6 � 2n℄, R 2[�2L � 22n; 2L � 22n℄[0;1n[ admissible piee of pathwith R(0) < z 9=; :By De�nition 2.6.8, �Bnsign;r;!� = [(z;R)2R fd(� ÆR;wz;!;n) < 5"ng : (2.6.37)Let (z; R) 2 R. By De�nition 2.6.1, wz;!;n(k) = �(z + kL). Note that R(k) < z + kLfor all k 2 [0; 1n[: For k = 0 this is true by assumption. Suppose R(k) < z + kLholds for some k 2 [0; 1n � 1[. Sine the maximal jump length of R is L, we obtainR(k + 1) � R(k) + L < z + (k + 1)L, and the laim follows by indution.We prove by indution over the ardinality of J , thatP ((� ÆR)jJ = wz;!;njJ) = C�jJj (2.6.38)for any J � [0; 1n[: For J = fjg we use that �(R(j)) and wz;!;n(j) = �(z + jL) areindependent beause R(j) < z + jL. Suppose (2.6.38) holds for any J � [0; 1n[ withjJ j = k for some k 2 [1; 1n� 1[. Let J 0 � [0; 1n[ with jJ 0j = k + 1, and let j := maxJ 0.Then �(z+jL) is independent of �(z+j 0L), j 0 2 J 0 nfjg, and of �(R(j 0)), j 0 2 J 0, beauseR(j 0) < z + j 0L � z + jL. HeneP ((� ÆR)jJ 0 = wz;!;njJ 0) = C�1P ((� ÆR)jJ 0 n fjg = wz;!;njJ 0 n fjg)= C�(1+jJ 0nfjgj) = C jJ 0j;for the seond but last equality with used the indution hypothesis. We use Lemma 2.6.7with "0 := 5" and m := n to obtainP (d(� ÆR;wz;!;n) < 5"n) � 17(5"=1)(2)1nCb5"n�1n: (2.6.39)



2.6. The key algorithm reonstruts orretly 115It is easy to see that the ardinality of R is bounded by (12 �2n+1)(4L �22n+1)(C�1)1nCombining this with (2.6.37) and (2.6.39), we obtainP ��Bnsign;r;!�� � 17(5"=1)(12 � 2n + 1)(4L � 22n + 1)Cb5"n�2(C � 1)C �1n :We hoose 25 suh that 17(5"=1)(12 �2n+1)(4L �22n+1) � 2523n=4 for all n 2 N . ThenP ��Bnsign;r;!�� � 254 en[3 ln 2+5" lnC℄�2(C � 1)C �1n :We set 26 := ��3 ln 2 + 5" lnC + 1 ln� 2(C�1)C ��. Sine 26 > 0 by our hoie of " and1, the laim follows.Lemma 2.6.14. There exists a onstant 27 > 0 suh that for all n � 27P �En;�stop nBn;�straight often� � e�n:Proof. Reall De�nition 2.6.9. We will show for all n suÆiently large,P  En;�stop n \I2JL fjS!(I)j � 2ng!! � e�n=2: (2.6.40)A similar onsideration shows that the same estimate is true if we replae S!(I) byS (I), and the laim then follows from the de�nition of Bn;�straight often. Sine the proof isvery similar to the proof of Lemma 2.6.5, we will omitt some of the details.Let I 2 JL. We denote by RI the ladderpath in Z[0;31n[ whih traverses I from left toright. For t 2 N0 we de�ne the event E(t; I) :=�S(t+ i) = RI(i) 8i 2 [0; 31n[ or S(t+ 1 + i) = RI(i) 8i 2 [0; 31n[	 :Let n � 10 with 10 as in (2.6.4), and let k 2 [1; 2�n℄. We set tk;n := �k + 22n�1 andwe de�ne random variables Yk(I) as follows: If jS(�k)j � 2n and E(tk;n; I) does not hold,then we set Yk(I) = 0. Otherwise we set Yk(I) = 1. By De�nition 2.6.9, we haveEn;�stop n \I2JL fjS!(I)j � 2ng! � [I2JLEn;�stop \( 2�nXk=1 Yk(I) < 2n)� [I2JL 2n[j=1En;�stop \8<: j�2(��)nXk=(j�1)2(��)n+1Yk(I) = 09=; : (2.6.41)Using the strong Markov property and indution (see the proof of Lemma 2.6.5, in par-tiular (2.6.19), for a similar argument) we obtain for n � 10 and m;M 2 [1; 2�n℄ withm �MP  En;�stop \( MXk=mYk(I) = 0)! � � maxx2[�6�2n;6�2n℄Px(E(22n�1; I))�M�m+1 : (2.6.42)



116 Chapter 2. Reonstruting a senery with errors in the observationsBy the loal entral limit theorem, there exist onstants 27; 28 > 0 suh that for alln � 27 minx;z2[�6�2n;6�2n℄Px �S(22n�1) = z or S(22n�1 + 1) = z� � 282�n: (2.6.43)The probability that the random walk starting at x makes 31n� 1 onseutive steps ofmaximum length to the right equals �(L)31n�1. Sine all intervals in JL are ontained in[�6 � 2n; 6 � 2n℄, we obtainminx2[�2n;2n℄ minI2JL Px(E(22n�1; I)) � 282�n�(L)31n�1 = 292�n�(L)31nwith 29 := 28�(L)�1. Combining the last inequality with (2.6.42), we obtainP  En;�stop \( MXk=mYk(I) = 0)! � �1� 292�n�(L)31n�M�m+1 : (2.6.44)From (2.6.41) and (2.6.44) it follows thatP "En;�stop n " \I2JL fjS!(I)j � 2ng##�24+[1+℄n �1� 292�n�(L)31n�2[��℄n� 24+[1+℄n exp �2(��)n ln �1� 292�n�(L)31n��� 24+[1+℄n exp ��292[��1�℄n�(L)31n� � 24+[1+℄n exp [�29e30n℄ � e�n=2for all n suÆiently large beause 30 = (�� 1� ) ln 2+ 31 ln�(L) > 0 by our hoie of�.2.6.4 Algn reonstruts with high probabilityProof of Theorem 2.3.5. Suppose �j[�2n; 2n℄ � Algn(�; ~�j [0; 2 � 212�n[ ;  ) � �j[�4 � 2n; 4 �2n℄. Assume  2 C [�kn;kn℄ with k � 1L,  � �j [�2n; 2n℄, and assume �j [�2n; 2n℄ 6=(1)[�2n;2n℄. Then Algn(�; ~�j [0; 2 � 212�n[ ;  )j[�kn; kn℄ =  by the de�nition of Algn (De�-nition 8.5.3) and the de�nition of SolutionPieen (De�nition 9.7.8).In order to show that Algn reonstruts with high probability, we ombine Lemmas2.6.4, 2.6.3, 2.6.2, and 2.6.1 to obtainEn;�stop n En;�reonstrut � �En;�stop nBn;�all paths� [ (Bnfew mistakes) [ (Bnladder di�)[ �Bn;�majority� [ (Bnoutside out) [ �Bnsignals�[ �Bnreogn straight� [ �En;�stop nBn;�straight often� :The laim follows from Lemmas 2.6.5, 2.6.6, 2.6.8, 2.6.9, 2.6.10, 2.6.12, 2.6.13, and 2.6.14.Aknowledgement 2.6.1. This paper was written while the authors were working atEurandom. They thank Eurandom for its hospitality.
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Chapter 3Reonstruting a random seneryseen along a simple random walkpath aepted in Ann. Appl. Probab., 2004.By Heinrih MatzingerLet f�(n)gn2Z be a 2-olor random senery, that is a random oloration of Z in twoolors, suh that the �(i)'s are i.i.d. Bernoulli variables with parameter 12 . Let fS(n)gn2Nbe a symmetri random walk starting at 0. Our main result shows that a.s., � Æ S (theomposition of � and S) determines � up to translation and reetion. In other words,by observing the senery � along the random walk path S, we an a.s. reonstrut � up totranslation and reetion. This result gives a positive answer to the question of H. Kestenof whether one an a.s. detet a single defet in almost every 2-olor random senery byobserving it only along a random walk path. 13.1 IntrodutionA senery is de�ned to be a funtion from Z to f0; 1g. Let � and ~� be two seneries.We say that � and ~� are equivalent i� there exist a 2 Z and b 2 f�1; 1g suh that forall x 2 Z we have �(x) = ~�(a + bx). In this ase we write � � ~�. In other words, twoseneries are equivalent i� they an be obtained from eah other by a shift or a reetion.In everything that follows fS(k)gk�0 will be a simple random walk on Z starting at theorigin. We will denote by � 2 f0; 1gN the olor reord obtained by observing the senery� along the path of the random walk fS(k)gk�0:� := (�(S(0)); �(S(1)); �(S(2)); : : :);i.e. �(k) := �(S(k)) for all k 2 N . We examine the follwoing question: given an unknownsenery �, an we "reonstrut" � if we an only observe � ? Thus, does one pathrealization of the proess f�(k)gk�0 uniquely determine �? The answer in those generalterms is \no". However, under appropriate restritions, the answer will beome \yes".1MSC 2000 subjet lassi�ation: Primary 60K37, Seondary 60G10, 60J75.Key words: Senery reonstrution, jumps, stationary proesses, random walk, ergodi theory.119



120 Chapter 3. Reonstruting a Random Senery seen along a simple random walkThis the main result of this paper. Let us explain these restritions: First, if � and ~� areequivalent, we an in general not distinguish whether the observations ome from � orfrom ~�. Thus, we an only reonstrut � up to equivalene modulo �. Seond, it is learthat the reonstrution will in the best ase work only almost surely. If the random walkfS(k)gk�0 deides to walk only to the left (whih it ould do with probability zero), thenwe obtain no information about the right side of the senery � and thus are not able toreonstrut the senery �. Eventually, Lindenstrauss in [12 ℄ exhibits seneries whih onean not reonstrut. Thus, not all seneries an be reonstruted. However, we prove thata lot of \typial" seneries an be reonstruted up to equivalene and almost surely. Forthis we take the senery � to be the outome of a random proess whih is independentof fS(k)gk�0 suh that the �(k)'s are i.i.d. Bernoulli with parameter 12 . We use thefollowing notation: we write � for the (random) senery: � : k 7! �(k);Z �! f0; 1g.Our main result states that, given only the observation �, almost every senery � an bereonstruted a.s. up to equivalene. Let us state our main theorem:Theorem 3.1.1. Let fS(k)gk�0 and f�(k)gk2Z be two proesses independent of eah othersuh that fS(k)gk�0 is a simple random walk starting at the origin and suh that the�(k)'s are i.i.d. Bernoulli variables with parameter 1/2. Then a.s. � determines � up toequivalene. In other words, there exists a measurable funtion A : f0; 1gN �! f0; 1gZsuh that P (A(�) � �) = 1. (\Measurable" means measurable with respet to the �-algebras indued by the anonial oordinates on f0; 1gN and on f0; 1gZ).We will prove the above theorem by expliitly desribing how to reonstrut � from �.Hene, our approah is onstrutive. We expliitly give a onstrution whih produes a(random) senery �� : Z �! f0; 1g when applied to the observations �. The onstrutedsenery �� is shown to be a.s. equivalent to �. In this way A gets de�ned: A(�) := ��.Let us now make a few historial omments until the end of this setion This paperwas motivated by Kesten's question to me of whether one an a.s. distinguish a singledefet in almost any two olor senery. Let us explain what the senery distinguishingproblem is . Let �; � : Z �!f0; 1g and let fS(k)gk2N be a symmetri random walk onZ. Let the proess f�(k)gk2N be equal to either f� (S(k))gk2N or f� (S(k))gk2N. Is itpossible by observing only one path realization of f� (k)gk2N to say to whih one of thetwo f� (S(k))gk2N or f� (S(k))gk2N, f� (k)gk2N is equal to? (We assume that we know� and �.) If yes, we say that it is possible to distinguish between the seneries � and� by observing them along a path of fS(k)gk2N . Otherwise, when it is not possible to�gure out almost surely by observing f� (k)gk2N alone whether f� (k)gk2N is generatedon � or on �, we say that � and � are indistinguishable. The problem of distinguishingtwo seneries was raised independently by I. Benjamini and by den Hollander and Keane.The motivation ame from problems in ergodi theory, suh as the T; T�1problem (seeKalikov [7℄) and from the study of various aspets of f� (S(k))gn2N, where f�(k)gk2Z israndom. ( See Kesten and Spitzer in [9℄, Keane and den Hollander in [8℄, den Hollanderin [3℄). Benjamini and Kesten showed in [1℄ that one an distinguish almost any tworandom seneries even when the random walk is in Z2. (They assumed the seneries tobe random themselves, so that the �(k)'s and the �(n)'s are i.i.d. Bernoulli.) Kestenin [10℄ proved that when the random seneries are i.i.d. and have four olors, i.e., � and� : Z �!f0; 1; 2; 3g, and di�er only in one point, they an be a.s. distinguished. Heasked whether this result might still hold with fewer olors. The main result of this paperdiretly implies that one an distinguish single defets in almost any senery. In [14 ℄,



3.1. Introdution 121we proved for the three olor ase that one an a.s. reonstrut almost every three olorsenery. We also established that this implies, that one an distinguish single defets foralmost all three olor seneries. In the two olor ase, i.e. in the ase we onsider inthis paper, the same thing is true. This means that our result for senery reonstrutionimplies that one an distinguish single defets in almost all seneries. We state thefollowing orollary to our main result without giving a proof. (The proof that our mainresult implies the following orollary is very similar to the one given in [14℄ for the threeolor ase.)Corollary 3.1.1. Let B designate the set of all two olor seneries. B = f� : Z �!f0; 1gg =f0; 1gZ. Let (B ; �(B )) denote the measurable spae, where �(B ) is the �-algebra induedby the anonial oordinates on B . Let P denote the probability measure on (B ; �(B )) ob-tained by assuming that the �(i)'s are i.i.d. Bernoulli variables with parameter 12 . Thenthere exist a �(B )-measurable set S, suh that P (S) = 1 and suh that for ever senery� 2 S and every senery � whih is equal to � everywhere exept in one point, we havethat � and � are distinguishable.The above orollary says that there are many seneries whih one an distinguish or,in other words, that seneries whih are typial in a ertain sense an be distinguished.However the above result beomes false if one tries to extend it to all pairs of senerieswhih are not equivalent. Reently, Lindenstrauss [12℄ exhibited a non denumerable setof pairs of non-equivalent seneries on Z whih he proved to be indistinguishable. Beforethat, Howard proved in [4℄, [5℄ and [6℄ that any two periodial seneries of Z whih arenot equivalent modulo translation and reetion are distinguishable and that one ana.s. distinguish single defets in periodial seneries. Kesten asked in [11℄ whether thisresult would still hold when the random walk would be allowed to jump. He also askedwhat would happen in the two dimensional ase. L�owe and Matzinger in [13℄ have beenable to prove that one an a.s. reonstrut almost every senery up to equivalene intwo dimensions, provided the senery has a lot of olors. However the problem of thereonstrution of two olor seneries in Z seen along the random walk path of a reurrentrandom walk whih is allowed to jump remains open. In our opinion, this is a entralopen problem at present. Eventually we should also mention that the two olor seneryreonstrution problem for a senery whih is i.i.d. is equivalent to the following problem:let fR(k)gk2Z and fS(k)gk�0 be two independent simple random walks on Z both startingat the origin and living on the same probability spae. (Here we mean that fR(k)gk�0and fR(�k)gk�0are two independent simple random walks both starting at the origin.)Does one path realization of the iterated random walk fR(S(k))gk�0 uniquely determinesthe path of fR(k)gk2Z up to shift and reetion around the origin? If one takes therepresentation of the senery � as a nearest neighbor walk (whih we will de�ne later) forfR(k)gk2Z then it beomes immediately lear that the two problems are equivalent. Weleave it to the reader to hek the details. So the main result of this paper is equivalentto the following result for iterated nearest neighbor walks: one path realization of theiterated random walk fR(S(k))gk�0 a.s. uniquely determines the path of fR(k)gk2Z up toshift and reetion around the origin. This is a disrete analogous of the result of Burdzy[2℄ onerning the path of iterated Brownian motion.



122 Chapter 3. Reonstruting a Random Senery seen along a simple random walk3.2 Reonstruting a �nite piee of the senery �To explain a key idea, we �rst present a solution to a simpli�ed but somewhat unrealistiase:3.2.1 Simpli�ed exampleAssume for a moment that the senery � is non-random, and instead of being a twoolor senery, would be a four olor senery, i.e. � : Z �! f0; 1; 2; 3g. Let us imaginefurthermore, that there are two integers x; y suh that �(x) = 2 and �(y) = 3, but out-side x and y the senery has everywhere olor 0 or 1, (i.e. for all z 2 Z with z 6= x; ywe have that �(z) 2 f0; 1g.) The simple random walk fS(k)gk�0 an go with eah stepone unit to the right or one unit to the left. This implies that the shortest possibletime for the random walk fS(k)gk�0 to go from the point x to the point y is jx � yj.When the random walk fS(k)gk�0 goes in shortest possible time from x to y it goes ina straight way, whih means that between the time it is at x and until it reahes y itonly moves in one diretion. During that time, the random walk fS(k)gk�0 reveals theportion of � lying between x and y. If between time t1 and t2 the random walk goes ina straight way from x to y, (that is if jt1 � t2j = jx � yj and S(t1) = x; S(t2) = y), thenthe word �(t1); �(t1 + 1); : : : ; �(t2) is a opy of the senery � restrited to the interval[minfx; yg;maxfx; yg℄. In this ase, the word �(t1); �(t1 + 1); : : : ; �(t2) is equal to theword �(x); �(x + u); �(x + 2u); : : : ; �(y), where u := (y � x)=jy � xj. Sine the randomwalk fS(k)gk�0 is reurrent it a.s. goes at least one, in the shortest possible way fromthe point x to the point y. Beause we are given in�nitely many observations we ana.s. �gure out what the distane between x and y is: the distane between x and y is theshortest time laps that a \3" will ever appear in the observations � after a \2". When, onthe other hand, a \3" appears in the observations � in shortest possible time after a \2",then between the time we see that \2" and until we see the next \3", we observe a opy of�(x); �(x+u); �(x+2u); : : : ; �(y) in the observations �. This fat allows us to reonstrutthe �nite piee �(x); �(x + u); �(x + 2u); : : : ; �(y) of the senery. Choose any ouple ofintegers t1; t2 with t2 > t1, minimizing jt2 � t1j under the ondition that �(t1) = 2 and�(t2) = 3. A.s. then �(t1); �(t1+1); : : : ; �(t2) is equal to �(x); �(x+u); �(x+2u); : : : ; �(y).A numerial example: Let the senery � be suh that: �(�2) = 0, �(�1) = 2, �(0) = 0, �(1) = 1,�(2) = 1, �(3) = 3, �(4) = 0. Assume furthermore that the senery � has a 2 and a 3 nowhere else thenin the points �1 and 3. Imagine that � the observation given to us would start as follows:� = (0; 2; 0; 1; 0; 1; 3; 0; 3; 1; 1; 1; 1; 0; 2; 0; 1; 1; 3; : : :)By looking at all of � we would see that the shortest time a 3 ours after a 2 in the observations is 4. Inthe �rst observations given above there is however already a 3 only four time units after a 2. The binaryword appearing in that plae , between the 2 and the 3 is 011. We dedue from this that between theplae of the 2 and the 3 the senery must look like: 011.In reality the senery we want to reonstrut has 2 olors only. So, instead of the 2 andthe 3 in the example above we will use a speial pattern in the observations whih willtell us when the random walk is bak at the same spot. One possibility (although not yetthe one we will eventually use) would be to use binary words of the form: 001100 and110011. It is easy to verify that the only possibility for the word 001100, resp. 110011



3.2. Reonstruting a �nite piee of the senery � 123to appear in the observations, is when the same word 001100, resp. 110011 ours in thesenery and the random walk reads it. So, imagine (to give another pedagogial exampleof a simpli�ed ase) the senery would be suh that in a plae x there ours the word001100, and in the plae y there ours the word 110011 , but these two words our inno other plae in the senery. These words an then be used as markers: In order toreonstrut the piee of the senery � omprised between x and y we ould proeed asfollows: take in the observations the plae where the word 110011 ours in shortest timeafter the word 001100. In that plae in the observations we see a opy of the piee of thesenery � omprised between x and y. The reason why the very last simpli�ed example isnot realisti is the following: we take the senery to be the outome of a random proessitself where the �(k) 's are i.i.d. variables themselves. Thus any word will our in�nitelyoften in the senery �. However, if for example the markers in the senery our far awayfrom eah other, then we an still use the above desribed reonstrution strategy: Therandom walk will then be very likely to �rst ross from x to y in a straight way beforemeeting another marker and reating some onfusion. In the next subsetion we explainhow to onstrut the markers whih we are eventually going to use.3.2.2 Representation of the senery � as a nearest neighbor walkThe senery reonstrution problem ontains two main ingredients: A random walkfS(k)gk2N and a \random environment", that is the senery �. The key idea in thispaper is to view the random environment itself as a nearest neighbor walk. In this sub-setion we explain how to do this, by de�ning \the representation of the senery � as anearest neighbor walk". We need the following de�nitions: Let D be an integer interval,i.e. the intersetion between a real interval and the integer numbers Z. We all a funtionT : D ! Z a nearest neighbor walk, i� for eah t1; t2 2 D with jt1 � t2j = 1, we havethat jT (t1) � T (t2)j = 1. In what follows, we will write S for the path of the proessfS(k)gk�0, that is for S : k 7! S(k);N �! Z. Let ' : Z �! f0; 1g be one of the two4-periodi seneries with period 0011 and '(0) = '(1). Suh a senery ' has a verypartiular property: for every point in the senery ', one neighboring point has olor 0,whilst the other one has olor 1. This implies that for any olor reord ' there existsone and only one nearest neighbor walk T generating ' on the senery ' one we knowwhere T starts. We an use this fat to represent a olor reord as a nearest neighborwalk: the nearest neighbor walk representing a sequene of olors is simply de�ned to bethe only nearest neighbor walk generating the olor sequene on ' and starting at a givenpoint, in general the origin. (For this to work the starting point must have the right olor.)A numerial example: Let ' = (01011000101010100 : : :) be a olor reord we want to representas a nearest neighbor walk. Let ' : Z�! f0; 1g be the 4-periodi senery:'(k) : : : 0 0 1 1 0 0 1 1 0 0 1 1 : : :k : : : �4 �3 �2 �1 0 1 2 3 4 5 6 7 : : :De�ne the nearest neighbor walk representing ' to be the only nearest neighbor walk T : N �! Z startingat the origin and generating the sequene ' on ', that is suh that ' Æ T = '. In this example we get:T (t) 0 �1 0 �1 �2 �3 �4 �3 �2 �3 �2 : : :t 0 1 2 3 4 5 6 7 8 9 10 : : :



124 Chapter 3. Reonstruting a Random Senery seen along a simple random walkThe senery � we want to represent as a nearest neighbor walk is however a doublyin�nite sequene. We will thus take the sequene �(0); �(1); �(2); �(3); : : : �rst and de�newith it the portion of the path of the nearest neighbor walk in positive time. Then wetake �(0); �(�1); �(�2); �(�3); : : :, and this de�nes us the part of the nearest neighborwalk in negative time.An example: Let � : Z�! f0; 1g be a senery with the following values lose to the origin:�(k) : : : 1 0 1 0 0 0 1 1 1 0 0 1 : : :k : : : �4 �3 �2 �1 0 1 2 3 4 5 6 7 : : :Designate by R the nearest neighbor walk representing �. Then the part of � to the right of the originde�nes the path of R whih lies in positive time. In this example above, (00111001 : : :) is responsible forthis part of R. We get: R(t) 0 1 2 3 2 1 0 �1 : : :t 0 1 2 3 4 5 6 7 : : :In the same way, the part of � whih lies left to the origin is responsible for the restrition of R to thenegative integers. In our example,(: : : 1010) de�nes that part of R. We get:R(t) : : : 2 1 2 1 0t : : : �4 �3 �2 �1 0We are ready to de�ne R formally:De�nition 3.2.1.Let ' : Z �! f0; 1g designate the following 4-periodi(random) senery:� When �(0) = 0, we set ('(0); '(1); '(2); '(3)) =(0; 0; 1; 1).� When �(0) = 1, we set ('(0); '(1); '(2); '(3)) =(1; 1; 0; 0).The nearest neighbor walk R : Z �! Z representing thesenery � is de�ned to be the only (random) nearest neigh-bor walk R suh that R(0) = 0 and ' Æ R = �, i.e.'(R(k)) = �(k) for all k 2 Z.It is easy to verify that when the �(k)'s are i.i.d. Bernoulli variables with P (�(0) =0) = P (�(0) = 1) = 1=2, then fR(k)gk2Z as well as fR(�k)gk2Z are two independentsymmetri random walks starting at the origin.



3.2. Reonstruting a �nite piee of the senery � 125In �gure 1 below, we illustrate the above numerial example by showing a portion of the graph of R. Forthis we take(�(0); �(1); �(2); �(3); �(4); : : :) = (001110010110001100100001001100100101100100111001 : : :)We get the following piture:
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: : :In the above graph, the label k designates the point (R(k); k).Next we need a few de�nitions:De�nition 3.2.2. Let T : D �! Z be a nearest neigh-bor walk. Let t1, t2 2 D and x1; x2 2 Z, x1 6= x2. Weall (t1; t2) a rossing by T of (x1; x2) i� (T (t1); T (t2)) =(x1; x2) and for all integer t stritly between t1 and t2,T (t) is stritly between x1 and x2. If t2 > t1 we say thatthe rossing (t1; t2) is \positive", otherwise we say thatit is \negative". If jt1 � t2j = jx1 � x2j we say that therossing (t1; t2) is straight.Let (t3; t4) be a rossing by T of (x3; x4). Then, wesay that (t3; t4) is the �rst rossing by T of (x3; x4)during (t1; t2) i� t3; t4 2 [minft1; t2g;maxft1; t2g℄and (t3; t4) is the rossing by T of (x3; x4) whihlies in [minft1; t2g;maxft1; t2g℄ (i.e. t3; t4 2[minft1; t2g;maxft1; t2g℄) and is losest to t1.Let (t1; t2) and (s1; s2) be two rossings by nearest neighbor walk T of (x1; x2). Theneither the intervals:℄ minft1; t2g;maxft1; t2g[ and ℄minfs1; s2g;maxfs1; s2g[are disjoint, or (t1; t2) = (s1; s2) holds. Thus, we an numerate the rossings by T of(x1; x2) in inreasing order of appearane. Thus the above de�nition of \ �rst rossing by



126 Chapter 3. Reonstruting a Random Senery seen along a simple random walkT of (x3; x4) during another rossing" makes sense.In the numerial example of �gure 1, we see that between time 0 and time 3 the nearest neighborwalk R rosses from the point 0 to the point 3 in a straight way. In other words, (0; 3) is a straightrossing by R of (0; 3). Furthermore, R during the time interval (0; 13) rosses the interval (0; 9). Thus,(0; 13) is a rossing by R of (0; 9). Beause (0; 3) 2 (0; 13) we have that the rossing (0; 3) happens duringthe rossing (0; 13). Clearly, (0; 3) is the �rst rossing by R of (0; 3) during the rossing (0; 13). (In theabove example it is also the only one.) The rossing (0; 13), unlike (0; 3), is not a straight one. (32; 51)is a rossing by R of (0; 9). This is the seond rossing by R of (0; 9) after time 0. During the rossing(32; 51) there are 2 rossings by R of the (3; 6). These are: (37; 40) and (45; 48).3.2.3 Loalization testIn this subsetion, we onstrut a test to determine at what times the random walk isbak at the same loation. Combined with the idea of \going in shortest time from x toy", we have the the main ingredients for the reonstrution of a �nite piee of the senery�. If we have suh a test, we an reognize when the random walk is bak at a loation xand at whih times it is bak at loations x and y. We then take a time interval wherethe random walks visits y in shortest possible time after visiting x.This \loalization test" is based on the representation R of the senery � as a near-est neighbor walk. Reall that R is not observable. The omposition of two nearestneighbor walks is again a nearest neighbor walk. Thus, the omposition R Æ S : k 7�!R(S(k)); N �! Z is a nearest neighbor walk. However, every nearest neighbor walkT : N �! Z is uniquely determined by ' Æ T . In the following we setT := R Æ S:We get: ' Æ T = (' ÆR) Æ S = � Æ S = �;i.e. T generates the olor reord � on the senery '. Furthermore, T (0) = 0. Thus T isuniquely determined by the observations �. Hene T is observable. Thus, although R andS are both not known, their omposition R Æ S is observable. We are using the nearestneighborwalk R Æ S to determine when S is bak at the same plae.To illustrate themain idea of the loalization test (and maybe of this paper) we viewthe random walk S on the graph k 7�! (R(k); k) geometrially in two dimensions. Thisde�nes a movement in two dimensions:t 7�! (R(S(t)); S(t))By projeting this movement along the y-axis on the x-axis we get the known 1-dimensionalnearest neighbor walk T . Imagine that the path of R is given, then t 7�! (R(S(t)); S(t))an be viewed as a one-dimensional random walk moving in R2 on the graph of R.Figure 2 illustrates this situation. The graph of R is drawn as a dotted line, as it is not observable.The hand drawn lines with arrows represent the movement of the random walk S on the graph of G.This is the movement t 7�! (R(S(t); S(t))), whih is also not observable. However, the projetion of thismovement onto the horizontal line gives the observable nearest neighbor walk R ÆS, whih is observable.



3.2. Reonstruting a �nite piee of the senery � 127Let �S(k) := S(k + 1)� S(k). In the example of �gure 2 we have that
(�S(0);�S(1);�S(2); : : :)=(+1;+1;+1;+1;+1;+1;+1;�1;+1;+1;+1;+1;+1;�1;+1;+1;+1; : : :)

and R takes on the same values as in �gure 1.
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: : : Imagine that the dotted line representing the graph of R is made out of invisible glas.The random walk S moves invisibly on that glas line, but its projetion onto the x-axis isvisible. Seeing only this projetion, we want to determine when S has returned to the sameplae. S has returned exatly when the 2-dimensional movement t 7�! (R(S(t)); S(t)) hasreturned to the same plae: S(s) = S(t) i� (R(S(s)); S(s)) = (R(S(t)); S(t)). Viewing Ras �x, this means that S is bak at the same plae exatly when the random walk S onthe graph of R has ome bak to the same plae. As shown below, we an statistiallydetermine this with high preision by ounting the number of straight rossings of R Æ Sand their loation. Let us illustrate the idea with �gure 3.



128 Chapter 3. Reonstruting a Random Senery seen along a simple random walk
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: : :In �gure 3, we show two �nite portions of the movement of the random walk S on the graph of R.The �rst one is designated by the letter a whilst the seond one is designated by the letter b. In thisexample a orresponds to the random walk S making the following �rst steps:(�S(0);�S(1);�S(2); : : :) =(+1;+1;+1;+1;+1;+1;+1;�1;+1;+1;+1;+1;+1;�1;+1;+1;+1; : : :)The part b start at time tb suh that S(tb) = 32. Then the random walk S makes the following steps:(�S(tb);�S(tb + 1);�S(tb + 2); : : :) =(+1;+1;+1;+1;+1;+1;+1;+1;+1;+1;�1;+1;+1;+1;+1;+1;+1;�1;+1;+1;+1;+1;�1;+1;+1 : : :)The random walk S from time tb until time tb + 25 performs a rossing of the interval (32,51). Thismeans that at time tb the random walk S is at the point 32 and at time tb +25 it is at the point 51, butstritly in between the time tb until time tb + 25 the random walk S does not visit the points 32 or 51.In �gure 3 if we projet the movement b (of the random walk S on the graph of R) onto the horizontalline, we get the movement of the nearest neighbor walk R Æ S during the time interval from time tb untiltime tb + 25. This is a rossing as well: during that time R Æ S rosses from the point 0 to the point9, that is it rosses the interval (0; 9). During that time S on the graph of R, rosses a portion of thegraph of R whih orresponds itself to a rossing by R. As a matter of fat, between time 32 and time51 the nearest neighbor walk R rosses the interval (0; 9). Following our onvention we say that (32; 51)



3.2. Reonstruting a �nite piee of the senery � 129is a rossing by the nearest neighbor walk R of the interval (0; 9). In part a we see the following: (0; 17)is a rossing by S of (0; 13). On the other hand (0; 13) is a rossing by R of (0; 9). Eventually, (0; 17) isa rossing by R Æ S of (0; 9).The example of �gure 3 illustrates one of the 3 main ombinatorial fats used in thispaper: the omposition T = R Æ S performs a rossing i� during that time S performs arossing of a rossing of R. Let us formulate this as a lemma:Lemma 3.2.1. Let 0 < t1 < t2. (t1; t2) is a rossing by T of the interval (x1; x2) i� thereexist k1; k2 2 Z suh that (t1; t2) is a rossing by S of (k1; k2), and (k1; k2) is a rossingby R of (x1; x2).Let us study next the example of �gure 3 more: during time (14; 17), S performs a straight rossing ofthe interval (10; 13). Furthermore, (10; 13) represents itself a straight rossing by R of the interval (6; 9).This leads to, that R Æ S performs during the time interval (14; 17) a straight rossing of the interval(6; 9). On the other hand, during time (tb; tb + 4) S performs a straight rossing of the interval (32; 37).However (32; 37) is a rossing by R, but not a straight one. It follows that (tb; tb + 4) is a rossing byR Æ S, but not a straight one.The rule is: on a rossing by R whih is not straight it is impossible to get a rossing byR Æ S whih is straight. This is the seond main ombinatorial fat:Lemma 3.2.2. Let 0 < t1 < t2. Then (t1; t2) is a straight rossing by T of the interval(x1; x2) i� there exists k1; k2 2 Z suh that (t1; t2) is a straight rossing by S of (k1; k2)and (k1; k2) is a straight rossing by R of (x1; x2).Looking further at �gure 3, we see that in portion b of the path of S on the graph of R we have:during the rossing (32; 51) the �rst rossing by R of (3; 6) is (37; 40) and the last one is (45; 48). The�rst rossing by S of (37; 40) during tb; tb + 51) is (tb + 5; tb + 8). The �rst rossing during (ta; ta + 25)by R Æ S of (3; 6) is also (tb + 5; tb + 8). Thus, the �rst rossing during (ta; ta + 25) by R Æ S of (3; 6)happens when during (ta; ta + 25) S rosses for the �rst time the �rst rossing by R of (3; 6).We see that a �rst rossing by RÆS orresponds to a �rst rossing by S of a �rst rossingby R. This yields our third ombinatorial fat:Lemma 3.2.3. Let 0 < t1 < t2 < t3 < t4 and 0 < x1 < x2 < x3 < x4. Furthermore, let(t1; t4) be a rossing by R Æ S of (x1; x4).Then (t2; t3) is the �rst rossing during (t1; t4) of (x2; x3) by RÆS i� it is the �rst rossingby S during (t1; t4) of (k2; k3), where (k2; k3) is the �rst rossing by R of (x2; x3) during(k1; k4).To illustrate this, onsider �gure 3 above and �gure 4 below:
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: : :
In �gure 4, the portion b, of the path of the random walk S is traed on the graph of R as a thikdoted line. It is a rossing by S of the rossing (0; 13) by R. The projetion onto the horizontal line ofthis movement is a rossing, too. In �gure 4, the rossing b, that is (tb; tb + 18), is a rossing by S of(0; 13). Furthermore, (tb; tb + 18) is also a rossing by R Æ S of (0; 9).Figure 4 is idential to �gure 3 exept for the path b. In �gure 3, the rossings a and b by S take plae\in di�erent loations", whilst in �gure 4 they take plae \on the same loations". Given �gure 3 and�gure 4, one an see if the rossings a and b by S take plae \in the same loation" or not. However, fromthe input data of the reonstrution problem, only the projetion down onto the horizontal of the pathof S on the graph of R is observable: In both ases , we observe two rossings a and b by R Æ S of thesame interval (0; 9). Based on the observation of those rossings only, we need to infer if \the rossingsour on the same loation" as in �gure 3, or "on di�erent loations" as in �gure 4.More generally: Assume we observe two rossings (t1a; t2a) and (t1b; t2b) by R Æ S ofan interval (0; 3n); this interval instead of any other interval is hosen for notationalonveniene. Beause of lemma 3.2.1, there exist k1a; k2a suh that (k1a; k2a) is a rossingby R of (0; 3n) whilst (t1a; t2a) is a rossing by S of (k1a; k2a). Similarly, there existsk1b; k2b suh that (k1b; k2b) is a rossing by R of (0; 3n) whilst (t1b; t2b) is a rossing by S



3.2. Reonstruting a �nite piee of the senery � 131of (k1b; k2b).In �gure 3, (t1a; t2a) = (0; 17), (k1a; k2a) = (0; 13), t2b = t1b + 25, (k1b; k2b) = (32; 51).We develop a statistial test to determine if the two rossings (t1a; t2a) and (t1b; t2b) by Sour \on the same plae" or not. Its input data are two observed rossings (t1a; t2a) and(t1b; t2b) by R Æ S of the same interval. We de�ne the hypotheses of our test:� Hypothesis H0: during the rossings (t1a; t2a) and (t1b; t2b) the random walk S ison the same rossing of R. More preisely:(S(t1a); S(t2a)) = (S(t1b); S(t2b)).� Hypothesis H1: (S(t1a); S(t2a)) 6= (S(t1b); S(t2b))If H0 holds, then S(t2a) = S(t2b), i.e. the random walk is bak at the same plae.To determine if during two rossings by RÆS the random walk S was at the same plaewe are going to ount the number of ommon straight rossings on three unit intervals.Let us explain how this is done.We �rst, partition the interval (0; 9) in disjoint intervals of length 3. This gives us the 3 intervals: (0; 3),(3; 6) and (6; 9). Then we determine how many of these intervals are rossed in a straight way by R Æ Swhen they get rossed for the �rst time during a and and when they get rossed for the �rst time duringb. In �gure 3, we see that the �rst rossing during a of (0; 3) by R Æ S is straight. However, the �rstrossing during b of (0; 3) by R Æ S is not. Thus, for the interval (0; 3) we don't have a ommon �rststraight rossing. Next omes the interval (3; 6). There, the �rst rossing by R Æ S of (3; 6) during a isnot straight. (That �rst rossing is equal to (5; 10).) On the other hand, the �rst rossing by R Æ S of(3; 6) during b is straight. (It is the �rst rossing (tb+5; tb+8).) Again with the interval (3; 6) we do notobserve a ommon �rst straight rossing between a and b. Eventually the �rst rossing by R Æ S of (6; 9)during a is straight, whilst the �rst rossing by R Æ S of (6; 9) during b is not. So, in total we have zeroommon straight �rst rossings between a and b. When we observe few ommon �rst straight rossingsbetween two rossings a and b by S, we deide that the rossings a and b took plae on di�erent plaes.In the example of �gure 3, the person who only observes RÆS would thus deide that the rossings a andb by S took plae on di�erent plaes. In the ase of �gure 4, the �rst rossing by R Æ S of (0; 3) during aand during b are both straight. So for (0; 3), we have a ommon �rst straight rossing. In �gure 4 again,the �rst rossing by RÆS of (3; 6) during a and during b are both not straight. The �rst rossing by RÆSof (6; 9) during a is straight whilst during b it is not. Again for (6; 9) we do not have a ommon straightrossing. Thus in the ase, of �gure 4, the total number of \straight ommon �rst rossings" equals 1.General ase: Let (t1a; t2a) and (t1b; t2b) be two rossings by R Æ S of the interval (0; 3n).For 0 � m < n, let wa(m) be equal to 1 if the �rst rossing by R Æ S of the interval(3m; 3m+ 3) during (t1a; t2a) is straight, and be equal to 0 otherwise. Let wa denote thebinary word wa(0); wa(1); wa(2); : : : ; wa(n � 1). In the same manner, de�ne the binaryword wb for the rossing (t1b; t2b). The number of ommon straight rossings between aand b is de�ned to be the salar produt:wa � wb := n�1Xm=0wa(m) � wb(m):We use wa � wb as test statisti. What is its distribution under H0 and under H1?



132 Chapter 3. Reonstruting a Random Senery seen along a simple random walkExample: To have a �rst ommon straight rossing in the H0-ase we need three rossings to be straightwhilst in the H1-ase we need four. In order to understand why this is true, look at �gure 4 �rst: wehave there for m = 0 a �rst ommon straight rossing. This means, that when R ÆS rosses during a andduring b for the �rst time (0; 3), we observe in both ases a straight rossing. That we have a ommon�rst straight rossing follows from the fat that: the �rst rossing by R of (0; 3) during (0; 13) is straightand the �rst rossing during a and during b of (0; 3) are both straight as well. In �gure 3, we have thatwa(0) = 1 and wb(0) = 0. For wa(0) �wb(0) to be equal to 1 in �gure one, there is only one thing missing:The �rst rossing (32; 37) by R of the interval (0; 3) should be straight.General ase: Let m 2 N be suh that m < n. Let (k1a; k2a) = (S(t1a); S(t2a)) and(k1b; k2b) = (S(t1b); S(t2b)). Let (k1am; k2am) designate the �rst rossing by R of (3m; 3m+3) during (k1a; k2a). Let (k1bm; k2bm) designate the �rst rossing by R of (3m; 3m+3) during(k1b; k2b). In the ase of hypothesis H0 we have (k1a; k2a) = (k1b; k2b) and (k1am; k2am) =(k1bm; k2bm). We get:� Under H0 : wa(m) � wb(m) = 1 i� the following three rossings are straight:1. the rossing (k1am; k2am) by R of the interval (3m; 3m+ 3)2. the �rst rossing by S during (t1a; t2a) of the interval (k1am; k2am)3. the �rst rossing by S during (t1b; t2b) of the interval (k1am; k2am)� Under H1 : wa(m) � wb(m) = 1 i� the following four rossings are straight:1. the rossing (k1am; k2am) by R of the interval (3m; 3m+ 3)2. the rossing (k1bm; k2bm) by R of the interval (3m; 3m+ 3)3. the �rst rossing by S during (t1a; t2a) of the interval (k1am; k2am)4. the �rst rossing by S during (t1b; t2b) of the interval (k1bm; k2bm)R and S are independent simple random walks. For the simple random walk a rossingof an interval of length 3 is straight with probability 3=4, as is shown below in fat e.5.Under H0, there are 3 suh rossings involved, whilst under H1 there are 4. This, is whyP (wa(m) � wb(m) = 1) = (3=4)3 in the ase H0 and P (wa(m) � wb(m) = 1) = (3=4)4 inthe ase H1. By the Markov property, the variables wa(m) � wb(m) for di�erent m's areindependent. This gives:The distribution of the test statisti wa�wb is equal to:� Under H0: Binomial with parameter n and(3=4)3� Under H1: Binomial with parameter n and(3=4)4Let  := 12 ��34�3 + �34�4�.



3.2. Reonstruting a �nite piee of the senery � 133Loalization Test with parame-ter n:� When wa�wb >  �n, we aeptH0.� When wa�wb �  � n, we aeptH1.The above statement about the distribution of the test statisti holds only if we seletthe pair of rossings ((t1a; t2a); (t1b; t2b)) in an appropriate manner. For example, if wewould hoose (t1a; t2a) to be the �rst rossing by R Æ S of (0; 3n) suh that wa(m) = 1for all m < n and (t1b; t2b) be the �rst rossing by R of (0; 3n) suh that wa(m) = 1 forall m < n, then obviously the above statement about the distributions would not hold.In lemma 3.2.4 below, the statement is made rigorous. For this we need to numerate therossings by R Æ S of (0; 3n), in an appropriate manner. By lemma 3.2.1 we know thatany rossing by R Æ S of (0; 3n) an be biewed as a rossing by S of a rossing by R of(0; 3n). A rossing by R Æ S of (0; 3n) an thus be desribed in a unique manner as thei-th rossing by S of the z-th rossing by R of (0; 3n). We index the rossings by R of(0; 3n) by the set Z� := Z� f0g. We all z-th rossing by R of (0; 3n):If z > 0, the z-th rossing by R(k); k � 0 of (0; 3n).If z < 0, the jzj-th rossing by R(k); k � 0 of (0; 3n), where we ount in reverse orderstarting at zero.Thus, we index the rossings by R Æ S of (0; 3n) by the set N� �Z�. For (i; z) 2 N� � Z�,the (i; z)-th rossing by R Æ S of (0; 3n), is the rossing whih orresponds to the i-throssing by S of the z-th rossings by R of (0; 3n). Piking (t1a; t2a) and (t1a; t2a) byhosing non-randomly two elements in the index set N� �Z�, makes the statement aboutthe distribution of the test statisti rigorous. This is the ontent of the next lemma.Lemma 3.2.4. Let za; zb 2 Z� and let ia; ib 2 N� be non-random numbers. Let (t1a; t2a)and (t1b; t2b) be the two rossings by RÆS of (0; 3n) for whih: (t1a; t2a) is the ia-th rossingby S of the za-th rossing by R of (0; 3n) and (t1b; t2b) is the ib-th rossing by S of thezb-th rossing by R of (0; 3n). Then:� H0-ase, (i.e. ase where za = zb and (S(t1a); S(t2a) = (S(t1b); S(t2b))):wa � wb has Binomial distribution with parameter n and (3=4)3� H1-ase, (i.e. ase where za 6= zb and (S(t1a); S(t2a) 6= (S(t1b); S(t2b))):wa � wb has Binomial distribution with parameter n and (3=4)4Note that the index in N��Z� of a rossing by RÆS of (0; 3n) is not observable, (althoughthe rossings by R Æ S of (0; 3n) are themselves observable.) However, by large deviationfor the Binomial distribution, lemma 3.2.4 garanties that the probability of an error byour loalization test is exponentially small in n, when the rossings ompared orrespondto two non-random indexes in N��Z�. We an not pik rossings by their index in N��Z�for our reonstrution algorithm, sine these are not observable. Hene, the rossings weselet in an observable manner have slightly di�erent distributions from the distributions



134 Chapter 3. Reonstruting a Random Senery seen along a simple random walkmentionned in lemma 3.2.4. But piking the rossings in an sensible, observable mannermodi�es the probability of an error only slightly, so that it remains small. Next, we needto mention a few fats whih are useful for the proof of lemma 3.2.4:Fat a Let M(k)k2N be a Markov hain with state spae M. Let a0; a1; a2; : : : bea sequene of (non random) elements of M. Let �(i+1) denote the �rst passage timeof M(k)k2N at a(i+1) after �i . Reursively: �0 := minfk � 0jM(k) = a0g. Then,�i+1 := minfk � �ijM(k) = ai+1g. Let Zi be the path of M between �i and �i + 1:Zi := (M(�i);M(�i + 1);M(�i + 2); : : : ;M(�i+1)) :Then, the Zi's are independent of eah other.Fat b Let X and Z be two random objets living on the same spae and independentof eah other. Let A be an event that depends only on X, that is A 2 �(X). Thenonditional on A, X and Z are still independent of eah other. Furthermore onditionalon A, Z has the same marginal distribution. Thus:L (X;ZjA ) = L (XjA )
 L (Z) :Fat  Let X0; X1; : : : ; Xn be a olletion of random objets that are independent ofeah other. Let A0; A1; : : : ; An be a olletion of events suh that for eah 0 � i � n,Ai 2 �(Xi). Let A := \ni=0Ai. Then onditionally on A, the Xi's are still independent ofeah other: L (X0; X1; : : : ; Xn jA) = nYi=0 L (Xi jAi ) :Fat d Let X0; X1; : : : ; Xn be a olletion of random objets that are independent ofeah other. Let Y0; Y1; : : : ; Yn be a olletion of random objets satisfying: onditionallyon �(Xmj0 � m � n), the Ym's are independent of eah other and their distributiondepends only on their respetive Xm's. More preisely:L (Ym jX0; X1; : : : ; Xn ) = L (Ym jXm ) :Let Zm := (Xm; Ym). Then, the Zm's are independent of eah other.Fat e Let l > 0 be a (non random) natural number. Let �l designate the �rst passagetime of S at l. �l := minftjS(t) = lg. Let �0 designate the �rst reurrene time of S at0. �0 := minft > 0jS(t) = 0g. Let Eross l designate the event f�l < �0g. Let (j1i; j2i)be an inreasing olletion of intervals indexed by i 2 N suh that the following holds:j1i < j2i � j1(i+1). Assume furthermore, that j10 = 0. Let (s1i; s2i) denote the �rst rossingby S of (j1i; j2i). For natural numbers s < t let S(s; t) := (S(s); S(s+1); : : : ; S(t)). Reallthat �(s) := S(s+1)�S(s). De�ne �(s; t) := (�(s);�(s+1); : : : ;�(t�1)). With thesede�nitions the following things hold:1. The S(s1i; s2i)'s for various i's are independent of eah other. Similarly, the �(s1i; s2i)'sare independent of eah other. Proof of e.1: Take the sequene j20; j21; j22; : : : forthe sequene a0; a1; a2; : : : of fat a. The stopping times of fat a are then equal



3.2. Reonstruting a �nite piee of the senery � 135to: �i := s2i. The rossing (s1i; s2i) happens between time �(i�1) and time �i. Byfat a, the piees of path of S during the time intervals [�(i�1); �i℄ are independentof eah other. Sine the rossings (s1i; s2i) for di�erent i's happen during di�erentindependent time intervals they are also independent.2. The distribution of S(s1i; s2i) depends only on the length di := j2i � j1i. It is equalto the distribution of the path of the random walk starting at the point j1i until itreahes j2i, onditioned that it �rst meets j2i before meeting j1i. In other words, itis onditioned on, that the random walk S makes a rossing of (j1i; j2i). The randomwalk starting at j1i is de�ned as: fSi(t) := S(t) + j1igt2N. With this notation, thedistribution of S(s1i; s2i) equals:L (Si(0; �di) jEross di )or equivalently: L0�S(t; �) ������ S(t) = j1i and after time t, S vis-its by S j2i before it return for the�rst time to j1i 1Awhere t designates any non-random time, and � designates the �rst visit after t toj2i.3. The distribution of �(s1i; s2i) depends only on the length di. It is equal to thedistribution of (�(0);�(1); : : : ;�(�di)) onditional on the event that the randomwalk �rst meets di before meeting 0. Thus,L (�(s1i; s2i)) = L (�(0);�(1); : : : ;�(�di) jEross di ) :4. The joint distribution of the path of S during the rossings (s1i; s2i) is not hangedif we ondition on the event that the rossings (s1i; s2i) have to our during arossing. More preisely, we are onsidering the joint distribution of the (s1i; s2i)'sfor 0 � i � n. We ondition under the event that we have a rossing by S of (0; j2n)starting at zero. After onditioning we get the same distribution as before:L(S(s10; s20);S(s11; s21); : : : ; S(s1n; s2n)) =L (S(s10; s20); S(s11; s21); : : : ; S(s1n; s2n) jEross j2n ) :Proof of e.4: Let E2ross(i) be the event that S does not visit 0 during (s1i; s2i).E2ross(i) := fS(t) 6= 0; 8t 2 (s1i; s2i℄g. In a similar manner de�ne: E1ross(i) :=fS(t) 6= 0; 8t 2 (s2(i�1); s1i℄g. We getEross j2n = ( n\i=0E1ross(i)) \ ( n\i=0E2ross(i)):The di�erent piees of paths from the olletion:fS(s1i; s2i) j 0 � i � ng [ fS(s1(i�1); s1i) j 0 < i � ng



136 Chapter 3. Reonstruting a Random Senery seen along a simple random walkare independent of one another. Thus, we are exatly in the situation of fat .Applying  to fS(s1i; s2i) j 0 � i � ng, we �nd thatL (S(s10; s20); S(s11; s21); : : : ; S(s1n; s2n) jEross j2n ) (3.2.1)equals 
ni=0L �S(s1i; s2i) ��E2ross(i)� :However, sine (s1i; s2i) is a rossing by S of (j1i; j2i) where 0 � j1i; j2i, it followsthat a.s. S during (s1i; s2i) does not visit 0. Thus the event E2ross(i) is the almostsure event. Hene: L(S(s1i; s2i) j E2ross(i)) = L(S(s1i; s2i)):This proves that the distribution 3.2.1 equals
ni=0L(S(s1i; s2i)). The last expression,by e.1, is however the joint distribution of the \unonditional" S(s1i; s2i)'s.5. The probability that a rossing by S of an interval of length 3 is straight equals 3=4.Thus, if di = 3, we have P (s2i � s1i = 3) = 34 :Proof of e.5: We need to alulate the probability P (�3 = 3jEross 3). Eross 3 isthe event that before oming bak to zero, the random walk S �rst visits 3. It ando it in exatly 3; 5; 7; : : : steps. For eah given number of steps there is preiselyone path. The reason is that when the random walk is in the interval [0; 3℄, in orderto not reah the border, there is always only one possible step. Any path of length2k+1 has probability (1=2)2k+1. The path of length 3 is the straight path. We �nd:P (�3 = 3 jEross 3 ) = P (�3 = 3)P (Eross 3) = �12�3P1k=1 �12�2k+1 = 34 :Note that fat e holds for any simple random walk.Fat f Let x1 < x2 � y1 < y2. Let (t1xi; t2xi) designate the i-th rossing by S of(x1; x2). Let (t1yi; t2yi) designate the i-th rossing by S of (y1; y2). Then, (S(t1xi; t2xi))i�0is independent of (S(t1yi; t2yi))i�0. Proof of f: Let �j designate the j-th visit by S to thepoint x2. This de�nes a renewal proess and a regenerative proess. Sine the randomwalk S an not jump, during eah renewal period, it an either spend the whole time in℄1; x2[ or in ℄x2;1[. During the same renewal period, S an not visit both ℄1; x2[ and℄x2;1[. This implies that a rossing by S of (x1; x2) and rossing by S of (y1; y2) an neverour during the same renewal period. The renewal periods are independent of eah other,i.e. the piees of path S(�j; �j+1) are independent for various j's. Sine the rossings by Sof (x1; x2) and the rossings by S of (y1; y2), our during di�erent independent renewaltimes, it follows that (S(t1xi; t2xi))i�0 is independent of (S(t1yi; t2yi))i�0.



3.2. Reonstruting a �nite piee of the senery � 137Fat g Let x1 < x2 be integer numbers. Let (t1xi; t2xi) designate the i-th rossing by Sof (x1; x2). Then, the piees of path S(t1xi; t2xi) are independent of eah other for variousi's. Proof of g: Assume without loss of generality that 0 < x1 < x2. Let the sequenea0; a1; a2; : : : be equal to the alternating sequene x1; x2; x1; x2; x1; : : :. De�ne like in fata the stopping times �j. In other words, �0 designates the �rs visit by S to a0 and �(j+1)designates the �rst visit by S after time �j to the point a(j+1). The piee of path inbetweenstopping times are by fat a independent of eah other. In other words, the S(�j; �(j+1))'sfor di�erent j's are independent. However, in eah time interval [�j; �(j+1))℄ there an beat most one rossing (t1xi; t2xi). It follows that the S(t1xi; t2xi) are independent of eahother.Notations Let 0 � m < n. Let (k1za; k2za), resp. (k1zb ; k2zb), designate the za-th, resp.zb-th rossing by R of (0; 3n). Let (k1am; k2am), resp. (k1bm; k2bm) designate the �rstrossing by R during (k1za; k2za), resp. (k1zb; k2zb), of(3m; 3m + 3). Let wRa (m), resp. wRb (m) designate the Bernoulli variable whih is equalto one i� (k1am; k2am), resp. (k1bm; k2bm) is a straight rossing. Let (t1am; t2am), resp.(t1bm; t2bm) designate the �rst rossing by S during (t1a; t2a), resp. (t1b; t2b) of (k1am; k2am),resp. (k1bm; k2bm). Let wSa (m), resp. wSb (m) designate the Bernoulli variable whih is equalto one i� (t1am; t2am), resp. (t1bm; t2bm) is a straight rossing. With this notation and bylemma 3.2.1, 3.2.2 and 3.2.3, we get wSa (m)�wRa (m) = wa(m) and wSb (m)�wRb (m) = wb(m).Hene, the test statisti wa � wb is equal to:n�1Xm=0wSa (m)wRa (m)wSb (m)wRb (m):Note that the produts wSa (m)wRa (m)wSb (m)wRb (m) are Bernoulli random variables. Thusto prove lemma 3.2.4, we only need to prove that these produtswSa (m)wRa (m)wSb (m)wRb (m) for m = 0; : : : ; n� 1 are i.i.d. random variables suh that:� Case H0: P �wSa (m)wRa (m)wSb (m)wRb (m) = 1� = �34�3 (3.2.2)� Case H1: P �wSa (m)wRa (m)wSb (m)wRb (m) = 1� = �34�4 (3.2.3)Proof of lemma 3.2.4 We need to distinguish two ases:Case H0: In this ase za = zb and wRa (m) = wRb (m) for all 0 � m < n. Thus,wSa (m)wRa (m)wSb (m)wRb (m) = wSa (m)wRa (m)wSb (m):It follows: P (wa(m)wb(m) = 1) = P ((wSa (m)wSb (m)) = 1; wRa (m) = 1):The right side of the last equality an be written as:P �wSa (m)wSb (m) = 1 ��wRa (m) = 1� P (wRa (m) = 1): (3.2.4)



138 Chapter 3. Reonstruting a Random Senery seen along a simple random walkWe have that:P �wSa (m)wSb (m) = 1 ��wRa (m) = 1� =E � P �wSa (m)wSb (m) = 1��R(k); k 2 Z� ��wRa (m) = 1� (3.2.5)The rossings (t1a; t2a) and (t1b; t2b) are rossings by S of the random interval (k1za; k2za).So fat g does not diretly apply. However, by onditioning on �(R(k); k 2 Z) the interval(k1za; k2za) is no longer random and we an apply fat g: Conditioned on �(R(k); k 2 Z),S(t1a; t2a) and S(t1b; t2b) are independent of eah other. Conditional on �(R(k); k 2 Z),wSa (m) only depends on S(t1a; t2a), whilst wSb (m) only depends on S(t1b; t2b). Hene whenwe ondition on R, wSa (m) and wSb (m) beome independent. We get:P �wSa (m)wSb (m) = 1 jR(k); k 2 Z) =P �wSa (m) = 1��R(k); k 2 Z� � P �wSb (m) = 1��R(k); k 2 Z� :When wRa (m) = 1, then the rossing (k1am; k2am) has length 3, i.e. jk1am � k2amj = 3.Thus, by fat e.4 and e.5 we �nd that P (wSa (m) = 1jwRa (m) = 1) = 3=4 and P (wSb (m) =1jwRa (m) = 1) = 3=4. So, when wRa (m) = 1 holds, we �nd thatP �wSa (m)wSb (m) = 1��R(k); k 2 Z� = �34�2 :This implies that the right side of equality 3.2.5 is equal toE[(3=4)2jwRa (m) = 1℄ = (3=4)2. Plugging this into 3.2.4, �nishes to establish equality3.2.2. Next we need to demonstrate the independene of the produts wSa (m)wSb (m)wRa (m)for 0 � m < n in the ase H0. Conditional on �(R(k); k 2 Z) all of the following holds:Aording to fat g, S(t1a; t2a) is independent of S(t1b; t2b). But the wSa (m)'s for variousm's depend only on S(t1a; t2a) and the wSb (m)'s for various m's depend only on S(t1b; t2b).Thus, (wSa (m))0�m<n is independent of (wSb (m))0�m<n . Furthermore, by fat e.1, thewSa (m)'s, resp. the wSb (m)'s for various m's are independent of eah other. This leads tothat the produts wSa (m)wSb (m) are independent of eah other. (All the last argumentswere meant to hold onditionally on �(R(k); k 2 Z)).By fat e.1, the R(k1am; k2am)'s are independent among eah other for various m's.This puts as in the ase of fat d: Take for this R(k1am; k2am) to be Xm and Ym tobe wSa (m)wSb (m). Conditional on (R(k1am; k2am))0�m<n the wSa (m)wSb (m)'s are indepen-dent of eah other and the onditional distribution of wSa (m)wSb (m) depends only onR(k1am; k2am). Fat d tells that in this ase the random pairs(wSa (m)wSb (m); R(k1am; k2am)) for 0 � m < n must be independent. It follows that theproduts wSa (m)wSb (m)wRa (m) are also independent of eah other.Case H1: In this ase the rossing (k1za; k2za) is di�erent from the rossing (k1zb; k2zb).Fat g implies thatR(k1za; k2za) is independent ofR(k1zb; k2zb). This implies that (R(k1am; k2am))0�m<nis independent of (R(k1bm; k2bm))0�m<n. Conditioned on �(R(k); k 2 Z), the ross-ings (t1a; t2a) and (t1b; t2b) by S are rossing of non random intervals. Hene, ondi-tional on �(R(k); k 2 Z) and by fat f, S(t1a; t2a) and S(t1b; t2b) are independent ofone another. Fat e.2 implies that onditional on �(R(k); k 2 Z), the distribution of(S(t1am; t2am))0�m<n, resp.(S(t1bm; t2bm))0�m<n depends only on (R(k1am; k2am))0�m<n,



3.2. Reonstruting a �nite piee of the senery � 139resp. (R(k1bm; k2bm))0�m<n. Thus, fat d applies, and we get that ((S(t1am; t2am);R(k1am; k2am)))0�m<n is independent of ((S(t1bm; t2bm); R(k1bm; k2bm)))0�m<n. Note thatwSa (m)wRa (m), resp. wSb (m)wRb (m) is �((S(t1am; t2am); R(k1am; k2am))), resp. �((S(t1am; t2am); R(k1am; k2am)))measurable. Thus,(wSa (m)wRa (m))0�m<n is independent of (wSb (m)wRb (m))0�m<n.Conditionally on (R(k1bm; k2bm))0�m<n, the rossings by S, (t1am; t2am) for 0 � m < nare rossings of non-random intervals. Hene, fat f applies so that onditionally on(R(k1bm; k2bm))0�m<n the piees of paths S(t1am; t2am) are independent of eah other forvarious m's. By fat e.2 and e.4, onditionally on (R(k1bm; k2bm))0�m<n, the distributionof S(t1am; t2am) depends only on (R(k1am; k2am)). However, by fat e.1, the piees of paths(R(k1am; k2am)) are independent of eah other for various m's. Thus, we an apply fatd, and get that the pairs: (R(k1am; k2am); S(t1am; t2am)) for 0 � m < n are independent ofeah other. Sine, wSa (m)wRa (m) is �((R(k1am; k2am); S(t1am; t2am))-measurable, it followsthat the produts wSa (m)wRa (m) for 0 � m < n are independent of eah other. In a similarway, one an show that the produts wSb (m)wRb (m) for 0 � m < n are independent ofeah other. It follows that the produts wSa (m)wRa (m)wSb (m)wRb (m) for various m's arei.i.d.. By independene of a and b, we have that:P �wSa (m) wRa (m)wSb (m) wRb (m) = 1� =P �wSa (m)wRa (m) = 1�P �wSb (m)wRb (m) = 1� :The right side of the last equality is equal to P (wSa (m)wRa (m) = 1)2, beause P (wSa (m)wRa (m) =1) = P (wSb (m)wRb (m) = 1). Furthermore:P �wSa (m)wRa (m) = 1� = P �wSa (m) = 1 ��wRa (m) = 1�P �wRa (m) = 1� :By fat e.5, P �wRa (m) = 1� = 3=4. When wRa (m) = 1, then jk1am�k2amj = 3. jt1am�t2amjdesignates the �rst rossing by S of (k1am; k2am). Thus by fat e.5, P �wSa (m) = 1 ��wRa (m) = 1� =3=4. We are done with proving equation 3.2.3.3.2.4 Details of the reonstrution algorithmWe gave already the main ideas, on how to reonstrut a �nite piee of senery. In thissubsetion we desribe the tehnial details. Let (kn+1 ; kn+2 ) be the �rst rossing after time0 by R of the interval (0; 3n). In other words: kn+1 ; kn+2 � 0 and for all s; t � 0 suh that(s; t) is a rossing by R of the interval (0; 3n) we have kn+1 � s and kn+2 � t.Let (kn�1 ; kn�2 ) be the last rossing before time 0 by R of the interval (0; 3n). In otherwords: kn�1 ; kn�2 � 0 and for all s; t � 0 suh that (s; t) is a rossing by R of the interval(0; 3n) we have kn�1 � s and kn�2 � t.In the numerial example of �gure 1, we have that: (k3+1 ; k3+2 ) = (0; 13). In other words,(0; 13) is the�rst rossing after zero by R of (0; 9). The part of the graph z 7! R(z) with z < 0 is not represented in�gure 1, so we an not see there (k3�1 ; k3�2 ).The reonstrution algorithm whih reonstruts a �nite piee of the senery �, reon-struts the word �(kn�2 ); �(kn�2 + 1); �(kn�2 + 2); : : : ; �(kn+2 ) or its transpose. It ahievesthis by reognizing a time interval (r; s) during whih the nearest neighbor walk S goesin a straight way: from the point kn�2 to the point kn+2or



140 Chapter 3. Reonstruting a Random Senery seen along a simple random walkfrom the point kn+2 to the point kn�2 .(r; s) is thus a straight rossing by S of (kn�2 ; kn+2 ) or of (kn+2 ; kn�2 ). During suh astraight rossing (r; s) the observations reveals the piee of the senery � whih is om-prised between kn�2 and kn+2 : �(r); �(r + 1); �(r + 2); : : : ; �(s) is equal to the word�(kn�2 ); �(kn�2 + 1); �(kn�2 + 2); : : : ; �(kn+2 ) or its transpose. The reonstrution algorithm\for a �nite piee of senery" depends on a parameter n. That is why we will all itthe reonstrution algorithm at level n. Thus, we have a olletion of algorithmsindiesed by n. Using these algorithms for inreasing n's will allow us to reonstrutinreasing �nite piees of the senery � and eventually to reonstrut the whole senery� up to equivalene. (As a limit, after in�nite time.) We an already mention here thatthe reonstrution algorithm at level n does not ahieve his goal in 100 perent of theases: rather it has a small failure probability. However this failure probability is �nitelysummable over n. This insures that only a �nite number of the �nite size reonstrutionswill ontain errors. This �nite number of errors have no inuene on the �nal total re-onstrution, sine that one is taken to be a limit.Next we need a few de�nitions and notations: let z1; z2 2 Z be suh that jz1 � z2j is amultiple of 3, that is there exists z 2 Z suh that z2 � z1 = 3z. Let (s1; s2) be a rossingby R Æ S of (z1; z2). Let, for 0 � m < jzj, w(m) be equal to 1 i� the �rst rossing byR ÆS of (z1+3m(z=jzj); z1+(3m+3)(z=jzj)) during (s1; s2) is straight and equal to zerootherwise. We write w(s1;s2) for the binary word:w(0)w(1)w(2) : : :w(jzj � 1)and all it the binary word assoiated with the rossing (s1; s2) by R Æ S.Among the two rossings by R, (kn+1 ; kn+2 ) and (kn�1 ; kn�2 ), let (kn1a; kn+2a ) designate theone of the two whih gets rossed �rst by S. In a similar way, let (kn1; kn2) designate theother one. In this way, if kn+2 gets visited by S before kn�2 , we have that (kn1a; kn+2a ) equals(kn+1 ; kn+2 ). Otherwise, (kn1a; kn2a) equals (kn�1 ; kn�2 ).Let (tn1i; tn2i) designate the i-the rossing by R ÆS or the interval (0; 3n). Let wni designatethe binary words assoiated with the rossing (tn1i; tn2i). Thus:wni := w(tn1i ;tn2i)For z 6= 0 with z 2 Z, let (kn1z; kn2z) designate the z-th rossing by R of (0; 3n). (By thiswe mean that if z > 0 then (kn1z; kn2z) is the z-th rossing after 0 by R of (0; 3n). If z < 0,(kn1z; kn2z) designates the jzj-last rossing before 0 by R of (0; 3n).) Note that with thisnotation, we have that (kn11; kn21) = (kn+1 ; kn+2 ) and (kn1(�1); kn2(�1)) = (kn�1 ; kn�2 ). Beause Sstarts at the origin, it an not reah any z-th rossing (kn1z; kn2z), with jzj > 1 before it hasnot rossed (kn+1 ; kn+2 ) or (kn�1 ; kn�2 ) . By lemma 3.2.1, (tn11; tn21) is also the �rst rossingby S of a rossing by R of (0; 3n). It follows, that (tn11; tn21) is obligatorily a rossing by Sof either (kn+1 ; kn+2 ) or (kn�1 ; kn�2 ). Thus, (tn11; tn21) is a rossing by S of (kn1a; kn2a).The above disussion suggests a method for onstruting stopping times whih with highprobability will stop the random walk at the point kn2a. Apply for this the loalization testto the two rossings: (tn11; tn21) and (tn1i; tn2i). If the test deides that (tn11; tn21) and (tn1i; tn2i)are rossings by S of the same interval (i.e. Hypothesis H0), deide that S(tn2i) = kn2a. Let�n(i) designate the i-th stopping time obtained by trying to stop the random walk S atkn2a . More preisely, �n(i) is equal to the i-th, tn2j for whih:wnj � wn1 >  � n:



3.2. Reonstruting a �nite piee of the senery � 141The salar produt for binary words of the same length � is de�ned in the followingway: let w = w(0)w(1)w(2):::w(k) and v = v(0)v(1)v(2):::v(k) be two binary words.w � v :=Pkl=0w(l) � v(l). We de�ne the relation �: w � v i� for all l with 0 � l � k wehave that w(l) � v(l). We de�ne the transpose of the word w and write w� for the wordw� := w(k)w(k � 1)w(k � 2):::w(1).Let (tn1a; tn2a) denote the �rst rossing by S of the interval (kn1a; kn2a). We have that(tn1a; tn2a) = (tn11; tn21). Let (tn1; tn2) denote the �rst rossing by S of the interval (kn1; kn2).As mentioned, (tn1a; tn2a) is also the �rst rossing by R Æ S of the interval (0; 3n), and thusis observable. Let wna designate the binary word assoiated with the rossing (tn1a; tn2a) byR Æ S. Using our notation: wna := w(tn1a;tn2a)Note that (tn1; tn2) is also a rossing by R Æ S of the interval (0; 3n). Let w denote thebinary word assoiated with the rossing (tn1; tn2) by R Æ S. (tn1; tn2) and wn are notdiretly observable. We an only estimate them. We denote by ŵn our estimate for wnand by (t̂n1; t̂n2) our estimate for (tn1; tn2) . We will explain later how we obtain theseestimates.As already mentioned the goal of the reonstrution algorithm at level n is to reonstrutthe �nite piee of the senery �:�(kn2); �(kn2 + u); �(kn2 + 2u); : : : ; �(kn2a):(Here u denotes the signe: u := (kn2a � kn2)=j(kn2a � kn2)j). The reonstrution algorithmat level n ahieves this, by onstruting a straight rossing (s; r) by S of (kn2; kn2a). Whengoing from kn2 to kn2a in a straight way, the random walk S �rst rosses the interval (kn2; kn1)in a straight way and then the interval (kn1a; kn2a). Crossing (kn2; kn1), resp. (kn1a; kn2a) ina straight way, we get the maximum number of "straight rossings possible by R Æ S".Thus, when (s; r) with s < r is a straight rossing by S of (kn2; kn2a) we have that:there exists s2 � s1 � r1 � r2 with s2 = s; r2 = r suh that:(s2; s1) is a straight rossing by S of (kn2; kn1) and(r1; r2) is a straight rossing by S of the interval (kn1a; kn2a).In this ase: w(s1;s2) � wn (3.2.6)and : w(r1;r2) � wna (3.2.7)The above disussion suggests a method on how to searh for straight rossings (s; r) byS of the interval (kn2; kn2a): try to �nd (s; r) minimizing r-s with s < r under the followingonstraint:there exists s2 � s1 � r1 � r2 with s2 = s; r2 = r suh that:1. (s1; s2) is a rossing by R Æ S of (0; 3n) suh that inequality 3.2.6 is satis�ed.2. (r1; r2) is a rossing by R Æ S of (0; 3n) suh that inequality 3.2.7 is satis�ed.3.2.5 The reonstrution algorithm at level nLet �n := n10:89 and ~n := n11. We are now ready to de�ne the reonstrution algorithmat level n in a preise way:



142 Chapter 3. Reonstruting a Random Senery seen along a simple random walkAlgorithm 3.2.1.� Find (s; r) minimizing r-s with s < r under the following onstraint:1. There exists i � e�n suh that � ~n(i) � s < r � � ~n(i) + n220.2. There exists s2 � s1 � r1 � r2 with s2 = s; r2 = r suh that:(a) (s1; s2) is a rossing by R Æ S of (0; 3n) suh that w(s1;s2) � ŵn holds.(b) (r1; r2) is a rossing by R Æ S of (0; 3n) suh that w(r1;r2) � wna holds.� The output of the reonstrution algorithm at level n is the binary word whih wean read in the observations � during time (s; r), that is:�(s); �(s+ 1); �(s+ 2); : : : ; �(r)where (s; r) designates the �rst ordered pair minimizing r� s under the onstraints1,2.a and 2.b.Remark 3.2.1.� wn is not diretly observable. Thus, for our reonstrution algorithm we use theestimate ŵn instead of wn .� The reader might be wondering why the algorithm uses ondition 2.a and 2.b insteadof the loalization test. As a matter of fat, one ould imagine to replae ondition2 by the following two onditions:{ (s1; s2) is a rossing by RÆS of (0; 3n) suh that when ompared to the rossing(t̂n1; t̂n2) the loalization test deides that the two rossings ourred in the sameplae ( H0-ase).{ (r1; r2) is a rossing by RÆS of (0; 3n) suh that when ompared to the rossing(tn1a; tn2a) the loalization test deides that the two rossings ourred in thesame plae ( H0-ase).Replaing onditions 2.a and 2.b by the above onditions 1 and 2 does not work.The reason is the following: typially the points kn2a and kn2 are at distane order(n9)from eah other. To get at least one straight rossing by S of an interval of lengthorder(n9) we need order(2n9) trials. Thus our algorithm needs to be able to identifyorretly order(2n9) rossings by S of (kn2; kn2a). The loalization algorithm (withparameter n) has a positive probability of making an error of order(e�k�n) wherek > 0 is a onstant not depending on n. With order(2n9) trials we an be sure thatthe loalization test (with parameter n) will make many errors, and thus an notbe used instead of onditions 2.a and 2.b.� If we perform the loalization test with parameter ~n instead of n, the probabilityof an error is of order(e�k~n). This is so small, that with high probability, we anapply it order(ek�n) times without making a single mistake. This is more then enoughtrials, to get with high probability one straight rossing by S of an interval of lengthorder(n9). This is why for ondition 1 in the reonstrution algorithm at level n, weonstrut the stopping times � ~n(i) using the loalization algorithm with parameter~n.



3.2. Reonstruting a �nite piee of the senery � 143� The onditions 2.a and 2.b an be seen as a modi�ed version of the loalizationalgorithmwith parameter n. We will show that with high probability within distanen220 of the point k~n2a we have:only the rossing (kn1a; kn2a) is suh that a rossing (r1; r2) by S of it an satisfyinequality w(r1;r2) � wa. A similar ondition also holds for (kn1; kn2).This implies that as long as we are within distane n220 of the point k~n2a onditions2.a and 2.b an never make a mistake at identifying rossings by S of (kn1a; kn2a) andof (kn1; kn2). When, S(� ~n(i)) = k~n2a, then by de�nition, a rossing (s; r) satisfyingondition 1 of the seletion rule of the reonstrution algorithm at level n, is suhthat S(s) and S(r) are within distane n220 of the point k~n2a. For more details aboutwhy the reonstrution algorithm at level n works, see setion 3.4.3.2.6 Constrution of (t̂n1; t̂n2) and of ŵnReall that a rossing (s; t) is alled positive if s < t and negative otherwise. Reall alsothat from the two rossings (kn11; kn21) and (kn1(�1); kn2(�1)) by R of (0; 3n) the one whih gets�rst rossed by S is alled (kn1a; kn2a) whilst the other one is alled (kn1; kn2). After havingrossed from the point kn1a to the point kn2a, S �rst needs to ross bak from the pointkn2a to the point kn1a before being able to ross (kn1; kn2). More preisely, after a positiverossing by S of (kn1a; kn2a) there �rst needs to be a negative rossing by S of (kn1a; kn2a)before there an be a rossing by S of (kn1; kn2). On the other hand, right after a negativerossing by S of (kn1a; kn2a) the random walk S is always loated between the points kn1a andkn1. When, the random walk S is loated between kn1a and kn1, the next time it rossesan interval (kn1z; kn2z) this must be the interval (kn1a; kn2a) or (kn1; kn2). This gives a way toharaterize (tn1; tn2): (Reall that (tn1; tn2) is the �rst rossing by S of (kn1; kn2).)(tn1; tn2) is the �rst rossing by S of an interval (kn1z; kn2z) suh that the following twoonditions are satis�ed:� (tn1; tn2) is not a rossing by S of (kn1a; kn2a)� the last rossing by S of an interval (kn1z; kn2z) before (tn1; tn2), is a negative rossingby S of (kn1a; kn2a)Note that lemma 3.2.1 implies that the rossings by S of an interval (kn1z; kn2z) an beharaterized as follows:(s; t) is a rossing by S of an interval (kn1z; kn2z) i� (s; t) is a rossing by R Æ S of (0; 3n).Applying the last haraterization to the above onditions leads to: (tn1; tn2) is equal tothe �rst rossing (tn1i; tn2i)) by R Æ S of (0; 3n) with i > 1 suh that the following twoonditions hold:� (tn1i; tn2i) is not a rossing by S of (kn1a; kn2a)� (tn1(i�1); tn2(i�1)) a negative rossing by S of (kn1a; kn2a)Whih rossings are rossings by R Æ S of (0; 3n) is observable. That means that therossings (tn1i; tn2i) are known to us. On the other hand, whih rossings are rossings by Sof (kn1a; kn2a) is not diretly observable. However, (tn11; tn21) is observable and is a rossingby S of (kn1a; kn2a). So we an estimate if (tn1i; tn2i) is a rossing by S of (kn1a; kn2a) or not.For this we ask our loalization test to ompare the rossings (tn11; tn21) and (tn1i; tn2i). The



144 Chapter 3. Reonstruting a Random Senery seen along a simple random walkloalization test an then estimate if the rossings (tn11; tn21)) and (tn1i; tn2i) of S our onthe same plae or not. Our estimate for (tn1; tn2) will be de�ned to be the �rst (tn1i; tn2i) forwhih the above haraterizing onditions are estimated to be true:We de�ne (t̂n1; t̂n2) to be equal to the �rst (tn1i; tn2i) withi > 1 for whih the following three onditions hold:� the loalization test, when omparing (tn11; tn21)with (tn1i; tn2i), rejets the H0-hypothesis.� tn1(i�1) > tn2(i�1)� the loalization test, when omparing (tn11; tn21)with (tn1(i�1); tn2(i�1)), aepts the H0-hypothesis.We de�ne ŵn to be the binary word assoiated with therossing (t̂n1; t̂n2).3.3 Assembling the pieesThe reonstrution algorithm at level n tries to reonstruts the �nite piee of the senery�: �n := �(kn1); �(kn1 + u); �(kn1 + 2u); : : : ; �(kn1a)where u := (kn1a� kn1)=jkn1a� kn1)j. In this setion, we explain how to onstrut a senery�� : Z �! f0; 1g, equivalent to � from the olletion of �nite piees: �1; �2; : : :. Thereonstrution algorithm at level n gives us the binary word �n, but does not tell us whereit is loated in the senery �. This implies that we need to "assemble" the piees �n inorder to get ��.Let as introdue a few de�nitions: let v = v(0)v(1)v(2) : : : v(i)andw = w(0)w(1)w(2) : : :w(j) be two binary words. We say that v is ontained in w i� thereexist j1; j2 2 f0; 1; 2; : : : ; jg suh that v is equal to:v = w(j1)w(j1 + u)w(j1 + 2u) : : : w(j2) (3.3.1), where u := (j2 � j1)=jj2 � j1j. We write v 4 w when v is ontained in w. We say thatv is uniquely ontained in w and write v 41 w, i� there exists exatly one ordered pair(j1; j2) in f0; 1; 2; : : : ; jg2 suh that equation 3.3.1 is satis�ed.Note that the sequene of piees �1; �2; : : : is an inreasing sequene, in the sense that�n 4 �n+1 for all n 2 N . (The reason for this being true is that by de�nition: kn�2 > k(n+1)�2and kn+2 < k(n+1)+2 for all n 2 N . Thus the interval with the two endpoints kn2; kn2a isontained in the interval with endpoints: km2; km2a when n < m.) Imagine that not only, �n 4 �n+1, but even �n 41 �n+1 for all n 2 N . Then there would be a unique way toassemble the piees �1; �2; �3; : : :. The situation in this ase, is similar to that of a puzzle:for a puzzle one we have deided of the position of one piee, there is a unique way toassemble the whole puzzle. Furthermore when we assemble a puzzle we always get thesame image up to an isometri mapping. This is exatly the situation we enounter withthe piees of senery when �n 41 �n+1 for all n 2 N .



3.3. Assembling the piees 145Let us illustrate this with a pratial example. Let � : Z�! f0; 1g be the senery from whih we showbelow a �nite portion lose to the origin:�(k) : : : 1 0 1 0 0 0 1 1 1 0 0 1 : : :k : : : �4 �3 �2 �1 0 1 2 3 4 5 6 7 : : :Assume that we would be given the three piees (of the part of the senery � whih is represented above):11000, 1000111 and 0100011100. In this ase the �rst piee lies in the senery � between the points 3and �1. The seond piee is the piee of � whih lies between �1 and 4. The last piee lies between thepoints �3 and 6. We see that the �rst piee is uniquely ontained in the seond whih itself is uniquelyontained in the third piee. To assemble the three piee we �rst plae the �rst piee anywhere in Z.Then we plae the seond piee so that it overs the �rst piee, and that on the �rst piee it oinideswith the �rst piee. Eventually we plae the third piee so that it oinides with and overs the seondone. If we plae the �rst piee starting at the origin we get:��(k) 1 1 0 0 0k �4 �3 �2 �1 0 1 2 3 4 5 6 7Then we plae the seond piee so that it overs and oinides with the �rst piee. For this we have toturn the seond piee around. We obtain:��(k) 1 1 1 0 0 0 1k �4 �3 �2 �1 0 1 2 3 4 5 6 7Eventually we plae the third word and get:��(k) 0 0 1 1 1 0 0 0 1 0k �4 �3 �2 �1 0 1 2 3 4 5 6 7If we would go on with more and more piees, as n tends to in�nity we would obtain a senery �� whihis equivalent to �.Let En0 denote the event that: En0 = f�n 41 �n+1g:We will show that 1Xn=1 P (En0 ) <1;where En0 denotes the omplement of En0 . From the last inequality above it follows thata.s. for all but a �nite number of n's we have that �n 41 �n+1. The assemblage proedurewe de�ne below still works if �n 41 �n+1 holds for all but a �nite number of n's.Let us mention an additional problem: eah reonstrution algorithm at level n has asmall probability of making an error. Thus the output of the reonstrution algorithmat level n is not a.s. equal to �n but is only an estimate of �n. For the output of thereonstrution algorithm at level n, we will thus write �̂n instead of �n . We denote byEn the event that the algorithm at level n works. That is:En := f�n = �̂ng:By En we denote the omplementary event of En. In the next setion it is shown that1Xn=1 P (En) <1: (3.3.2)



146 Chapter 3. Reonstruting a Random Senery seen along a simple random walkFrom this it follows that almost surely all but a �nite number of reonstrutions �̂n areorret, i.e. are suh that �n = �̂n. Our assembling proedure de�ned below is robustagainst this kind of problem: if only a �nite number of piees �̂n are wrong it still works.Let us next de�ne in a preise way our assemblage proedure:Algorithm 3.3.1.� Let ln+1 designate the length of the word �̂n and let �̂n(i) the i-th bit of the binaryword �̂n. In this way: �̂n = �̂n(0)�̂n(1)�̂n(2) : : : �̂n(ln)� Let n0 designate the smallest natural (random) number suh that for all n � n0 wehave that �̂n 41 �̂n+1 holds.� We onstrut the senery �� by indution on n starting at n0.We �rst plae the word �̂n0 at the origin.One the word �̂n is plaed, we plae the word �̂n+1 in the unique manner suh thatit overs and oinides with �̂n on �̂n.(dn1 ; dn2 ) designates the position of where we plaed the word �̂n. More preisely :{ Let dn01 := 0 and let dn02 := ln0 . For all k 2 [0; dn02 ℄ de�ne: ��(k) := �̂n0(k):{ One dn1 ; dn2 are de�ned and ��(k) is de�ned for all k 2 [dn1 ; dn2 ℄ let:dn+11 ; dn+12 with dn+11 � dn+12 be the unique ordered pair of integers suh that[dn1 ; dn2 ℄ � [dn+11 ; dn+12 ℄ and suh that one of the following two ases holds:1. For all k 2 [dn1 ; dn2 ℄ we have that:��(k) = �̂n+1(k � dn+11 ):2. For all k 2 [dn1 ; dn2 ℄ we have that:��(k) = �̂n+1(ln+1 � (k � dn+11 )):For all k 2 [dn+11 ; dn+12 ℄, let ��(k) be equal to:1. When ase 1 above holds:��(k) := �̂n+1(k � dn+11 ):2. When ase 2 above holds:��(k) := �̂n+1(ln+1 � k � dn+11 ):The onstruted senery �� is equivalent to � as soon as for all but a �nite number ofn's we have that �n 41 �n+1 and �n = �̂n. This should be obvious and we leave the proofto the reader. It thus only remains to prove that almost surely for all but a �nite numberof n's, �n 41 �n+1 and �n = �̂n hold.



3.4. Proof that the reonstrution at level n works 1473.4 Proof that the reonstrution at level n worksIn this setion we prove that the reonstrution algorithm at level n works with highprobability, i.e. we prove equation 3.3.2. For this we deompose En into several elementaryevents. Let us start we some de�nitions:We say that (s; r) satis�es the onditions of algorithm 3.2.1 with wn instead of ŵn i�s < r and it satis�es all of the following onditions:1. Same onstraint as onstraint 1 of algorithm 9.2. There exists s2 � s1 � r1 � r2 with s2 = s; r2 = r suh that:(a) (s1; s2) is a rossing by R Æ S of (0; 3n) suh that w(s1;s2) � wn holds.(b) Same onstraint as onstraint 2.b of algorithm 9.Let En1 designate the event that if algorithm 3.2.1 is given the real wn instead of theestimate ŵn , it produes a straight rossing by S of (kn2; kn2a).En1 :=8>>><>>>: There exists at least onepair (s,r), satisfying theonditions of algorithm3.2.1 with wn instead ofŵn .
9>>>=>>>; \8>>><>>>: Any pair (s; r), minimizingr � s under the onditionsof algorithm 3.2.1 with wninstead of ŵn , is a straightrossing by S of (kn2; kn2a).

9>>>=>>>;Let Ent  be the event that the onstrution of (tn1; tn2) works:Ent  := �(t̂n1; t̂n2) = (tn1; tn2)	 : (3.4.1)Note that when Ent  holds, then wn = ŵn .Enall orret := 8<: All (s; r) satisfying the onstraints of algorithm3.2.1 with wn instead of ŵn , are suh that: S(s) =kn2; S(r) = kn2a. 9=;Enat least one := 8<: There exists (s; r) satisfying the onstraints of al-gorithm 3.2.1 with wn instead of ŵn , suh that(s; r) is a straight rossing by S of (kn2; kn2a). 9=;Let (tn1ai; tn2ai) be the i-th rossing by S of (kn1a; kn2a). Let Enstopping be the event that thestopping times �n(i) stop the random walk at kn2a:Enstopping := �tn2ai = �n(i); 8i � exp(n0:99)	Let: Enno other a rossing by R := 8<: The only rossing (k1; k2) by R of (0; 3n) withjk1�k~n2aj; jk2�k~n2aj � n220 suh that wR(k1;k2) �wna is (kn1a; kn2a). 9=;Enno other  rossing by R := 8<: The only rossing (k1; k2) by R of (0; 3n) withjk1�k~n2aj; jk2�k~n2aj � n220 suh that wR(k1;k2) �wn is (kn1; kn2). 9=;



148 Chapter 3. Reonstruting a Random Senery seen along a simple random walkEnno other rossing by R := Enno other a rossing by R \ Enno other  rossing by REnstraight := 8<: There exists i � e�n and s; r with t~n2ai � s; r �t~n2ai + n220 suh that (s; r) is a straight ross-ing by S of (kn1; kn2a). 9=;Let Envisit be the event that the random walk S visits the point kn2 before time exp(n0:5):Envisit := �tn2 < exp(n0:5)	Reall that ~n := n11. In subsetion 3.4.1 we prove the following inlusions:En1 \ Ent  � En (3.4.2)Enat least one \ Enall orret � En1 (3.4.3)E~nstopping \ Enno other rossing by R � Enall orret (3.4.4)Enstraight \ E~nstopping � Enat least one (3.4.5)Enstopping \ Envisit � Et  (3.4.6)From the inlusions 3.4.2, 3.4.3, 3.4.4, 3.4.5 and 3.4.6 it follows that:Enstraight \ E~nstopping \ Enstopping \ Enno other rossing by R \ Envisit � EnWhih implies:P (Enstraight) + P (E~nstopping) + P (Enstopping)++ P (Enno other rossing by R) + P (Envisit) � P (En):(Here Ensomething designates the omplement of the event Ensomething). In subsetion 3.4.2we prove that: P (Enstraight); P (E~nstopping); P (Enstopping);P (Enno other rossing by R) and P (Envisit)are all �nitely summable over n. Together with the last inequality, this proves thatP (En) is �nitely summable over n.3.4.1 CombinatorisProof that En1 \ Ent  � En holds: When Ent  holds, then wn = ŵn . In this ase, theevent En1 amounts to the same as event En. It follows that En1 \ Ent  = En \ Ent , whihimplies inlusion 3.4.2.Proof that Enat least one \ Enall orret � En1 holds: Let (s; r) be a pair minimizing r � sunder the onstraint of algorithm 3.2.1 with wn instead of ŵn . Then if Enall orret holds,we have that S(s) = kn2; S(r) = kn2a. If Enat least one also holds, there exists a straightrossing (s0; r0) by S of (kn2; kn2a) satisfying the onstraint of algorithm 3.2.1 with wninstead of ŵn . For a straight rossing we have: r0� s0 = jkn2�kn2aj. Sine r� s is minimalunder the onstraint of algorithm 3.2.1, we get jr � sj � jkn2 � kn2aj. This together withS(s) = kn2; S(r) = kn2a is only possible if (s; r) is a straight rossing by S of (kn2; kn2a). Wejust proved that when Enat least one and Enall orret hold, all pair (s; r) minimizing r�s underthe onstraint of algorithm 3.2.1, is a straight rossing by S of (kn2; kn2a). In this ase En1holds. Thus, together Enat least one and Enall orret imply En1 .



3.4. Proof that the reonstrution at level n works 149Proof that E~nstopping \ Enno other rossing by R � Enall orret holds: Let (s; r) satisfy all theonstraints of algorithm 3.2.1. Then there exists s2 � s1 � r1 � r2 with s2 = s; r2 = rwhere (r1; r2) is a rossing by R Æ S of (0; 3n) suh that w(r1;r2) � wna holds. By lemma3.2.1 we have that there exists a rossing (k1; k2) by R of (0; 3n) suh that (r1; r2) is arossing by S of (k1; k2). By lemma 3.2.2 and 3.2.3, we have that wR(k1;k2) � w(r1;r2). Thus,wR(k1;k2) � wna .Additional by the onstraints of algorithm 3.2.1 there exists i � e�n suh that � ~n(i) �s < r � � ~n(i) + n220. If additionally E~nstopping holds, then S(� ~n(i)) = k~n2a. The randomwalk S during a time interval of n220 time an not walk further than n220. Thus, jS(r1)�k~n2aj; jS(r2) � k~n2aj � n220. This is equivalent to saying that: jk1 � k~n2aj; jk2 � k~n2aj � n220.Hene the ondition in event Enno other rossing by R applies to the rossing (k1; k2). It followsthat if Enno other rossing by R also holds, then (k1; k2) equals (kn1a; kn2a). This implies thatS(r) = kn2a. We have proven that when E~nstopping and Enno other rossing by R both hold, thenS(r) = kn2a. In a similar way, one an prove that in this ase S(s) = kn2. (We leave thatproof to the reader.) Thus, E~nstopping and Enno other rossing by R jointly imply Enall orret.Proof that Enstraight \ E~nstopping � Eat least one holds: Enstraight and E~nstopping jointly implythat there exists i � e�n and s; r with � ~n(i) � s; r � � ~n(i)+n220 suh that (s; r) is a straightrossing by S of (kn2; kn2a). Thus, (s; r) already satis�es ondition 1 of algorithm 3.2.1. Itremains to show that (s; r) also satis�es ondition 2. During the time interval (s; r), Srosses from the point kn2 to the point kn2a in a straight way. For this, S �rst needs to ross(kn2; kn1) in a straight manner and then (kn1a; kn2a). Thus, there exists s2 � s1 � r1 � r2with s2 = s; r2 = r suh that (s2; s1) is a straight rossing by S of (kn2; kn1) and (r1; r2) is astraight rossing by S of (kn1a; kn2a). We know by lemma 3.2.1, that a rossing of a rossingis a rossing of the omposition. Thus, (s1; s2) and (r1; r2) are both rossings by R Æ Sof (0; 3n). Sine the rossing (s1; s2) by S is straight, we have by lemma 3.2.2 and 3.2.3that w(s1;s2) = wR(kn2;kn1). By lemma 3.2.2 and 3.2.3 again, we have that wR(kn2;kn1) � wn .Thus, w(s1;s2) � wn . In a similar way one an show that w(r1;r2) � wna . This proves that(s; r) satis�es the onditions of algorithm 3.2.1 with wn instead of ŵn . However, (s; r) isa straight rossing by S of (kn2; kn2a). Thus, Eat least one holds. We just proved that Enstraightand E~nstopping together imply Eat least one.Proof that Enstopping \ Envisit � Et  holds: In subsetion 3.2.6, we saw that (tn1; tn2)an be haraterized as follows: (tn1; tn2) is equal to the �rst rossing (tn1i; tn2i) by R Æ S of(0; 3n) with i > 1 suh that the following two onditions hold:� (tn1i; tn2i) is not a rossing by S of (kn1a; kn2a)� (tn1(i�1); tn2(i�1)) is a negative rossing by S of (kn1a; kn2a)The estimate (t̂n1; t̂n2) is de�ned to be the �rst rossing by R Æ S of (0; 3n) for whih ourloalization test deides that the two onditions in the last haraterization above hold.Thus, if up to time tn2, the loalization test gets all the rossings by S of (kn1a; kn2a) right,then the reonstrution of (tn1; tn2) works, i.e. Et  holds. The event Enstopping tells usthat up to tn2ai with i = exp(n0:99) the loalization test makes no errors in reognizingthe rossings by S of (kn1a; kn2a). However, exp(n0:99) � tn2ai for i = exp(n0:99), sine eahrossing lasts at least one time unit. Thus, up to time exp(n0:99) the loalization test makes



150 Chapter 3. Reonstruting a Random Senery seen along a simple random walkno errors in reognizing the rossings by S of (kn1a; kn2a). However, if Envisit holds, then therandom walk S visits the point kn2 before time exp(n0:5). Also, exp(n0:5) � exp(n0:99).In that ase, before S visits the point kn2, no errors our. This proves that Enstopping andEnvisit jointly imply Et .3.4.2 Probability boundsHigh probability of Envisit We need a few de�nitions: Let En2 be the event that therandom walk S visits both points n10 and �n10 before time exp(n0:5). Let:Enk a; := �jkn2aj; jkn2j � n10	S �rst needs to visit jkn2aj and jkn2j in order to visit both points n10 and �n10, whenjkn2aj; jkn2j � n10. (Sine S starts at the origin.) Thus,Enk a; \ En2 � Envisit:Thus, P (Enk a;) + P (En2 ) � P (Envisit):If P (Enk a;) and P (En2 ) are both �nitely summable over n then P (Envisit) is also. We provethat P (Enk a;) is �nitely summable and leave the proof that P (En2 ) is �nitely summableto the reader sine it is very similar to the other one. Let XR+, resp. XR� be the�rst passage time of the random walk R(k)k2N, resp. of R(�k)k2N at the point 3n. LetEnR+ := fXR+ � n10g and let EnR� := fXR� � n10g. Then, EnR+ [ EnR� = Enk a;. Thus,P (EnR+) + P (EnR�) � P (Enk a;). By symmetry, P (EnR+) = P (EnR�). Thus, 2P (EnR+) �P (Enk a;). Let Zi denote the �rst passage time of fR(k)gk2N at the point i. Let Xi := Zi�Zi�1. Then, XR+ := P3n1 Xi and P (EnR+) = P (P3n1 Xi > n10) � P ((P3n1 Xi)1=3 > n3).For positive numbers a1; a2; : : : ; aj, we always have that (Pjl=1 ai)3 � Pjl=1(ai)3. ThusP3ni=1(Xi)1=3 � (P3ni=1Xi)1=3. It follows: P (EnR+) � P (P3ni=1(Xi)1=3 � n3). By Chebyhev,we get P (EnR+) � 3E[(X1)1=3℄n2In [20℄ it is shown that E[(Xi)1=3℄ is �nite. Thus, P (EnR+) is �nitely summable over nwhih �nishes this proof.High probability of Enstopping Let En3 := f8i � exp(n0:99); t2ai � exp(n0:999)g. If up totime t2ai with i = exp(n0:99) the loalization test makes no mistake in identifying exatlyall the rossings by R Æ S of (0; 3n) whih our in the same plae, then Enstopping holds.Thus, if t2ai � exp(n0:999) for i = exp(n0:99) and the loalization test makes no mistakeof this type up to time exp(n0:999), then Enstopping holds. Let Entest orret be the event thatfor all za; zb 2 Z with 0 < jzaj; jzbj � n0:999 and for all 0 < ia; ib � n0:999 the loalizationtest makes no error when omparing the rossings (t1a; t2a) and (t1b; t2b). (Here (t1a; t2a)and (t1b; t2b) are de�ned like in lemma 3.2.4: (t1a; t2a) is the ia-th rossing by S of theza-th rossing by R of (0; 3n) and (t1b; t2b) is the ib-th rossing by S of the zb-th rossingby R of (0; 3n).) Up to time exp(n0:999), S an ross a rossing by R at most exp(n0:999)times. Thus, if (t1a; t2a) and (t1b; t2b) our before time exp(n0:999), then 0 < ia; ib � n0:999. Furthermore, to reah the z-th rossing (kn1z; kn2z), S needs �rst to ross all the rossings



3.4. Proof that the reonstrution at level n works 151(kn1z0; kn2z0) with z0 stritly between 0 and z. Thus up to time exp(n0:999)g S an not reahany rossing (kn1z; kn2z) with jzj > exp(n0:999)g. If the rossings (t1a; t2a) and (t1b; t2b) ourbefore time exp(n0:999)g, we hene have that 0 < ia; ib � n0:999 and 0 < jzaj; jzbj � n0:999.Thus, En3 and Entest orret both hold, the loalization test makes no mistake in identifyingwhih of (0; 3n) our in the same plae up to time t2ai. In this ase, Enstopping holds. Thus,En3 \ Entest orret � Enstopping:It follows that P (En3 ) + P (Entest orret) � P (Enstopping):If P (En3 ) and P (Entest orret) are both �nitely summable over n, then P (Enstopping) is also.The proof that P (En3 ) is �nitely summable is very similar to the proof for P (Enk a;), sowe leave it to the reader. let: Entest orret ia;ib;za;zb be the event that the loalization testreognizes orretly if with the rossings (t1a; t2a) and (t1b; t2b) we are in the H0-ase ornot. By de�nition: \Entest orret ia;ib;za;zb = Entest orret;where the last intersetion is taken over all ia; ib; za; zb suh that 0 < jzaj; jzbj � n0:999 and0 < ia; ib � n0:999. Thus,�P (Entest orret ia;ib;za;zb) � P (Entest orret);where the sum is taken over the same domain as before the union. There are n3:996quadruples (ia; ib; za; zb) suh that 0 < jzaj; jzbj � n0:999 and 0 < ia; ib � n0:999. By largedeviation priniple and lemma 3.2.4, the probability P (Entest orret ia;ib;za;zb) is exponentiallysmall in n. Thus there exist k > 0 not depending on n or on (ia; ib; za; zb) suh thatP (Entest orret ia;ib;za;zb) � exp(�kn). This implies thatP (Entest orret) � n3:996 � exp(�kn):Thus, P (Entest orret) is �nitely summable over n.High probability of Enstraight Let �tn2ai denote the 20:000-th stopping time tn2ai. Thus,�tn2ai := tn2a(20:000�i). Let En4 be the event that there exists i � n�20:000 � e�n and s; r with�tn2ai � s; r � �tn2ai + n220 suh that (s; r) is a straight rossing by S of (kn1; kn2a). We havethat En4 � Enstraight. Let En5 := Enk a; \ E~nk a;. We �nd that the last inlusion implies:P (En4 \ En5 ) + P (En5 ) � P (Enstraight):We already saw that P (En5 ) is �nitely summable over n. So it only remains to be proventhat P (En4 \ En5 ) is �nitely summable over n. Let Xi be the Bernoulli variable whihis equal to one i� there exists s; r with �tn2ai � s; r � �tn2ai + n220 suh that (s; r) is astraight rossing by S of (kn1; kn2a). By the Markov property of the random walk S,we have that onditional under �(R(k)jk 2 Z) the variables Xi are i.i.d. Also, En5 is�(R(k)jk 2 Z)-measurable. We are next going to evaluate the onditional probability:P (X1 = 1jR(k); k 2 Z) when En5 holds. When En5 holds, then jk~n2a�kn2j � 2~n10. We have2~n10 := 2n110. By de�nition at any time t~n2ai the random walk S is at the point k~n2a. Bythe loal entral limit theorem, when jk~n2a � kn2j � 2~n10, the probability that S goes from



152 Chapter 3. Reonstruting a Random Senery seen along a simple random walkk~n2a to kn2 in less than (1=2)n220 steps is bigger than k2 �n�110. (Here k2 denotes a onstantnot depending on n and not depending on R as long as R 2 En5 ). Crossing in a straightway to the point kn2a right after the random walk S is at the point kn2, has probabilitybigger than (1=2)2n10, when jkn2a � kn2j � 2n10. But, when En5 holds, jkn2a � kn2j � 2n10.All this implies that when En5 holds:P (X1 = 1 j R(k); k 2 Z) � (k2n�110)(1=2)2n10 : (3.4.7)Let �1 := (k2n�110)(1=2)2n10 : Let n̂ := n�20:000 � e�n. Note thatEn4 := ( n̂Xi=1 Xi = 0)Conditional under �(R(k)jk 2 Z) the Xi's are i.i.d. Thus,P (En4 jR(k); k 2 Z) = (1� P (Xi = 1jR(k); k 2 Z))n̂:Using inequality 3.4.7 we get for R 2 En5 :P (En4 jR(k); k 2 Z) � (1� �1)n̂: (3.4.8)When n goes to in�nity, then �1 tends to zero. Thus, for n big enough we get:(1� �1)1=�1 � e�0:5:Applying this to inequality 3.4.8 leads in the ase that R 2 En5 , to:P (En4 jR(k); k 2 Z) � e�0:5n̂�1:Integrating the last inequality over En5 leads to:P (En4 \ En5 ) � e�0:5n̂�1 : (3.4.9)Reall that �n := n10:89 and ~n := n11. In n̂, the leading term is e�n. In �1 the leading termis: eln(0:5)�2n10 . Sine n10:89 � n10 we get that e�n � e� ln(0:5)�2n10 . This implies that theleading term in n̂�1 is e�n. Thus, the term on the right side of inequality 3.4.9 is �nitelysummable over n.High probability of Enno other rossing by R Let n� := n110+n220. Let (tn111; tn211) designatethe �rst rossing by S of (kn11; kn21). Let wn11 := w(tn111;tn211). De�ne:En61 := 8<: The only rossing (kn1z; kn2z) with0 < jzj � n� suh that wR(kn1z ;kn2z) �wn11 is (kn11; kn21): 9=;Let (tn1(�1)1; tn2(�1)1) designate the �rst rossing by S of (kn1(�1); kn2(�1)). Let wn1(�1) :=w(tn1(�1)1 ;tn2(�1)1). De�ne:En6(�1) := 8<: The only rossing (kn1z; kn2z) with0 < jzj � n� suh that wR(kn1z ;kn2z) �wn1(�1) is (kn1(�1); kn2(�1)): 9=;



3.4. Proof that the reonstrution at level n works 153If E~nk a; holds, then jk~n2aj � n110. All the rossings (k1; k2) onerned by the eventEnno other rossing by R are suh that jk1�k~n2aj; jk2�k~n2aj � n220. Thus, when E~nk a; holds, thenall the rossings onerned by Enno other rossing by R, are within n� of the origin. When wewrite those rossings in the form (kn1z; kn2z) they must be suh that jzj � n�. Thus, whenE~nk a; holds, the events En61 and En62 over all the rossings involved in the de�nition of theevent Enno other rossing by R. One of the rossings (kn1a; kn2a) and (kn1; kn2) is equal to (kn11; kn21)whilst the other one is equal to (kn1(�1); kn2(�1)). Similarly, one of the rossings (tn1a; tn2a) and(tn1; tn2) is equal to (tn111; tn211) whilst the other one is equal to (tn1(�1)1; tn2(�1)1). Eventually,one of the words wna and wn is equal to wn11 whilst the other one is equal to wn1(�1). This,implies that when E~nk a; holds, the events En61 and En62 jointly imply Enno other rossing by R.Thus, En61 \ En62 \ E~nk a; � Enno other rossing by R:It follows that: P (En61 ) + P (En62 ) + P (E~nk a;) � P (Enno other rossing by R):We already saw that P (E~nk a;) is �nitely summable over n. By symmetry:P (En61 ) =P (En62 ). Thus, it only remains to prove that P (En61 ) is �nitely summable over n. LetEn61z := nwR(kn1z ;kn2z) � wn11o :We have: En61 := \0<jzj�n�;z 6=1En61z:It follows that: P (En61 ) � X0<jzj�n�;z 6=1P (En61z) :We saw in the proof of lemma 3.2.4 the distribution of wR(kn1z ;kn2z) does not depend on z.Thus, the expression on the right side of the last inequality is equal to: (2n��2)P (En612).This yields: P (En61 )) � (2n� � 2)P (En612) (3.4.10)We have that En612 = fwR(kn12;kn22) � wn11g: Hene:En612 = n�1\m=0nwR(kn12;kn22)(m) � wn11(m)o :As in the proof of lemma 3.2.4, the bits of the word wR(kn12;kn22) are i.i.d. as well as the bitsof wn11 and wR(kn12;kn22) is independent of wn11. This gives:P (En612) = n�1Ym=0P �wR(kn12;kn22)(m) � wn11(m)� = P �wR(kn12;kn22)(1) � wn11(1)�n :The probability q := (wR(kn12;kn22)(1) � wn11(1)) is stritly smaller than 1 and does not dependon n. Thus, the bound (2n��2)qn on the left side of inequality 3.4.10 is �nitely summableover n.



154 Chapter 3. Reonstruting a Random Senery seen along a simple random walk3.5 Why the reonstrution of � works.Our reonstrution algorithm onstruts a senery ��. The main result of this paper isthat a.s. �� is equivalent to �. This is also what we need to prove in this setion. Thereonstrution algorithm we propose, onstruts �� by assembling (as explained in setion3.3) the �nite reonstruted piees �̂n. The piee �̂n is provided by the reonstrutionalgorithm at level n. The reonstrution algorithm at level n tries to reonstruts the�nite piee of the senery �:�n := �(kn1); �(kn1 + u); �(kn1 + 2u); : : : ; �(kn1a)where u := (kn1a�kn1)=jkn1a�kn1)j. We have proven in the last setion that (1�P (�n = �̂n))is �nitely summable over n. It follows that a.s. �n = �̂n for all but a �nite number ofn's. In setion 3.3 we have seen that: the onstruted senery �� is equivalent to � as soonas for all but a �nite number of n's we have that �n 41 �n+1 and �n = �̂n. It thus onlyremains to prove that a.s for all but a �nite number of n's, �n 41 �n+1 holds. De�ne:�ninside := �(�n); �(�n+ 1); �(�n+ 2) : : : ; �(n)and �noutside := �(�n10); �(�n10 + 1); �(�n10 + 2) : : : ; �(n10):By de�nition, jkn2aj; jkn2j � n from whih it follows that �ninside 4 �n. On the other hand,if Enk a; holds, then jkn2aj; jkn2j � n10 and �n 4 �noutside. Reall that �n 4 �n+1 always holdsby de�nition. Summing up: when En+1k a; holds, we �nd that�ninside 4 �n 4 �n+1 4 �n+1outside:Next, note that if �a; �b; �; �d 2 [l2Nf0; 1gl with �a 4 �b 4 � 4 �d and �a 41 �d then also�b 41 �. Thus, when En+1k a; holds, if �ninside 41 �n+1outside then also �n 41 �n+1. Let:Enunique := f�ninside 41 �n+1outsideg:We have shown that Enunique \ En+1k a; � f�n 41 �n+1g:For (1�P (�n 41 �n+1)) to be �nitely summable over n, it is thus enough that P (Enunique)and P (E(n+1)k a; ) both are. We have already proven that the probability of the omplementP (E(n+1)k a; ) is �nitely summable over n. Remains to show that P (Enunique) also is �nitelysummable. LetEnunique; +l := f�ninside 6= (�(l); �(l + 1); �(l + 2); : : : ; �(l + 2n))gand Enunique; �l := f�ninside 6= (�(l); �(l� 1); �(l � 2); : : : ; �(l� 2n))g:With this notation: \l 6=�n; jlj�n10 �Enunique; +l \ Enunique; �l� � Enunique:
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Chapter 4Senery Reonstrution in TwoDimensionswith Many Colors
Ann. Appl. Probab., 12(4):1322{1347, 2002.By Matthias L�owe, Heinrih Matzinger,In [7℄ Kesten observed that the known reonstrution methods of random seneries seemto strongly depend on the one dimensional setting of the problem and asked whethera onstrution still is possible in two dimensions. In this paper we answer the abovequestion in the aÆrmative under the ondition that the number of olors in the seneryis large enough. 1Short title: Senery Reonstrution in Dimension 24.1 Introdution and the Main ResultThe following problem has its roots in ergodi theory but may also be onsidered inter-esting in its own rights. Consider a graph (V;E) and olor its verties in an arbitraryway (so we do not only onentrate on proper olorings in the strit sense that any twoadjaent verties need to have a di�erent olor). This oloring will be alled a senery on(V;E). Then we run a random walk on (V;E) of whih we only know the olor reord(i.e. the sequene of olors it reads at the verties) but not where it atually reads them.The question then is: Can we still say anything about how V was olored?This problem { whih at �rst glane might seem a bit hopeless { was �rst investigatedindependently by Benjamini and den Hollander and Keane [5℄. From here the problemsplits into basially three branhes:1MSC 2000 subjet lassi�ation: Primary 60K37, Seondary 60G10, 60J75.Key words: Senery reonstrution, jumps, stationary proesses, random walk, ergodi theory.157



158 Chapter 4. Senery reonstrution in 2 dimensions1. Can we distinguish two (known) seneries by their random walk reord? or, moreambitiously:2. Can we even reonstrut (unknown) seneries by the observations we obtain from arandom walk? and:3. Are their seneries whih annot be reonstruted or distinguished by the olorreord of a random walk?Basi answers to all of these three question have been already given while other aspetsare still wide open. For example Benjamini and Kesten [1℄ disovered the very strongresult that almost surely any two given seneries on the integer latties Z or Z2 an bedistinguished by a simple random walk on these latties given that the olors are seletedby an i.i.d. proess. Previous to that Howard [6℄ had already been able to show that inone dimension a periodi senery an be distinguished from a periodi senery with onedefet.Matzinger [10℄ showed that on Z even more is true: Almost every i.i.d. two-olorsenery an be reonstruted from the olor reord of a simple random walk (whih evenmight have non zero probability to stand still). This implies Benjamini's and Kesten'sresult in one dimension as well as the earlier observation by the same author that thesame holds true for three and more olors [9℄. However, notie that Benjamini's andKesten's tehniques also work in a two dimensional situation or when the random walkis allowed to jump. A remarkable answer to Question 3 has been given by Lindenstrauss[8℄ who showed that there are still unountably many seneries on Z whih annot bedistinguished from the olor reord of a simple random walk.To be more spei�: In what follows (V;E) will always be the integer lattie Z2 anda funtion � : Z2 ! Z will be alled a two dimensional senery. For a subset D � Z2 weall � : D ! Z a piee of senery. If the range of � ontains exatly m elements we willsay that � has m olors or that it is an m-olor senery. Two seneries � and � will bealled equivalent, if there are a 2 Z2 andM 2 �� �1 00 1 � ;� 1 00 �1 � ;� �1 00 �1 � ;� 1 00 1 � ;� 0 11 0 � ;� 0 �11 0 � ;� 0 1�1 0 � ;� 0 �1�1 0 ��suh that �(x) = �(Mx + a) 8x 2 Z2:Similarly, we all two piees of senery � : D ! Z and � : D ! Z equivalent, if again�(x) = �(Mx + a) 8x 2 Dholds true (a and M as above) and moreover M(D) + a = D.In other words � and � are equivalent (in symbols � � �) if they an be obtained bytranslation and reetion on the oordinate axes from eah other. It is rather obviousthat in general we annot expet to distinguish equivalent seneries by their olor reord



4.1. Introdution and the Main Result 159and thus also reonstrution will work only up to equivalene. Throughout this paper wewill onsider �'s that result from an unbiased i.i.d. random proess with m olors (thuswe will also say that � has m olors), that is the �(v) are i.i.d. for all v 2 Z2 andP (�(0) = i) = 1mfor all olors i 2 f0; : : : ; m�1g. Moreover, let (Sk)k2N be simple, symmetri random walkin two dimensions starting at the origin.The main result of this paper states that if m is large enough the olor reord of (Sk),i.e. � := (�(k))k2N := (�(Sk))k2Nontains enough information to reonstrut � almost surely up to equivalene. Addi-tionally, we will present a well de�ned algorithm that given the senery on a �nite setreonstruts the whole senery with probability larger than one half. In the next setionwe will see why this atually suÆes to prove the main theorem. This, in a more math-ematial way, is expressed in the following theorem, whih states that with suÆientlymany olors reonstrution of � from � (up to equivalene) is possible with probabilityone.Theorem 4.1.1. There exists m0 2 N suh that if m � m0, there exists a measurablefuntion (with respet to the anonial �-�elds)A : f0; : : : ; m� 1gN ! f0; : : : ; m� 1gZ2suh that P (A(�) � �) = 1: (4.1.1)Here the measure P lives on the produt spae of the outomes of � and the spae of allrandom walk paths.Remark 4.1.1. We have not alulated any lower bound for m0 yet. We are also on-vined that the methods presented here will lead to an m0 whih is terribly large and faro� any reasonable number and, in partiular, any of the \borderline"-ases m = 4; 5 forwhih we have as many olors (or one more olor, respetively) as we have neighbors inZ2 or even m = 2 (for whih we doubt that Theorem 5.2.1 is valid). This is basially so,sine we deided to keep the present proof as simple and transparent as possible and touse as many olors as neessary to this end. The spei�ation of a good bound on m0 willbe subjet to further researh of the authors.This note has two further setions. In Setion 2 we present the basi ideas of thealgorithm used to reonstrut a random senery while Setion 3 ontains the rigorousproof of Theorem 5.2.1.Aknowledgment: This problem was posed by Harry Kesten. We bene�ted a lotfrom eletroni disussions with him and private onversation with Mike Keane and Frankden Hollander. We are indebted to all of them for their interest in our work. We are alsovery grateful to an unknown referee who substantially helped to improve the presentationof this paper.



160 Chapter 4. Senery reonstrution in 2 dimensions4.2 The Main Ideas and Basi NotationsThe proof of Theorem 5.2.1 ruially bases on an indution argument. Given that wealready know the senery on a �nite set A (for a speial hoie of A) we show how toextend this knowledge to the points sitting next to A. The following three lemmas are thebuilding bloks of this indution. First we see that it suÆes to exhibit an algorithm thatreonstruts the senery with probability larger than 1=2 in order to be able to reonstrutthe senery almost surely.Lemma 4.2.1. For all m � 2 (where m designates the number of olors in �), if thereexists a measurable mapA : f0; : : : ; m� 1gN ! f0; : : : ; m� 1gZ2suh that P (A(�) � �) > 1=2then there also exists a measurableA : f0; : : : ; m� 1gN ! f0; : : : ; m� 1gZ2with P (A(�) � �) = 1:The proof of Lemma 4.2.1 will be given in Setion 3.Lemma 4.2.1 will be useful, sine we will soon see that with suÆiently many olorswe are able to reonstrut with large probability the senery on �nite regions of Z2 suhas the integer irle of radius n denoted byBn := fx 2 Z2 : jjxjj � ng:Here jj � jj stands for the standard Eulidean norm in Z2. Moreover, in the following wewill frequently use the following notation: we will write f jB for the restrition of f toa subset B of the domain of de�nition of f , for example �jB will be a piee of senery(that is the senery restrited to some subset B of Z2), while �jB will be a part of theobservations (here B will be a subset of N).The next two lemmas will basially ontain the indution. Lemma 4.2.2 below is thestart of the indution, while Lemma 4.2.3 ontains the indution step. So, �rst we showthat we an reonstrut �jBn for eah �nite n with arbitrary large probability, as long asthe senery ontains suÆiently many olors.Lemma 4.2.2. Let n 2 N and " > 0. Then there exists m1 2 N suh that if m � m1there exists a measurable funtionAn : f0; : : : ; m� 1gN ! f0; : : : ; m� 1gBnsuh that P (An(�) � �jBn) � 1� ":



4.2. The Main Ideas and Basi Notations 161Also Lemma 4.2.2 will be proven in the next setion.The next lemma is the indution step in the sense that it states that we an reonstrut�jBn+1 with large probability provided we know �jBn up to equivalene and the numberof olors is large enough.Lemma 4.2.3. There exists m2 2 N (random) suh that for m � m2 there is a sequeneof measurable funtions ( ~An)n2N,~An : [a2Z2f0; : : : ; m� 1gBn+a � f0; : : : ; m� 1gN ! f0; : : : ; m� 1gBn+1suh that P -a.s. ~An(�jBn; �) � �jBn+1ours for all but �nitely many n.Remark 4.2.1. Remark that given that m is large enough the ritial n in Lemma 4.2.3from whih the algorithms work, i.e. from whih~An(�jBn; �) � �jBn+1is random.Also note that Lemma 4.2.3 implies that for eah " > 0 we an �nd a number N(non-random) suh that the probability that all ~An work for all n � N is bigger than1� ".Roughly speaking, Lemma 4.2.3 means that the algorithm obtained by onatenatingthe di�erent ~An's works well, in the sense that given �jBn up to equivalene and theobservations � it almost surely fails to reonstrut �jBn+1 only for �nitely many n.To explain the proof of the indution step, whih is ruial to the whole proof ofTheorem 1.1, observe that the main diÆulty in the reonstrution of seneries is, ofourse, that we do not exatly know where the random walk preisely is. This is evenmore a problem in two dimensions than it is in one dimension as the random walk in onedimensions by time N has returned to the origin about pN times, and therefore produesa lot of information about the neighborhood of the origin. In two dimensions the loaltime of the origin at time N is only about logN . Thus we have to �nd an auratemethod for guessing when the random walk is lose to the origin from the observations� it produes. This will be ahieved by using a set of signal words, i.e. sequenes ofsubsequent olors in Bn. Their frequent appearane in the observations will indiate thatwe really are in a neighborhood of Bn.This \guessing that the random walk is inside Bn" is the �rst step of the reonstrutionalgorithm. More aurately, these words whih will indiate that we are inside Bn (the soalled signal words) are horizontal, non-overlapping words insideBn of length proportionalto logn. The set of these words will be alled Sn. Whenever we read more than n� wordsduring a time interval of length n2 whose endpoint is inside [0; en�℄ (� and � some numbersto be spei�ed later), we will \guess" that the walk is inside Bn2+n. The union of thesetime intervals will be alled �n and the reonstrution will only take plae during �n. Notethat �n designates a random set.



162 Chapter 4. Senery reonstrution in 2 dimensionsMore formally in the sequel let 1; 2; 3 > 0 be positive onstants (not depending onn) whih we will speify later. For onveniene we will assume that i logn 2 N for eahi = 1; 2; 3 (whih of ourse means the i slightly depend on n but this dependene isirrelevant). LetSn := fw = (w1; : : : ; w1 log n)����9k 2 Z and (x; y) 2 Z2 : x = k1 logn(x+ s; y) 2 Bn and ws = �((x+ s; y)); 80 � s � 1 logn� 1g:In other words Sn \partitions" �jBn into disjoint horizontal words of length 1 logn.Moreover let 1 < � < � < 2 be two real numbers lose to two to be spei�ed later,I�;� := fI = [t; t + n2℄��t � en� � n2;�jI ontains more than n� di�erent words from Sng;and �n := �n�;� := [I2I�;� I:As skethed above, the point is that during the times k 2 �n we an be pretty sure thatthe random walk is \lose to Bn", more preisely that it is inside Bn+n2. This will ensurethat the reonstrution takes plae at the boundary of Bn and not anywhere else.As a matter of fat, the probability for the random walk to go right through a givensignal word is equal to (1=4)1 logn. Thus for 1 very small the random walk when beinginside Bn typially reads n2�"1 signal words during a time interval of length n2. Here"1 > 0 an be made arbitrarily small. This is basially so, beause the random walktypially visits about n2= logn distint points in a time window of length n2, and thusduring these time steps it would roughly visit about n2= logn � (1=4)1 logn � n2�"1 (for1 small enough) signal words.Now, if the number of olors m is large enough we an hoose 1 small and still thesignal words will be typial of Bn (that is, the probability to read them in a given ballBn2y { the ball of radius n2 entered in y { is small, as long as the ball does not touh Bn).Indeed, there are less than �n441 log n di�erent paths of length 1 logn inside Bn2y . Thusby independene the probability for a given signal word to appear in Bn2y nBn is less than�n4(4=m)1 log n, whih is as small as we want to, if only m is large enough. As a matter offat, exploiting the independene of the signals in a large deviations argument we will beable to show, that up to time en� the random walk in a time interval of length n2 will onlybe able to read more than n� (�; � as above) signal words if it spends this time in Bn2+nand that the probability of reading so many signals elsewhere is about e�n�. So, our test,to hek when we are bak in Bn will not fail until time roughly en�. But by that timewe will have returned to the origin about n��"2 times ("2 > 0, small). If now m were solarge that there were only di�erent olors inside Bn this would suÆe to reonstrut � onthe boundary of Bn. We simply would have to follow the walk until it exits Bn and readthe �rst olor outside as the olor of a boundary point. If all olors were di�erent, wewould learly know where this boundary point was. Moreover, there are order n pointsin �Bn, so n1+"3 ("3 > 0) returns to the origin would suÆe to reonstrut the senery onthe boundary of Bn. As we already saw that we have about n� of suh returns, we wouldbe done.



4.2. The Main Ideas and Basi Notations 163However, we are not allowed to hoose m growing with n, so we annot assume that allolors inside Bn are di�erent. So we have to employ more subtle methods to reonstrut� on the boundary of Bn.To desribe this reonstrution part we have to introdue some more notations. Let�Bn := fz 2 Bnj 9y 2 Z2 nBn suh that z and y are neighbors gbe the inner boundary of Bn and �Bn := Bn+1 nBnbe its outer boundary. Observe that �Bn may di�er from the outer boundary of Bn inthe lattie topology. Indeed, there might points at distane one from Bn without nearestneighbours in Bn. Moreover { using the lattie geometry of Z2 { it is easily heked thatall points in Bn+1 an be reahed from a point in Bn by rossing at most two edges. Sineby de�nition Bn [ �Bn = Bn+1 it learly suÆes to reonstrut �Bn with large enoughprobability.The strategy will be to guess the olor of a point v in �Bn by extending a walk to aneighboring point in �Bn by two further steps. Of ourse, we have to be very areful ofboth, to walk to v 2 �Bn and to extend the walk into the right diretion.The prinipal idea behind this reonstrution an be desribed quite easily. Draw astraight (horizontal or vertial) line through v and suppose we knew already the the olorsof a line segment of length approximately logn inside Bn and ontaining v as well as theolors of a line segment of about the same length outside Bn at distane 2 from v. Thenwe ould �gure out the two missing olors between these two segments by just waitinguntil the random walk �rst reads the olors of the segment inside Bn (in the right order)and then after a waiting time of 2 the olors of the segment outside Bn. Exept, if thewalk is far away from v (whih we an exlude by the above arguments) the walk musthave followed the straight line supporting the two segments at least partially and thusthe missing two olors are the olors read between reading the olors of the two segments.Indeed, the \following partially" part above needs a little more tehnial work. In fatwe ould deviate from the above line segment and just aidentally read the right olors.We will get rid of this nuisane by haraterising the missing two points as the shortestdistane between two ones rather than between two line segments. This idea will bemade more preise below.Now a major diÆulty is that we do not know the olors outside Bn. Thus we have tothink of another haraterisation of the segment outside Bn (supported by the same lineas the inner segment). It will turn out that it is useful to think of it as the segment whoseolors an be read in shorter time by starting with the inner segment than by startingwith any segment parallel to it.To formalise this idea for v 2 �Bn we de�ne a segment �(v) (the segment assoiatedwith v) in the following way: Let �(v) be the horizontal or vertial segment of length(2+ 3) logn with endpoints v and �0(v) 2 Bn, suh that the angle between this segmentand the tangent to the irle of radius jvj entered in 0 in the point v is at least 45 degrees(the latter is needed to ensure that the objets below are well de�ned).The �rst 2 logn lattie points (starting from �0(v)) will be alled the root segmentof v and abbreviated by �̂(v), the rest of �(v) is alled seond root segment and will be



164 Chapter 4. Senery reonstrution in 2 dimensionsdenoted by the symbol �(v), while the left and right neighboring segments of �̂(v) of thesame length 2 logn as �̂(v) (or the lower and upper segment next to the root segmentof v, if �(v) is a horizontal segment, respetively) are named the side segments of v. Forthese we reserve the symbols �(v) and �(v), and their starting points (next to �0(v)) aredenoted by �0(v) and �0(v), respetively. Finally the segment of length 2 logn following�(v) after one step when we keep following the line supporting �(v) will be alled theinvisible segment assoiated with v and denoted by '(v). Its endpoints are alled v2 and'0(v). The words assoiated with these segments will be alled the root word, seond rootword, side words, and invisible words, respetively. Finally the lattie points we want toguess the olor of, that is the points on '(v) of distane one and two to v are named v1and v2.All this is illustrated in Figure 1 below.Let us now desribe how this reonstrution works.The idea behind the above setup is that in order to read the olor of v1 and v2 we takea neighboring vertex v 2 �Bn and read the olor of v1 and v2 as the next olors whenwe have read �(v) from �0(v) to v. To guarantee that indeed we read the olor of theright points we require that the algorithm piks a word w of length 2 logn satisfying thefollowing onditions1. w appears in �j�n diretly (one step) after the word supported by �(v).2. In �j�n the shortest time for w to appear after the root word of v is exatly equalto 3 logn+ 1.3. In �j�n the shortest time forw to appear after the side word of v is exatly 3 logn+2.Condition 2 assures that we do not run bakwards after having read the word supportedby �(v) while Condition 3 guarantees that we have not deviated from the segment from�0(v) to v while reading the senery.Thus we estimate �(v2) to be the �rst olor of w. The estimate for �(v1) will be the theolor between �(v) and w, when they appear in �j[0; en�℄ one step apart from eah other.If there is no word w satisfying the above onditions we let the algorithm terminate (ouronditions imply that this will happen only with extremely small probability).To realize this idea, that is to atually prove Theorem 5.2.1, we need some morede�nitions, whih we will give now. For v 2 �Bn the half spae assoiated to v { whihwill be denoted by H(v) { is the half spae separating �̂(v) from �(v) orthogonal to �(v)and with �(v) in H(v). The �rst quart-spae Q1(v) assoiated with v will be the right-angular one based in v2 with biseting line along '(v) suh that the major part of '(v) isinside this one. The seond quart-spae Q2(v) assoiated with v is the right-angular onebased on the line separating H(v) from its omplement suh that �̂(v) is on its bisetingline and �̂(v) is in this one. The third quart-spae Q3(v) assoiated with v will be de�nedas the right-angular one based on the line separating H(v) from its ompliment suh that�(v) is on its biseting line and �(v) is in this one. Finally, the fourth quart-spae Q4(v)assoiated with v will be the right-angular one based on the line separating H(v) fromits ompliment suh that �(v) is on its biseting line and �(v) is in this one. The basepoints of Q3, Q2 and Q4, respetively, are denoted by a, b, and , respetively.



4.3. Proofs 165All this is illustrated in Figure 1. In this �gure the points v; a; b; ; �0(v); �0(v), and�0(v) are inside Bn, whilst v1; v2, and '0(v) are outside Bn.As an be seen from there� Q1(v) ontains the segment '(v) whih begins with v2 and ends in '0(v)� Q2(v) ontains the segment �̂(v) whih begins with �0(v) and ends in b� Q3(v) ontains the segment �(v) whih begins with �0(v) and ends in a� Q4(v) ontains the segment �(v) whih begins with �0(v) and ends in � �(v) onsists of �̂(v) and �(v)� All of the segments '(v),�̂(v),�(v), and �(v) ontain 2 logn lattie points, while�(v) ontains 3 logn lattie points.4.3 ProofsIn this setion we give the proofs of Theorem 5.2.1 and Lemma 4.2.1, Lemma 4.2.2, andLemma 4.2.3. Let us start with the proof of Lemma 4.2.1.Proof of Lemma 4.2.1: Let X(l) be the indiator for the event that the reonstru-tion algorithm A applied to the observations shifted by l give rise to a senery whih isequivalent to the atual senery, that is X(l) = 1 if A(�l(�)) � � and X(l) = 0 otherwise.Obviously, (X(l); l 2 N) is stationary withP(X(l) = 1) = P(A(�) � �) > 12for all l.Furthermore let
 = f(+1; 0); (�1; 0); (0;+1); (0;�1)gN � f0; : : : ; m� 1gZ2and let F be the standard �-�eld on 
. Let � : 
 ! 
 be de�ned in the following way.For any ! = �(�1;�2; : : :);  �where  2 f0; : : : ; m� 1gZ2and �i 2 f(+1; 0); (�1; 0); (0;+1); (0;�1)g for alli 2 Nwe de�ne �(!) := �(�2;�3; : : :);  +�1� :Here  +�1 stands for 2D senery  shifted by ��1, i.e. +�1(z) :=  (�1 + z):



166 Chapter 4. Senery reonstrution in 2 dimensionsLet �i designate the i'th inrement of the random walk S, i.e.�i := S(i)� S(i� 1):Let � be the measure desribing the randomness of the objet ((�1;�2; : : :); �). Thismeans (
;F ; �) is a probability spae. One easily veri�es that � is measure preserving on(
;F ; �). Let Z(l) designate the random vetorZ(l) = ((�l+1;�l+2; : : :); � + S(l)) :Note that Z(l) = �l(Z(1)). Sine � is measure preserving the sequene Z(0); Z(1); Z(2); : : :is measure preserving. Now X(0); X(1); X(2); : : : is a stationary oding of the sequeneZ(0); Z(1); Z(2); : : :. By this we mean, that there exists a measurable funtion F suhthat for all l 2 N we have F (Z(l)) = X(l):This implies stationarity of the sequene X(0); X(1); X(2); : : :. Now a stationary oding ofan ergodi sequene is ergodi again. Thus in order to prove that (X(l))l is ergodi we willprove that Z(0); Z(1); Z(2); : : : is ergodi. To do so we will show that Z(0); Z(1); Z(2); : : :is atually mixing. For this it is enough to see that for any two A;B 2 F that only dependon �nitely many �i we have limk!1�(��kA \ B) = �(A)�(B):Let �n denote the �-algebra�n = �(�1;�2; : : : ;�n; �(z) : z 2 Bngwhere Bn := fz 2 Z2 : jzj � ng:Eventually let Cn;k denote the event thatCn;k := fS(k) =2 B2ng:Assume that A;B 2 �n. Then, onditional on Cn;k the events ��k(A) and B are indepen-dent. Also note that ��k(A) and Cn;k are independent. Thus we obtain�(��k(A) \ BjCn;k) = �(��k(A)jCn;k)�(BjCn;k)= �(��k(A))�(BjCn;k):Hene �(��k(A) \ B \ Cn;k) = �(��k(A))�(B \ Cn;k):This implies that�(��k(A) \ B) = �(��k(A) \ B \ Cn;k) + �(A)(�(B)� �(B \ Cn;k)): (4.3.1)Keeping n �xed and taking k to in�nity we obtainlimk!1�(Cn;k) = 0:



4.3. Proofs 167Hene also limk!1�(B \ Cn;k) = limk!1�(��k(A) \B \ Cn;k) = 0:Thus (4.3.1) implies �(��k(A) \B) = �(A)�(B):Hene the shift � is mixing on (
;F ; �) and thus also ergodi. Therefore Z(0); Z(1); : : :is an ergodi sequene of random variables. Sine X(0); X(1); : : : is a stationary odingof Z(0); Z(1); : : : it inherits the property of ergodiity.Hene by the ergodi theoremX(1) +X(2) + : : :+X(l)lonverges to a limit larger than 1=2 almost surely. Thus under the assumption thatP(A(�) � �) > 12 :we an identify the equivalene lass of � as the only equivalene lass whih eventuallyis equivalent to the majority of the A(�l(�))'s. 2Let us now prove Lemma 4.2.2.Proof of Lemma 4.2.2: The prinipal idea behind the proof of Lemma 4.2.2 is thatwith enough olors within a large area a ertain olor is typial of the point underlyingit. This will help us to reonstrut the senery on two basi shapes, whih will help toreonstrut the senery on the points of a three by three square and hene also on anyother square. In a �nal step we will see this already suÆes to reonstrut the senerywithin a large ball.To be more preise let En01 := \x6=y2Bnf�(x) 6= �(y)g;and En02 := \x;y2Bn;jjx�yjj=1 \z2Bn \v=2Bn:�(v)=�(z)f(Sk)k passes from x to y in one step before visiting vgIn words the event En01 says that all olors inside Bn are di�erent, while En02 statesthat all edges inside Bn are rossed by (Sk)k2N before it visits a point outside Bn havingthe same olor as one of the points inside Bn.We now show that under the ondition that En01 and En02 hold true, we an reonstrutthe senery �jBn. The reonstrution will be based on the following two important ases.Case I: Let x; y; z; v 2 Bn be the orners of a unit square with x and z (and as welly and v) aross the diagonal. Then, if En01 and En02 hold, and we know the olors of x,y and z, we an �gure out the olor of v. As a matter of fat, the olor of v is the �rstolor appearing, neighboring both the olor of x and the olor of z, and di�erent from the



168 Chapter 4. Senery reonstrution in 2 dimensionsolor of y. (Here and in the following we all two olors neighboring if they are read atonseutive times).Case II: Let x1; x2; x3; x4; y 2 Bn be a \ross" with enter y , that is x1; x2; x3; x4; yare pairwise di�erent andjx1 � yj = jx2 � yj = jx3 � yj = jx4 � yj = 1:Knowing that En01 and En02 hold as well as the olors of x1; x2; x3 and y we an �nd outthe olor of x4 as the only olor neighboring �(y) di�erent from �(x1); �(x2), and �(x3).We will now see that these two basi tehniques suÆe to reonstrut �jBn, if En01 andEn02 hold. Indeed, denoting by Qj the 2j + 1 by 2j + 1 square with enter zero, we an�rst reonstrut �jQ1.To this end we �rst reover the olor of the origin (whih is, of ourse, trivial) andthe olors of (1; 0); (0; 1); (�1; 0), and (0;�1). Indeed, the olors themselves are knownfrom the observations. Note that the only information we need is the relative positionsof the olors of (1; 0); (0; 1); (�1; 0), and (0;�1) to eah other beause we only want toreonstrut up to equivalene. This means we only need to know whih of the olorsf�((1; 0)); �((0; 1)); �((�1; 0)); �((0;�1))gare from points aross (0; 0) and whih of them are not. (Here we say that (1; 0) and (�1; 0)lie aross (0; 0) as well as (0; 1) and (0;�1) lie aross (0; 0), while the other possible pairsdon't.)Now the following haraterization holds:Pairs from f�((1; 0)); �((0; 1)); �((�1; 0)); �((0;�1))glie aross (0; 0) if and only if they have exatly one neighbouring olor (whih is �(0; 0)),whilst the other pairs have exatly two neighboring olors.One we know the �jf(1; 0); (0; 1); (�1; 0); (0;�1)g up to equivalene we an reon-strut the senery on Q1 by applying Case I to the four orner points of Q1.Now we an proeed indutively. Knowing the �jQj \ Bn, we want to reonstrut�jQj+1 \ Bn, that is we want to �nd out the olor of the boundary points of Qj+1 (asfar as they are inside Bn). For all points with at least one oordinate di�erent fromj + 1; j;�j � 1, or �j, this an be done by applying the tehnique of Case II. Then theolor of the points with one oordinate equal to j or �j an be reonstruted by applyingthe tehnique of Case I. Finally the same tehnique yields the olor of the orner pointsof Qj+1.This shows that under the ondition that En01 and En02 hold true we an reonstrut�jBn up to equivalene. It remains to understand that both, En01 and En02 hold true witharbitrary large probability for �xed n and large enough m. Indeed, this is not very hardto see. For En01, note that P�(En01)� � onst n2 1m;whih an be made arbitrarily small by hoosing m large.Similar tehniques apply to En02. Note that by taking T large enough the random walk(Sk)k�T up to time T has visited eah point in Bn, at least L times (L some number to



4.3. Proofs 169be hosen soon, f. [11℄ for similar results). Then the probability that there is an edge inBn the random walk does not visit up to time T is bounded byonstn2�34�L;whih is arbitrarily small for L large enough. If we now �rst hoose L, the take T asabove, and �nally hoose m so large that also the probability that all olors in BT aredistint (by the same tehniques as above) is as large as we want to, we see thatP�(En02)� � "for eah " > 0 if only m is large enough. This �nishes the proof of Lemma 4.2.2. 2Next we will prove Lemma 4.2.3, whih is indeed the key ingredient to the proof ofTheorem 5.2.1.Proof of Lemma 4.2.3: Let En denote the event that given a piee of senery  with  � �jBn the \reonstrution algorithm at step n" An produes a piee of seneryAn( ; �) with An( ; �) � �jBn+1:We need to show that with probability one En holds for all but a �nite number of n's(in the following we will also say that an event holds for almost all n if it holds for all nbut a �nitely many).To do so see we deompose En for n 2 N in suh a way thatEn � En1 \ En2 \ En3 :We will then show that eah of Eni , i = 1; 2; 3 holds for all but �nitely many n's.Whenever in the sequel we will say about some observations � that \� appears in Awith starting point x", or \� appears in A with endpoint y", respetively, where � 2f0; : : : ; m� 1gl for some l, A � Z2, and x; y 2 Z2, we will mean that�jT = �for some realisation of the random walk Sn, some disrete time interval T = [t0; t0+ l� 1℄suh that St0 = x (or St0+l�1 = y, respetively) and SjT � A. In other words � appearsin A with starting point x (or endpoint y) if it an be read inside of A by a nearestneighbor walk starting in x (ending in y). Moreover if, for one of the line segments�(v); �̂(v); �(v); '(v) or �(v), we refer to �jL (L 2 f�(v); �̂(v); �(v); '(v); �(v)g) we meanthe observations obtained by reading � along L from the enter of Bn to the outside ofBn Now letEn1 := Tx2Bexp(n�) fThere are less than n� di�erent words fromSn appearing in �j(Bn2x nBn)g;where Bn2x stands for the disrete ball of radius n2 entered in x.



170 Chapter 4. Senery reonstrution in 2 dimensionsObserve that the de�nition of �n implies that on En1 we have that Sk 2 Bn+n2 for allk 2 �n.Moreover let En2 = En21 \ En22 \ En23 \ En24 \ En25with En21 := \v2�Bnf�j�(v) appears in �jBn2+n only with end point inside H(v)g;En22 := \v2�Bnf�j�̂(v) appears in �jBn2+n only with endpoint x 2 Q2(v)g;En23 := \v2�Bnf�j�(v) appears in �jBn2+n only with endpoint x 2 Q3(v)g;En24 := \v2�Bnf�j�(v) appears in �jBn2+n only with endpoint x 2 Q4(v)g;and En25 := \v2�Bnf�j'(v) appears in �jBn2+n only with starting point x 2 Q1(v)g:Finally let En3 = En3;� \ En3;� \ En3;�;whereEn3;� := \v2�Bnf All nearest neighbor walks of length (22 + 3) logn + 1initially traversing �̂(v) are realized at least one during �ng;En3;� := \v2�Bnf All nearest neighbor walks of length (22 + 3) logn+ 1initially traversing �(v) are realized at least one during �ng;and En3;� := \v2�Bnf All nearest neighbor walks of length (22 + 3) logn + 1initially traversing �(v) are realized at least one during �ng:Before we show that En1 \ En2 \ En3 indeed happens for all but a �nite number of n's,let us see that this will atually imply the desired result, that is, let us see, thatEn � En1 \ En2 \ En3 :As a matter of fat, for eah event in En1 we know that during �n we must be lose toBn, more preisely, we know, that during �n the walk is inside Bn2+n. Then En3 ensuresthat in this time �n we read eah sequene of length (22 + 3) logn + 1 beginning with



4.3. Proofs 171either �j�̂(v), �j�(v), or �j�(v) for eah v 2 �Bn at least one. En2 now guarantees thatduring these times the walk is lose to the points a, b, and  (of the appropriate v).Finally En2 together with En3 ensures some of the walks atually pass the points a, b, and, orrespondingly. Therefore, we are able to read the olor of the verties v1 and v2 nextto v in diretion of �(v).Let us explain this in detail, sine this step is, indeed, the ore of the reonstrutionstep. For �xed v 2 �Bn at the boundary of Bn we need to prove that the reonstrutionmethod works orretly, i.e. that the algorithms we will give below reveals the olors ofthe orresponding v1 and v2 (i.e. �(v1) and �(v2)) orretly, if En1 , En2 and En3 hold. Letus now de�ne the reonstrution algorithm properly.The algorithm is given as input �jBn, the senery restrited to Bn whih we assumeto know already.Algorithm to reonstrut v1 = v1(v) and v2 = v2(v)Step 1: Selet all words w of length 3 logn in � Æ Sj�n with the following properties:a) The shortest number of steps w appears after �j�̂ in � Æ Sj�n is 3 logn+ 1.b) The shortest number of steps w appears after �j� in � Æ Sj�n is 3 logn + 2.) The shortest number of steps w appears after �j� in � Æ Sj�n is 3 logn+ 2d) A word of the form �j�3�3w (where � is an arbitrary olor and the symbol 3stands for the onatenation of two words) ours in �j�n, i.e. the event that w is readpreisely one step after �j� ours in �n.Step 2: Take the �rst letter of w as an estimator of �(v2).Step 3: Take an ourrene of a word �j�3�3w in �n. Estimate �(v1) with �.In order to prove that the above algorithm works and is well de�ned (Step 3) giventhat En1 , En2 and En3 hold, we will prove the following: for every word w seleted by ouralgorithm its �rst letter is read at position v2. This automatially implies both: that Step2 of the above algorithm works as well as that Step 3 is well de�ned and works.First assume that there is at least one word w seleted by the �rst step of the abovealgorithm. Call the lattie point at whih the �rst letter of w is read x. Assume that xis in H but not on the line supporting �. Then there is a path form either a or  to xwhih is stritly shorter than any path from any starting point in Q2 to x (in partiularit is shorter than a path from b to x). Now En3 holds, so in partiular En3;� and En3;�hold. Hene a path �rst reading � (or rho), rossing a (or ) and then walking to x inthe shortest possible way in order to produe w from there will one be realized. NowEn1 holds, ensuring that during �n the random walk is in Bn2+n. Thus En22 holds. Thisguarantees that any time we read �j�̂ in � we do this with an endpoint in Q2. Thus anytime we read the word w (and still we assume that x is not on the line supporting �) atime t0 after having read �j�̂, this time t0 will be stritly larger than the time to read wafter having read one of �j� or �j�. This ontradits our seletion riteria.Thus we an only selet words w with a �rst letter read at x 2 H, if x lies on the linesupporting �. Now from En3;� we know that all paths of length (22 + 3) logn + 1 arerealized one during �n. From this together with the fat that we have seleted w suhthat the shortest it appears in the observations after �j�̂ is 3 logn + 1, it follows that xis at distane 3 logn + 1 from b, hene given that x 2 H, we onlude that x = v2. Itonly remains to show that x annot be in H. But this is guaranteed by En21.



172 Chapter 4. Senery reonstrution in 2 dimensionsIt remains to show that Step 1 of the above algorithm selets at least one word. Butas a onsequene of En1 , En22, En23, En24, En25 and En3;� Step 1 of the above algorithm willselet �j'. Indeed, the shortest path from Q3 or Q4 to Q1 is 3 logn+ 2 steps long, whileQ1 an be reahed from Q2 in 3 logn + 1 steps. By En1 we know that we are in Bn2+nduring �n. Thus by En23, En24, and En25 we know that the shortest possibility to read �j'after �j� or �j� is after 3 logn + 2 steps, while the shortest possibility to read �j' after�j�̂ is after 3 logn + 1 step. Finally, En3;� ensures that we will observe at least one thesequene �j�3�3�j' for some olor �. Thus �j' satis�es the seletion riteria of Step 1of the algorithm.Hene we reonstrut the olor of v1(v) and v2(v) if En1 \ En2 \ En3 is satis�ed.As this works for all v 2 �Bn we are indeed able to reonstrut the senery on Bn+1proving that En � En1 \ En2 \ En3 :It remains to show that En1 \En2 \En3 is true for all but �nitely many n, if we hoose� and � in the orret manner.En1 holds for all but �nitely many n: Let ! 2 Sn be any �xed signal word in Bn.By this we mean that ! is the signal word between two �xed starting points; so note that! although being �xed in this sense, will still be random. Let y =2 Bn be any potentialstarting point for ! outside Bn. By independene of the olorsP(! appears in �j(Z2 nBn) with starting point y) � � 4m�1 log nas there are 41 log n di�erent walks of length 1 logn starting in y. Thus for any yP(! appears in �j(Bn2y nBn)) � �n4� 4m�1 log n = �n4+1(log 4�logm)as there are �n4 di�erent points inside Bn2.Now the indiators Iw for the event that the word w 2 Sn appears in Bn2y n Bn areonditionally independent (for di�erent w) under P given �j(Bn2y n Bn) as the di�erentwords have mutually disjoint support and therefore are independent. To understand thispoint orretly it is of importane to reall that Sn is a random set (under P). Theindependene laimed above would not be true for any �xed set of words or if we did notondition on knowing �j(Bn2y nBn).Hene the number of w 2 Sn appearing in Bn2y n Bn is stohastially bounded by aBinomial random variable with N = n2=1 logn di�erent trials and suess probabilityp = �n2+1(log 4�logm). But for n;m large enoughn21 logn � n2as well as p = �n2+1(log 4�logm) � 1n2 :



4.3. Proofs 173But then the number of w 2 Sn appearing in Bn2y n Bn is stohastially bounded by aBinomial random variable X with n2 di�erent trials and suess probability 1n2 But byTshebyshev's exponential inequalityP �X � n�� � e�n�EeX = e�n� �1 + e� 1n2 �n2 = O(e�n�):It follows that P [(En1 )℄ = O(e2n��n�)whih is ummable for � > �. This by the Borel{Cantelli Lemma implies that En1 holdsfor all but �nitely many n.En2 holds for all but a �nite number of n: Sine the proofs of that En2i holds foralmost all n are very similar for eah i, we just show it for En22 and leave the other proofsto the reader.To this end onsider any v 2 �Bn and any oriented onneted segment s in Z2 of length2 logn. Note that if the endpoint of s is not in Q2 the i'th point of �̂(v) is di�erent fromall the j'th points of s, j � i, and thus �(�̂i(v)) is a \fresh random variable. Thus byonditional independene the probability of reading �̂(v) along �js is bounded byP(�js = �j�̂(v)) = � 1m�2 log n;and therefore for every �xed x 2 Bn2+n nQ2(v)P(�j�̂(v) appears with endpoint x) � � 4m�2 log n:As there are at most �(n2 + n)2 points in Bn2+n and there are at most onst� n pointsv 2 �Bn, we obtainP((En22)) � � 4m�2 log nonst� n�(n2 + n)2 � n2(log 4�logm)+6The right hand side of this inequality beomes summable if we hoose m large enough(depending on 2 or 3). More preisely, we hoose m suh that2(log 4� logm) + 6 < �2:Note that this hoie does not depend on n. This hoie of m will basially be the proofof Theorem 5.2.1. Thus (again by a Borel{Cantelli argument) En22 holds true for all but�nitely many n.Note that until now we are still free to hoose 1; 2; 3.En3 holds for all but �nitely many n: Again we only give the proof in detail forone of the events, whih will be En3;�. The proof for the other two events follows the samelines.We split this proof into several parts.



174 Chapter 4. Senery reonstrution in 2 dimensionsFirst let us prove that in a ertain (striter than usual) sense the random walk by timeen� has returned to the origin more than n times, where  < � < �. A result like thisseems to be very muh in the spirit of a result by Erd�os and Taylor [2℄, who showed thatalmost surely a random walk at time en has returned to the origin between n=(logn)1+"and (1 + ")n log logn times for all but �nitely many n's and every positive " > 0. Thereason why we annot simply refer to this result is that we also want these returns tothe origin to be apart at least n2 from eah other. So, more preisely let us introdue asequene #ni of stopping times suh that #n0 = 0 for all n and #ni+1 is the time of the �rstreturn of the random walk Sk to the origin after time #ni + n2. This will ensure that inthe meantime the random walk is able to hit one of the boundary points of Bn. So wewant to hek that for  < � < � ( appropriately hosen afterwards) the eventEn31 := f#nn � en�ghappens for all but �nitely many n's. Indeed, hoosing Æ = ��2 the result by Erd�os andTaylor [2℄ quoted above states that the eventEn311 := f Up to time en� there are more than n+Æ returns to the origin gholds true almost surely for all but a �nite number of n's. Next we will show that thesame is true for the eventEn312 := n\i=1fIn the interval [#ni ; #ni + n2℄ there are less than nÆ returns to the origin g:As a matter of fat the probability for a simple random walk starting at the origin notreturning for t steps is bounded below by 2�log t for t large enough [12, p.167℄, [3℄. Applyingthis yieldsP(In the interval [#ni ; #ni + n2℄ there are more than nÆ returns to the origin )� �1� �logn�nÆ � e�nÆ=2for eah i = 1; : : : ; n and n large enough. Hene by bounding the probability of a unionby the sum of the probabilities P((En312)) � ne�nÆ=2whih is �nitely summable. Therefore En312 holds for all but a �nite number of n's. AsEn311 and En312 together imply En31 also En31 holds for almost all n.Next we will show that many of the intervals [#ni ; #ni + n2℄ above are indeed signaltimes, that is we will show that we read more than n� di�erent signals in all of thesetime intervals. To this end introdue random variables Yi whih are indiators for theevent that the interval [#ni ; #ni + n2℄ is a signal time, that is for the event that there aremore than n� signal words read in [#ni ; #ni + n2℄. To avoid the dependene among readingdi�erent signal words we only onentrate on suh words whih are \far apart" form eahother. To this end we partition the inner part of Bn, that is Bn n �(log n)3Bn where�(log n)3Bn := fx 2 Bn; d(x; �Bn) � (logn)3g



4.3. Proofs 175and d(�; �) is the lattie distane in Z2, into boxes of lengths 1 logn and (logn)3. LetW nk;l := f(x; y) 2 Bn : 1k logn � x < 1(k + 1) logn; l (logn)3 � y < (l + 1) (logn)3g;(k; l 2 Z).For i = 1; : : : ; n onsider the following indiators: Let I1;n(i) be the indiator for theevent that S#ni +n 4+�3 2 Bn= log n. I2;n(i) denotes the indiator for the event that the wholetrajetory (Sk)k=#ni ;:::;#ni +n 4+�3 is ontained in Bn. Furthermore, let I3;n(i) be one if therandom walk visits more than n 2(1+�)3 =(2(1+�)3 logn) distint points in [#ni ; #ni + n 4+�3 ℄ andzero otherwise.Moreover let I4;nk;l (i) be the indiator for the event that in the time interval [#ni ; #ni +n 4+�3 ℄ the walk enters W nk;l and within (logn)3 steps after the �rst entrane time touhesone of the lines x = k logn or x = (k + 1) logn, and �nally follows the straight linesupporting the the word assoiated with the starting point it touhed.First onsider the event fI1;n(i) = 0g. By onentration of measure (f. [13℄) we havefor every �xed i P(I1;n(i) = 0) = P(jjS#ni +n 4+�3 jj � nlogn) � e�onst: n 2��3(log n)2 :Therefore, as � < 2 as well as  < 2P��\i fI1;n(i) = 1g�� � n2e�onst: n 2��3(log n)2whih is �nitely summable and thus TifI1;n(i) = 1g holds true for almost all n. Here andin the following Ti refers to the intersetion over i = 1; : : : ; n .By the same argumentP(I2;n(i) = 0) = P(9 t 2 [#ni ; #ni + n 4+�3 ℄ : jjStjj � n)� n2P(jjS#ni +n 4+�3 jj � n) � n2e�onst:n2��3 :Thus, also TifI2;n(i) = 0g holds true for all but �nitely many n.To bound the probability that I3;n(i) is equal to zero, �rst observe that the number ofdistint points Dt visited by a simple symmetri random walk starting at the origin bytime t satis�es (f.[4℄, [3℄) EDt � 2tlog tfor all t large enough. Moreover suh a random walk learly an only have visited at mostt points (i.e. Dt � t) up to time t. Together this impliesP(Dt � tlog t) � 1log t : (4.3.2)



176 Chapter 4. Senery reonstrution in 2 dimensionsPartitioning the interval [#ni ; #i + n 4+�3 ℄ into n 2��3 intervals of length n2 1+�3 and applying(4.3.2) with t = n2 1+�3 (observe that log t = 21+�3 logn) yields for any �xed i:P(I3;n(i) = 0) � �1� onst:logn �n 2��3 � e�onst:n 2��3logn :Hene by the same summability argument as above TifI3;n(i) = 1g holds for almost alln. Next let us have a loser look at fI4;nk;l (i) = 1g. Suppose that we already know that Snenters the setor W nk;l within [#ni ; #ni + n 4+�3 ℄. Considering just the projetion of the walkto the x-axes, we see a nearest neighbor random walk on Z with holding probability 1/2.The points k logn and (k + 1) logn obtained by projeting the vertial limiting lines ofW nk;l may be onsidered absorbing barriers for this random walk. As the expeted hittingtime of one of these barriers is of order (logn)2, after time (logn)3 we will have hit oneof the boundaries with a probability bounded away from zero (in n). In other words thatis to say, that Sn onditioned on that it will visit W nk;l at all, will touh one of its leftand right boundary lines within (logn)3 after the �rst entrane time into this setor withprobability bounded away from zero. As the word assoiated to this boundary point haslength 1 logn the probability that the walk touhes a boundary point and then followsthe walk assoiated to it is bounded by onst:(1=4)1 log n.Note that the events fI4;nk;l (i) = 1g are not independent for di�erent hoies of (k; l) andthe same i and n. First due to the fat that (Sk) is a Markov hain the event fI4;nk;l (i) = 1ginreases the hanes that we also hit a square lose to W nk;l. However, also given that wevisit both W nk;l and W n(k+1);l for example, the events fI4;nk;l (i) = 1g and fI4;nk+1;l(i) = 1g aredependent sine reading a word assoiated with a boundary point of W nk;n might easilyoinide with touhing a boundary point of W nk+1;n less than (logn)3 steps after the �rstentrane time. To ope with this e�et we disregard every other square, that is we onsiderthe indiators Î4;nk;l (i) := I4;nk;l (i)I(k; l)where I(k; l) is +1 if k and l are even and 0 otherwise, instead.Now observe that on fI2;n(i) = 1g \ fI3;n(i) = 1g the random walk visits more thann2 1+�3 =2(1+�)3 logn distint points within [#ni ; #ni + n 4+�3 ℄ { all of them lying in Bn { andtherefore, as eah of the W nk;l has 1(logn)4 points, also n2 1+�3 =(21 1+�3 (logn)5) distintW nk;l's. As one fourth of them will have both k and l even Î4;nk;l (i) has a hane to beome+1 for n2 1+�3 =(81 1+�3 (logn)5) di�erent hoies of (k; l). Given the indies (k; l) for whihthis is true the events fÎ4;nk;l (i) = 1g indeed are independent and have probability at leastonst:(1=4)1 log n. Hene again by moderate deviations or onentration of measure onfI2;n(i) = 1g \ fI3;n(i) = 1gP(Xk;l Î4;nk;l (i) � n�) � exp��onst:n 13 (2��)�1 log 4(logn)10 � � e�n"for some small ", if 1 is small enough (depending on how large we have hosen � before).As e�n" is �nitely summable even after multipliation with the number of di�erent #ni we



4.3. Proofs 177obtain that on the event TiffI2;n(i) = 1g\fI3;n(i) = 1gg we havePk;l Î4;nk;l (i) � n� for alli and all but �nitely many n's. As also TiffI2;n(i) = 1g \ fI3;n(i) = 1gg holds for almostall n Xk;l Î4;nk;l (i) � n�also is true for almost all n. As �nally also TifI1;n(i) = 1g for all but a �nite number ofn's, we arrive at \i ffYi = 1g \ fI1;n(i) = 1ggfor all n but �nitely many. (Reall that the random variables Yi were the indiators forthe event that the interval [#ni ; #ni + n2℄ is a signal time, that is for the event that thereare more than n� signal words read in [#ni ; #ni + n2℄.)Let us summarise what we know already. For almost all n the following holds true:Until time en� we have more than n ( smaller than �) di�erent intervals of length n2 ofsignal times. The signals are read in the �rst n 4+�3 steps, after whih the random walksstops in a distane at most n= logn from the origin.Finally we have to show that in these time intervals [#ni ; #ni +n2℄ we also read all wordsof length (22 + 3) logn beginning with either a root word or a side word assoiated toany of the boundary points. To avoid trouble with independene we will only onentrateon events where this happens in one of the time intervals Jni := [#ni + n 4+�3 ; #ni + n2℄; i =1; 2; : : :.To this end, �rst observe that on a time interval of length jJni j the random walk (Sk)deviates form its staring point by the variane of a sum jJni j many independent randomvariables with variane one. This is immediately omputed asqn2 � n 4+�3 � n2for n large enough. Therefore, and sine \in the worst ase" S#ni +n 4+�3 = 0 with positiveprobability bounded away from zero (Sk) exits Bn during Ji. This bound will be used toestimate the probability to hit the beginning �0(v) of a root word for a boundary pointv 2 �Bn or the beginning of one of its side words. This probability an be omputed asthe probability of hitting this point onditioned on that we hit the (disrete) sphere it isontained in, times the probability that we hit this sphere at all. The latter probability isbounded below by a onstant away from zero, by the above onsiderations. On the otherhand the probability to hit a ertain point in �Bn onditioned on that we leave Bn isbounded below by {n for some onstant { > 0 no matter where in Bn= log n we started. Ofourse, it suÆes to understand that this is true for large n. But observing that underthe saling Z2 ! 1nZ2, the boundary �Bn onverges to the unit sphere, Bn= log n shrinksto the origin and (Sk) onverges (after resaling also the time axes whih is irrelevant forour argument) to Brownian motionW 0(t) starting at the origin and moreover taking intoaount that the harmoni measure on the unit sphere (any sphere entered in zero) withrespet to W 0(t) is the uniform distribution on it, shows that the above bound indeedholds. So, as all starting points of root words and side words lie in Bn2 n Bn2�(2+3) log nwe see that the probability of hitting any �xed starting point is bounded from below by



178 Chapter 4. Senery reonstrution in 2 dimensions{0n for some {0 > 0 ({0 results from multiplying { with the probability of exiting Bn2 ina ertain Ji).Now the probability of reading �̂(v) and after that any �xed ontinuation of length(2 + 3) logn given that we �rst read �0(v) has (for any �xed v 2 �Bn) probability�14�(22+3) log n = n�(22+3) log 4:So the (unonditioned) probability of reading �̂(v) and after that any �xed ontinuationof length (2 + 3) logn is bounded below by{n�14�(22+3) log n = {n�1�(22+3) log 4:On the other hand there are n di�erent time intervals where we an read suh aword. So the probability of not reading �̂(v) and after that any �xed ontinuation oflength (2 + 3) logn in all of these intervals behaves like�1� {n�1�(22+3) log 4�n � exp��{n�1�(22+3) log 4�:As we an hoose 2 and 3 as small as we want to and  > 1 (and still ; �) this probabilityis smaller than e�n" for some " > 0. The same holds true for the probability of readinga side word and then any �xed ontinuation of length (2 + 3) logn given that we readits �rst letter. As for �xed n there are only polynomially many of suh nearest neighbourwalk paths (more preisely, as there less than6�n4(2+3) log n = 6�n1+(2+3) log 4suh nearest neighbour walk paths) the probability of not reading all of them is boundedby 6�n1+(2+3) log 4e�n"whih is �nitely summable in n. Therefore, by the Borel-Cantelli Lemma, also E3n holdsfor all but �nitely many n's. This �nishes the proof of Lemma 4.2.3. 2The proof of the main theorem now only onsists of hoosing the onstants in theorret order.Proof of Theorem 5.2.1: To �nish the proof we �nally speify the order in whihwe hoose the onstants. So �rst we hoose �; �;  with 2� � 2 > � (suh that righthand side in (??) is �nitely summable), and 1 <  < �. Then we hoose 1; 2 and 3 tomake the last part of the above proof of Lemma 4.2.3 work (note that this part does notdepend on the number of olors m). If we now hoose m larger than a ertain number m2(oming from the arguments whih guarantee that En1 and En2 holds for all but a �nitenumber of n's), this proedure ensures that the reonstrution in Lemma 4.2.3 works withprobability one for all but a �nite number of n's.Thus for 1=2 > " > 0 we an hoose N (non-random) suh that the probability thatwe have ~An(�jBn; �) � �jBn+1



4.3. Proofs 179for all n � N is bigger than 1� "2 given m � m2.Now for N there exists m1 suh that for m � m1 the reonstrution algorithm fromLemma 2.2AN ensures that we an reonstrut �jBN with probability larger than 1� "2 . Ifwe now hoose m � maxfm1; m2g and onatenate AN from Lemma 2.2 with the di�erentAn for n � N + 1 from Lemma 2.3, we obtain an algorithm A whih reonstruts � withprobability larger than 1� ".In view of Lemma 2.1 this suÆes to prove Theorem 5.2.1. 2
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Figure 4.1: Figure 1
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Chapter 5Reonstrution of Seneries withCorrelated ColorsAnn. Appl. Probab., 12(4):1322{1347, 2002.By Matthias L�owe, Heinrih Matzinger,In [9℄ Matzinger showed how to reonstrut almost every three olor senery, that is aoloring of the integers Z with three olors, by observing it along the path of a simplerandom walk, if this senery is the outome of an i.i.d. proess. This reonstrutionneeded among others the transiene of the representation of the senery as a randomwalk on the three-regular tree T3. Den Hollander (private ommuniation) asked whihonditions are neessary to ensure this transiene of the representation of the seneryas a random walk on T3 and whether this already suÆes to make the reonstrutiontehniques in [9℄ work. In this note we answer the latter question in the aÆrmative. Alsowe exhibit a large lass of examples where the above mentioned transiene holds true.Some ounterexamples show that in some sense the given lass of examples is the largestnatural lass with the property that the representation of the senery as a random walkis transient. 15.1 IntrodutionThe following problems to whih this paper will make a ontribution were disovered in theontext of ergodi theory, for example in onnetion with the so-alled T � T�1-problem(see Kalikow [3℄), and phrased as statistial questions independently by den Hollanderand Keane [2℄ and Benjamini and Weiss.For our purposes we will onsider the one dimensional lattie Z. Atually, the followingproblems make sense also for arbitrary graphs, but as there are hardly any results apartfrom the ase when this graph is Zd for some d 2 N , we immediately onentrate to ourobjet of desire. Assume that Z is olored with m olors. More preisely, we onsider two1MSC 2000 subjet lassi�ation: Primary 60K37, Seondary 60G10, 60J75.Key words: Senery reonstrution, jumps, stationary proesses, random walk, ergodi theory.183



184 Chapter 5. Reonstrution of Seneries with Correlated Colorssuh olorings, that is we onsider two funtions�; � : Z! f0; : : : ; m� 1gand all these funtions m-olor seneries or simply seneries. Let (Sk)k2N0 be symmetriand simple random walk on Z starting in the origin and walking without holding, that isS0 = 0 and P (Sk+1 = x + 1jSk = x) = P (Sk+1 = x� 1jSk = x) = 12for all x 2 Z and k 2 N0 . Moreover de�ne � := (�k)k2N0 to be the olor reord of (Sk)k2N0 ,that is either �k = �(Sk) for all k or �k = �(Sk) for all kdepending on whih senery we observe the olors. The question now is: an we just byobserving � (and, of ourse, without any further knowledge of (Sk)k2N0 ) tell on whih ofthe seneries � or � this olor reord � has been produed?Remarkable answers to this question (even for the higher dimensional ase) have beengiven by Benjamini and Kesten [1℄, who showed that if � and � are produed by an i.i.d.proess on Z (that is to say, if �(z) and �(z); z 2 Z are i.i.d. random variables), then�(z) and �(z) an almost surely be distinguished by their olor reord, if the dimensiond = 1; 2 and m � 2 is arbitrary. More preisely in this situation, there exists a test whihtells with probability one on whih of � and � the olor reord � has been produed (evenwith a slightly stronger version of distinguishability exluding trivial solutions suh asbene�ting from the fat that e.g. �(0) 6= �(0)).Also Kesten (see [4℄) showed that in dimension one, if m � 5, and � is again i.i.d. wean almost surely detet a single defet in � from knowing �, that is, we an almost surelytell, whether � has been produed on � or a senery � di�ering from � in one vertex i 2 Z,only. Here and in the following the notion \almost surely" will refer to a probabilitymeasure P desribing both, the randomness in (Sk)k2N0 , and the randomness in � (or in� and �, if we are interested in two seneries) and making (Sk)k2N0 and � (or (Sk)k2N0 , �,and �, respetively) independent.Indeed even more is true: In dimension one Matzinger showed in [9℄, [10℄ that forarbitrary m � 2 one an even almost surely reonstrut � from � = (�(Sk))k2N0 , that isone an reprodue a senery �0 from � whih is equal to � up to translation and reetionat the origin. This is even true, if the underlying random walk S is allowed to jump (ifthe jumps are bounded and m is large enough). The latter was shown reently by theauthors in ollaboration with Merkl [8℄.All these results are partiularly surprising, sine on the other hand it is known thatthere are unountably many seneries whih annot be distinguished by their olor reord.This has been proven by Lindenstrauss [6℄.The analogue to the reonstrutability of � from � in two dimensions has been reentlyproven by the authors under the onditioned that m is large enough (see [7℄).Basially all reonstrution and distintion tehniques ited above (with one exeption)seem to strongly exploit the fat that the senery is an i.i.d. proess, that is that �(z),z 2 Z are i.i.d. random variables. Only the methods employed by Matzinger in [9℄ arepartially ombinatorial and therefore seem to allow for a generalization to other seneries.Indeed, den Hollander (private ommuniation) asked what onditions for the senery



5.2. The Setup and the Main Result 185would be neessary to make the reonstrution ideas in [9℄ work. We onsider an answerto this question interesting in its own rights as it sheds some light on the universality ofthe solution to the above problem. In partiular, the roots of the senery reonstrutionproblem in ergodi theory make it attrative to ask for the ergodi properties of theseneries needed to ensure reonstrutability. Moreover, it was pointed out to us, thatsimilar ideas might be useful in the ontext of DNA reonstrution. As a DNA sequeneusually is assumed to be Markov-dependent of some type (at least the assumption of i.i.d.letters is rather far fethed) an analysis of what kind of seneries are reonstrutible mightalso be helpful onerning possible appliations.This paper is divided into �ve setions. Setion 2 ontains a desription of the basisetup and the �rst entral result of this paper. In Setion 3 we desribe the fundamentalreonstrution algorithm, while Setion 4 ontains a proof that the algorithm atuallyworks under the onditions of Theorem 5.2.1. Finally in Setion 5 we give the mostimportant examples where Theorem 5.2.1 applies and also ases where it does not applyand atually reonstrution along the ideas of this paper is not possible. Furthermore, weindiate that for these examples not only we an reonstrut a randomly hosen senery�, but also that there is a very powerful test for the initial problem of distinguishing itfrom any other senery.Aknowledgment: We are extremely grateful to an unknown referee who pointed outseveral weak points in an earlier draft of this paper and thus helped to improve its or-retness and readability.5.2 The Setup and the Main ResultBefore we give the �rst entral result of our paper in this setion let us quikly introdueand reall the most important notations. If not mentioned otherwise, in what follows �will always be a one dimensional 3-olor senery, that is� : Z! f0; 1; 2g:Atually, the generalization to m � 4 is easy and straightforward, but there will also beexamples with m = 2 where Theorem 5.2.1 applies. We will always hoose � randomlyfrom a lass of seneries in suh a way that the onditions of Theorem 5.2.1 are ful�lled.Moreover let S = (Sk)k2N0 be symmetri, simple random walk without holding on Zstarting in the origin. The measure P will denote the produt measure on the produtspae of all seneries and all random walk paths (with the obvious marginals). Hene wewill always assume independene of the walks and the seneries. The entral problem willbe to reonstrut � from its olor reord� := (�((Sk)k2N0 )) := ((�(Sk)k2N0 )under S (by �j[0; n℄ we will denote the �rst n + 1 observations). This means we want to�nd a measurable mapping A : f0; 1; 2gN ! f0; 1; 2gZsuh that P-almost surely A(�) � �:



186 Chapter 5. Reonstrution of Seneries with Correlated ColorsHere for two seneries �; � 2 f0; 1; 2gZ we write � � � (and say that they are equivalent),if there are a 2 Z and s 2 f�1;+1g suh that�(z + a) = �(sz)for all z 2 Z, i.e. � an be obtained form � by translation and reetion at the origin.For the idea of the reonstrution algorithm the following representation of � as a pathon a olored tree is essential. In our ase this tree will be the 3-regular tree T3 := (V3; E3),that is the onneted, unrooted, in�nite tree with all its verties v 2 V3 having degree 3.We hoose one (arbitrary) vertex and all it the origin o. We olor T3 (or more preiselyV3) in three di�erent ways '0; '1 and '2. Up to isomorphisms of the tree these oloringsare uniquely de�ned by the olor of the origin (or root) oi) 'i(o) = ifor i = 0; 1; 2and the following onstrution ruleii) For eah v 2 V3 let fv1; v2; v3g be the set of its neighboring verties (aording tothe graph topology indued by E3). Thenf'i(v1); 'i(v2); 'i(v3)g = f0; 1; 2gfor eah i = 0; 1; 2 and eah v 2 V3.Now we an represent � as a nearest neighbor path R on T3 (taking the randomnessin � into aount this will be a random path, but note that other than in [9℄ R is notneessarily a random walk on T3). This will be done in the following way.a) Choose the oloring 'i with i = �(0). (Note that we know �(0) as the random walkS is supposed to start in zero).b) We let R = (R(z))z2Z be the nearest neighbor random path (that is R(z) andR(z + 1) are adjaent for eah z 2 Z) on T3 olored with '�(0) suh thatR(0) = oand '�(0)(R(z)) = �(z)for all z 2 Z.Note that given T3, the hoie of o, and the oloring this path R is unique. This represen-tation of � as a random path on T3 olored with '�(0) will indeed help us to reonstrut �up to equivalene. To this end note that knowing R plus knowing �(0) is indeed equivalentto knowing �. Unfortunately, we do not know R but only R Æ S (the latter beause of'�(0) Æ (R Æ S) = ('�(0) ÆR) Æ S = � Æ S = �and thus we an reonstrut R Æ S from �).



5.3. The Algorithm 187Interestingly, the only knowledge we require about R in order to reonstrut � is thatit is transient, that is that the random path R (again reall that R is random as � israndom) visits eah vertex v 2 V3 only �nitely many times almost surely. This is aonsiderable improvement of Matzinger's previous result [9℄, who even for i.i.d. seneriesneeded some further onditions. A major tool in the proof of the following theorem willonsist of reformulation of this transiene in terms of rossings of some piees of the treeT3 by R. For some v 6= w 2 V3 we say that a time interval [s; t℄ (without loss of generalitys < t { otherwise we just reverse the order of v and w) is a rossing of (v; w), if R(s) = v,R(t) = w, or R(s) = w, R(t) = v, andR(s0) 6= v and R(s0) 6= w:for all s < s0 < t. Observe that two rossings of (v; w) either agree or are disjoint (that isthe time intervals are disjoint).Moreover we say that [s; t℄ is a shortest rossing of (v; w) by R, ift� s = minfjt0 � s0j; [s0; t0℄ is a rossing of (v; w) by Rg:Now we are ready to formulate the �rst entral result of this paper (the other will bestated in Setion 5).Theorem 5.2.1. With the above de�nitions, assume that the random path R is transient.Then there exists a measurable mappingA : f0; 1; 2gN ! f0; 1; 2gZsuh that P(A(�) � �) = 1:5.3 The AlgorithmIn this setion we are going to present the basi reonstrution sheme, while details willbe left to the proofs to follow in the next setion. The ore of this algorithm onsistsof stopping the random walk S in�nitely many times at the same plae. We will seein the next setion that this indeed is already enough to be able to reonstrut � up toequivalene. Atually this stopping of the random walk is of a di�erent nature, when � isessentially symmetri (by this we mean that there is a �nite interval I = (a; b) suh that�(a� x) = �(x� b) for all x 2 N). Therefore, we �rst test � on essential symmetry. Thissymmetry an also be expressed in terms of the path R on T3 whih will exploit in the�rst step of the algorithm.Step 1 of the Reonstrution Algorithm:Test whether there are v 6= w 2 V3 suh that there is only one shortest rossing of(v; w)>From Step 1 the algorithm proeeds in two di�erent diretions depending on whetherit has been suessful (that is there are v; w with only one shortest rossing of (v; w) byR) or not. The �rst ase will be alled Case A the other one Case B.



188 Chapter 5. Reonstrution of Seneries with Correlated ColorsCase A (there is at least one pair v 6= w suh thatthere is only one shortest rossing of (v; w)):Here we proeed by produing in�nitely many stopping times all stopping S at thesame point.Step 2 of the Reonstrution Algorithm:Stop the random walk S in�nitely often at the same point.Finally, we use these stopping times to reonstrut �.Step 3 of the Reonstrution Algorithm: Reonstrut � up to equivalene withprobability one from these stopping times.In Case B, where for every v 6= w 2 V3 there are at least two shortest rossings of(v; w) by R, we have to apply a slightly di�erent tehniques.Case B (For all v; w 2 V3 there are at least two shortest rossings of (v; w):)Step 2 of the Reonstrution Algorithm:Stop the random walk S in�nitely often at two di�erent points.Step 3 of the Reonstrution Algorithm: Reonstrut � up to equivalene withprobability one from these stopping times.Of ourse, this is a very rough desription of the algorithm. We will �ll its di�erentsteps with life in the next setion, where we prove that it atually works.5.4 Proof that the Algorithm worksIn this setion we show that under the ondition that R is transient the algorithm atuallyreonstruts � up to equivalene with probability one. This proof is split into di�erentparts. In the �rst part we show that if the walk is transient, then almost surely there areverties v; w 2 V3 suh that there are at most two rossings of (v; w) by R.De�nition 5.4.1. 1. Let W;W 0 be a set and f : W ! W 0 be a mapping. ThenIm f := ff(w); w 2 Wg denotes the image of f .2. Consider the the 3-regular tree T3 := (V3; E3) and two verties v; w 2 V3. The graphdistane d(v; w) is de�ned as minimum the minimum length of a path (minimumnumber of onneted edges in E3) to be rossed to get from v to w.Lemma 5.4.1. Let R be transient. Then for every �xed v 2 V3 and every sequenevn 2 V3 in the image of R with d(v; vn) = n and d(vn�1; vn) = 1 almost surely the numberN(n) of distint shortest rossings of (v; vn) by R onverges and the limit is P-almostsurely either 1 or 2.Remark 5.4.1. Note that due to the transiene of R the Image ImR of the representationof the senery � on T3 is almost surely in�nite. Hene suh a point v and a sequene ofpoints vn as assumed in the above lemma atually exist.



5.4. Proof that the Algorithm works 189Proof of Lemma 5.4.1. Without loss of generality we will take v to be the origin o. Bytransiene of R the origin is visited by R only �nitely many times with probability one.Thus with probability one the random variablestmax := maxft : R(t) = 0gand tmin := minft : R(t) = 0gare well de�ned and obey �1 < tmin � 0 � tmax <1:In partiular, �t := tmax � tmin is �nite with probability one. Now take vn 2 ImR withd(o; vn) = n as assumed in the above lemma. Then for all n large enough d(vn; o) > �t.Moreover, sine vn 2 ImR there exists tn 2 Z suh that R(tn) = vn. As d(vn; o) > �t weonlude that tn =2 [tmin; tmax℄:Thus at most two rossings of (o; vn) an our, one of the form (tmax; t1) and another oneof the form (t2; tmin), where t1 := minft > tmax : R(t) = vngand t2 := maxft < tmin : R(t) = vng:Also note that beause vn 2 ImR one of the above two rossings really an be found.As the we will see in the next lemma not only we either are in Case A or in Case B,but also is there a test whih reveals with probability one (given a full olor reord) inwhih of the two situations we are.Lemma 5.4.2. For eah v; w 2 ImR there exists a test that on the basis of the observa-tions � deides with probability one whether there is only one shortest rossing from v tow or whether there is more than one suh shortest rossing.Proof. Let v; w 2 ImR be any two points reahed by the random walk R. Note that Sas a random walk on the integers is reurrent and hene so is R Æ S as a random path onT . Therefore, R Æ S will pass every �nite path in ImR in�nitely often and thus,~T := minfjs� tj;R(S(s)) = v; R(S(t)) = wgestimates the time for the shortest rossing of (v; w) by R orretly with probability one.Also note that the distribution funtion of the waiting time between two shortestrossings of (v; w) by R Æ S is stritly larger if there is more than one shortest rossing of(v; w) by R than if there is just one suh shortest rossing.To be more spei�, let W be the random variable that denotes the �rst time afterwhih the random path R Æ S has walked from v to w in ~T steps.W := minfn � 0; R Æ S(n� ~T ) = v; R Æ S(n) = wg:



190 Chapter 5. Reonstrution of Seneries with Correlated ColorsMoreover let F the distribution funtion ofW onditioned on starting with S in the pointz orresponding to the point w (via the representation R) of the unique shortest rossingof (v; w) by R at time 0, i.e. F := L(W jS(0) = z):When there are several shortest rossings of (v; w) by R, say [y1; z1℄; : : : ; [yk; zk℄ withk � 2 is the set of all shortest rossings of (v; w) by R and (for our purposes without lossof generality) R(z1) = R(z2) = : : : = R(zk) = w we denote with Fi the distribution of Wwhen starting with S in the point wi at time zero, i = 1; : : : ; k.Note that the distribution funtion F then will be stritly smaller than eah of the thedistribution funtions Fi (i.e. F (t) � Fi(t) for all t and that F (t) < Fi(t) for all t � T0for some �nite T0). Indeed, if there are several shortest rossings of (v; w) by R, then arossing from v to w by RÆS in ~T steps may be aused by rossing one of several intervals[y1; z1℄; : : : ; [yk; zk℄ in ~T steps. Now the event to ross one of [y1; z1℄; : : : ; [yk; zk℄ in ~T stepshas a higher probability than to ross a �xed interval [y; z℄ in ~T steps in ase there is justone shortest rossing of (v; w) by R. This will eventually also show up in the distributionfuntion of W .Moreover, notie that F an be expliitly alulated when when we know that thereis only one shortest rossing from v to w and we also know its length. Indeed, denotingby l the length of suh a shortest rossing and onsidering the renewal proess, with arenewal after every time where the random path R ÆS has walked from v to w in l steps,we an alulate the probability that a time t is a renewal time. As a matter of fat,this an be done by observing that, if there is only one shortest rossing of (v; w), thisrossing orresponds (by the random path R) to two points z1; z2 2 Z with R(z1) = v andR(z2) = w and jz1 � z2j = l. So the probability of having a renewal at time t equals theprobability of walking with S from z2 to z1 in t� l steps times 2�l (for a straight rossingfrom z1 to z2). By a standard exerise in renewal theory, this also yields the probabilitythat t is the time of a �rst renewal, hene the distribution funtion of W .As we an also estimate the length l by ~T with probability one orretly, we an, inprinipal, alulate the distribution funtion of W in the ase where there is only oneshortest rossing of (v; w) by R.Finally, we an also test whether there is only one shortest rossing of (v; w) by Rorretly with probability one.In fat, if [s1; t1℄; [s2; t2℄; : : : denotes all intervals where the random path R Æ S walksfrom v to w in l = ~T steps, so s1 < t1 < s2 < t2 < : : : and R(S(si)) = v and R(S(ti)) = wfor all i = 1; 2; : : :. Then by the law of large numbers (Glivenko-Cantelli-Lemma) theempirial distribution funtion of the \�rst renewal times"1n� 1 nXi=2 Æti�ti�1onverges to some distribution funtion F with probability one as n goes to in�nity (ofourse, again, here we exploit the reurrene of S whih gives us in�nitely many suhrossings).If there is only one shortest rossing of (v; w) by R, the distribution funtion F willequal F with probability one, otherwise F will be a mixture of the Fi, hene larger thanF .



5.4. Proof that the Algorithm works 191So, if limn!1 1n� 1 nXi=2 Æti�ti�1di�ers from F (whih we an alulate as indiated above) we onlude that there ismore than one suh shortest rossing, otherwise we deide that there is only one shortestrossing of (v; w) by R. As has been shown above this test sueeds in giving the orretnumber of shortest rossings of (v; w) with probability one.In the next steps we will see that the algorithm atually works in Case A. To this endwe �rst have to show that we an indeed stop the random walk S in�nitely often at thesame plae. So, let Hk := �f�(z); z 2 Z; S(0); : : : ; S(k)gand de�ne the �ltration H as H := fHk; k 2 Ng:Lemma 5.4.3. If there are v; w 2 ImR suh that there is only one shortest rossing of(v; w) by R we an stop the random walk in�nitely often at the same plae, i.e. we are ableto onstrut an in�nite sequene of inreasing stopping times �(1); �(2); : : : with respetto the �ltration H suh thatS(�(1)) = S(�(2)) = : : : = S(�(k)) = : : :Remark 5.4.2. Observe that as has been already disussed in the ontext of Lemma 5.4.1and in partiular when motivating the algorithm in Setion 3, Case A is is the relevant asefor most distributions of the senery we might think of. Indeed, whenever the distributionof the senery exhibits some form of asymptoti independene, for example, the senerywill a.s. not be essentially symmetri and thus we will almost surely be in Case A.Proof of Lemma 5.4.3. Let v; w 2 ImR suh that there is only one shortest rossing of(v; w) by R. Let the length of this shortest rossing be ~L. This length ~L an be estimatedorretly with probability one by~T = minfjs� tj;R(S(s)) = v; R(S(t)) = wg:Thus, whenever we observe that the random walk R Æ S (whih an reonstrut from �)walks from v to w, in time ~T we know that also with probability one the random walk Smust be at the same plae when R ÆS has reahed w. Hene we an onstrut a stoppingrule and stop S, whenever R Æ S has walked from v to w in time ~T . This rule stops Salways at the same plae. Now, by reurrene of S with probability one there are in�nitelymany time intervals of length ~T where R Æ S walks from v to w, and thus the above rulestops S in�nitely often at the same plae with probability one.At �rst glane it might seem that the sequene of stopping times �(1); �(2); : : : thusobtained is not H-adapted in the above sense, sine their de�nition involves ~T whihonly is measurable with respet to the whole path (S(t))t2N. On the other hand, giventhe senery �, that is in partiular given ~L, we are able to onstrut stopping times� 0(1); � 0(2); : : :, suh that � 0(k) stops the random walk RÆS when it has walked from v tow in ~L steps for the k'th time. Obviously the � 0(k) are H-adapted in the above sense. Onthe other hand, the sequenes �(1); �(2); : : : and � 0(1); � 0(2); : : : are equal P-almost surely.It follows that the sequene �(1); �(2); : : : is H-adapted.



192 Chapter 5. Reonstrution of Seneries with Correlated ColorsFinally, we shall see that a rule that stops S in�nitely often at the same plae, atuallyis helpful to reonstrut �.Lemma 5.4.4. If we an reate a stopping rule (that is an in�nite sequene of H-adaptedstopping times) that stops S in�nitely often at the same plae, we an also reonstrut �restrited to any �nite interval (up to equivalene) with probability one.Proof. We will proof this lemma by indution.Say, we stop the random walk in�nitely often in the point z 2 Z. Of ourse, we thenknow the olor of z. To �nd out the olor of z � 1 and z + 1 we let the random walkS run one further step (after we have stopped it in z) and read o� the olor of the nextpoint. As we have in�nitely many suh stopping times we will eventually see both, theolor of z + 1 and the olor of z � 1 with probability one. Sine we are only interestedin reonstrution up to shifts and reetion of the senery this knowledge suÆes toreonstrut � on [z � 1; z + 1℄. This is the beginning of the indution.For the indution step assume we already have reonstruted � up to shifts and ree-tion on the interval [z � n; z + n℄. First assume that � is not symmetri under reetionat z on [z�n; z+n℄, that is (�(z� 1); : : : ; �(z�n)) 6= (�(z+1); : : : ; �(z+n)). The otherase will be treated similarly at the end of this proof.First we introdue the set of all nearest neighbor paths of length n + 1 that startingin z in the �rst n steps read the same olor sequene as a straight walk to the right:Sn := f� : f0; : : : ; n+ 1g ! Z : �(0) = z; j�(t + 1)� �(t)j = 1; 8t = 0; : : : ; nand �(�(t)) = �(z + t) 8t = 0; : : : ; ngand its subset where we exlude the straight walk to the right (the straight walk to theleft is automatially exluded as we have already assumed that � is non-symmetri withrespet to reetion at z) S 0n := f� 2 Sn : �(n) 6= z + ng:With the help of the sets Sn and S 0n we onstrut two measures on the spae f0; 1; 2g:�n(�) := 1jSnjX�2Sn Æ�(�(n+1))(�)and �0n(�) := 1jS 0njX�2S0n Æ�(�(n+1))(�)(if S 0n = ? we simply set �0n � 0.)Now the following three observations are ruial: First note that the desired olor ofz+n+1 is the only olor with a higher value (probability) under �n than under �0n, hene�(z + n+ 1) = supp((�n(�)� �0n(�))+)where supp denotes the support of a funtion and for a real number a we write a+ forsupfa; 0g.Seond, observe that from knowing �j[z � n; z + n℄ (whih we know by our indutionhypotheses), we an onstrut S 0n and therefore also alulate �0n.



5.4. Proof that the Algorithm works 193Finally, we also have an arbitrarily good approximation for �n. Indeed, let us denoteby #T the set of all times t � T where we stop the random walk S in the point z and readand read the olors �(z + i) in the next n steps. More preisely:#T := ft � T : S(t) = z and �(S(t+ i)) = �(z + i); i = 0; : : : ; ng:Then by the strong Markov property of the stopping times and the law of large numbers~�Tn (�) := 1j#T jXt2#T Æ�(S(t+n+1))(�)onverges to �n, when T beomes large. Thus with probability onelimT!1 supp((�Tn � �0n)+)onsists of preisely one element and reveals the olor of z + n+ 1.The same tehnique an be applied to reonstrut �(z�n� 1). To this end we simplyreplae Sn by Sn de�ned asSn := f� : f0; : : : ; n+ 1g ! Z j �(0) = z; j�(t + 1)� �(t)j = 1; 8t = 0; : : : ; nand �(�(t)) = �(z � t) 8t = 0; : : : ; ngand S 0n by S 0n := f� 2 Sn : �(n) 6= z � ngand proeed as above.If �nally, � restrited to [z � n; z + n℄ is symmetri under reetion at z, the supportof (�n � �0n)+ (�n and �0n de�ned as above) may either onsist of one or of two elements.More preisely, it will be one-elementary, if also �(z � n � 1) = �(z + n + 1), in whihase we simply assign this olor to eah of the two verties z � n � 1 and z + n + 1. If�(z � n� 1) 6= �(z + n+ 1) indeedsupp((�n(�)� �0n(�))+)and also limT!1 supp((�Tn � �0n)+)will onsist of two elements (with the notation introdued above the latter will be the\right olors" with probability one, again). As we only aim at reonstruting � up totranslations and reetions we do not to need to are about to whih of z � n � 1 andz + n+ 1 we assign whih of the two olors.This �nishes the proof of the lemma.Finally, we remark that Lemma 5.4.4 implies that we an reonstrut � up to equiva-lene with probability oneCorollary 5.4.1. If we an reate a stopping rule (that is an in�nite sequene of H-adapted stopping times) that stops S in�nitely often at the same plae, we an also �nd amapping A : f0; 1; 2gN ! f0; 1; 2gZ withA(�) � �:



194 Chapter 5. Reonstrution of Seneries with Correlated ColorsProof. Just paste the di�erent piees of senery together.So the above steps show that the algorithm proposed in Setion 3 works in Case A.The next lemmata will show that the same holds true in Case B.To this end one strategy would be to give the equivalent of Lemma 5.4.2 in the sensethat given we know that for eah v; w 2 ImR there at least two shortest rossings of(v; w) by R, we want to test whether there are preisely two suh rossings or if thereare more than two. Suh a test may be very diÆult to �nd. Indeed, reall that everyshortest rossing of (v; w) by R orresponds to two points z1; z2 2 Z with R(z1) = vand R(z2) = w. Now it may be very hard to deide at �rst glane from the empirialdistribution funtion of the waiting time between two shortest walks from v to w by RÆSwhether we have two suh intervals whih are far apart from eah other or whether wehave three (or more) of them whih are rather lose.To overome this diÆulty we apply another strategy. We �rst demonstrate how toreonstrut � (up to equivalene) if we know that there are v; w 2 V3 for whih there arepreisely two shortest rossings of (v; w) by R. We then see in a �nal step that in view ofLemma 4.1 this tehnique already suÆes to �nd a general reonstrution algorithm.The situation where for eah pair v; w 2 ImR there at least two shortest rossingsof (v; w) by R an again be split into two di�erent ases. In the �rst ase there arev; w 2 ImR suh that there is a shortest rossing of (v; w) by R with a olor sequenedi�erent of all other shortest rossing. By this we mean, that there is a shortest rossingof (v; w) by R, say the �rst shortest rossing, suh that the sequene of olors read byR when going form v to w say, is di�erent from the orresponding sequene of olors forall other shortest rossing of (v; w) by R. We will all suh shortest rossings distintas opposed to the non-distint shortest rossings, where eah sequene of olors read byR when following suh a shortest rossing of (v; w) agrees with the sequene of olors ofanother shortest rossing of (v; w).The ase of distint shortest rossings is quite similar to Case A, and we will alsoapply Lemma 5.4.4 for the reonstrution.Before doing so we show that we really an �nd out whether there are distint ornon-distint shortest rossings of (v; w) by R.Lemma 5.4.5. Assume that for eah v; w 2 V3 there are at least two shortest rossings of(v; w) by R, then there is a test whih deides with probability one whether these rossingsare distint or not.Proof. Note that due to the reurrene of S (and hene of R Æ S) the random path R Æ Swill follow eah shortest rossing of (v; w) by R in�nitely often. These \diret" passagesfrom v to w an be determined as above, sine they are the only ones happening in the\shortest observed time"~T = minfjs� tj;R(S(s)) = v; R(S(t)) = wgwith probability one. So omparing the olor reord (that is the olor read during suha fastest passage) of these shortest rossings form v to w, we see whether there is onlyone suh olor reord or whether there are di�erent ones. In the �rst ase the shortestrossings are de�nitely non-distint while in the latter ase we an test whether the



5.4. Proof that the Algorithm works 195limiting empirial distribution funtion of any �xed of these olor reords is di�erent fromthe distribution funtion of a olor reord of length ~T , given that it is produed on oneshortest rossing between two points at distane ~T . Exatly as in the proof of Lemma5.4.3 we onlude that the rossings are distint if the two distribution funtions aboveagree, otherwise we dedue that the rossings are non-distint. As in Lemma 5.4.3 thistest works with probability one.Next we see that we an reonstrut � if we an �nd (v; w) with distint shortestrossings of (v; w) by R.Lemma 5.4.6. Assume that there are v; w 2 V3 suh that there are at least two shortestrossings of (v; w) by R and assume that these shortest rossings are distint. Then wean �nd a mapping A : f0; 1; 2gN ! f0; 1; 2gZ withA(�) � �:(Note that in this ase A will depend in general on R and (v; w)).Proof. Reall that we all shortest rossings of (v; w) by R distint if there is one shortestrossing, say [s; t℄, of (v; w) by R suh that the sequene of olors read by R when goingfrom v to w say, in time [s; t℄, is di�erent from the orresponding sequene of olors forall other shortest rossing of (v; w) by R. Also note that by the representation of � as arandom path R on T3 there is an unique interval [z1; z2℄ � Z orresponding to this uniqueshortest rossing [s; t℄ of (v; w) by R (without loss of generality R(z2) = w).Hene, whenever the random path R Æ S walks from v to w in time ~T and produesthe olor reord harateristi for the unique shortest rossing [s; t℄ of (v; w) by R weknow that the random walk S is in a ertain point, namely that it is in z2. By reurreneof S this will happen in�nitely often with probability one, thus we have a stopping rulewhih allows us to stop S in�nitely often at the same point z2 with probability one. Thuswe an apply Lemma 5.4.4 together with Corollary 5.4.1 to prove the statement of thelemma.Next we will see what to do, if we know that there are v; w 2 V3 for whih there areexatly two non-distint rossings.Lemma 5.4.7. Assume that there v; w 2 V3 for whih there are preisely two rossingsof (v; w) by R. Then we an �nd a mapping A : f0; 1; 2gN ! f0; 1; 2gZ withA(�) � �for P-almost all walks S and �xed R (note that A will depend on v and w).Proof. Note that we only need to prove this theorem in the ase where the two rossingshave the same length � and are non-distint, otherwise there is one shortest rossing orLemma 5.4.6 applies.Again we will prove this lemma in two steps. In the �rst step we will show how toreonstrut every �nite piee of senery under the assumptions of the lemma. In theseond (short) part we then will prove that this already suÆes to reonstrut the wholesenery (up to equivalene).



196 Chapter 5. Reonstrution of Seneries with Correlated ColorsSo let us assume we know that for two �xed points v 6= w 2 V3 that there are preiselytwo rossings of (v; w) by R. By the representation R of � these two rossings orrespondto two intervals, say [z1; z2℄ and [z01; z02℄ (without loss of generality z2 < z01 withjz2 � z1j = jz02 � z01j = �;R(z1) = R(z02) = v, R(z2) = R(z01) = w or R(z1) = R(z02) = w, R(z2) = R(z01) = v (othersituations for the z1; z2; z01; z02 annot our due to our assumption that there are only tworossings of (v; w) by R), and suh that �(z1 + x) = �(z02 � x) for all 0 � x � � .Now, �rst of all note that we an estimate � by~T = minfjs� tj;R(S(s)) = v; R(S(t)) = wg(and this estimate is orret with probability one).Moreover, we an also give an aurate estimate for z01 � z2. Indeed, observe thatthe empirial distribution funtion of the observed walks from v to w onverges. Morepreisely let [s1; t1℄; [s2; t2℄; : : : denote all intervals where the random path R Æ S walksfrom v to w in � = ~T steps, so s1 < t1 < s2 < t2 < : : : and R(S(si)) = v and R(S(ti)) = wfor all i = 1; 2; : : :. Then by the law of large numbers (Glivenko-Cantelli-Lemma) theempirial distribution funtion of the \�rst renewal times"1n� 1 nXi=2 Æti�ti�1onverges to some distribution funtion F with probability one as n goes to in�nity. Thenwith probability one F will be di�erent from the distribution funtion F we would have,if there were only one rossing from v to w. Note also, as already remarked in the proofof Lemma 5.4.2 that we an atually alulate F . Denote by �1 the smallest t where Fand F di�er, that is � := infft : F (t) 6= F (t)g:As illustrated in Figure 1 below (where for a moment we assume that R(z1) = R(z02) =w, R(z2) = R(z01) = v) the �rst possible t for whih F (t) and F (t) an di�er is exatlyz01� z2+2� . This is true beause for t = z01� z2+2� the walk, instead of walking from z01to z02 in � steps then bak again to z01 in another � steps to reate another short rossingof (w; v) from there (whih amounts in a renewal time of 2�), may walk diretly fromz01 over z02 to z2 and reate a shortest rossing of (w; v) from there. Also, if the shortestrossing is from v to w in t = z01 � z2 + 2� steps the walk may e.g. walk from z1 to z02diretly and reate a shortest rossing of (v; w) from z2. As these events have a positiveprobability to our after t = z01 � z2 + 2� steps, this shows that� := infft : F (t) 6= F (t)g:is a good estimator of z01�z2+2� . Moreover ~T estimates � with probability one orretly,thus with probability one � � 2 ~T = z01 � z2:Moreover, we an also dedue in whih of the two situations R(z1) = R(z02) = v,R(z2) = R(z01) = w or R(z1) = R(z02) = w, R(z2) = R(z01) = v we are.



5.4. Proof that the Algorithm works 197f ff f f f f f f f f f f f fmn.� - � - � -mnz1 mnz02mnz01mnz2mn� mn�mnz01 � z2Figure 5.1: The intervals for the shortest rossingsIndeed, with probability one: if R(z1) = R(z02) = v and R(z2) = R(z01) = w thenthe only way to observe a rossing from w to v reated on the interval [z1; z2℄ exatly �steps after a rossing from w to v reated on the interval [z01; z02℄ is by observing a shortestrossing from v to w in time steps � +1 to 2� . On the other hand one might well observea from v to w reated on the interval [z1; z2℄ exatly � steps after a rossing from v tow reated on the interval [z01; z02℄ is without observing a shortest rossing from w to v intime steps � + 1 to 2� . Thus in the ase that R(z1) = R(z02) = v and R(z2) = R(z01) = wwe have that P(G�wv) < P(G�vw):HereG�wv := fThere are shortest rossing from w to v whih are exatly � steps apartand there is no shortest rossing from v to w in steps � + 1 to 2�gandG�vw := fThere are shortest rossing from v to w whih are exatly � steps apartand there is no shortest rossing from w to v in steps � + 1 to 2�g:If on the other hand R(z1) = R(z02) = w and R(z2) = R(z01) = v, then we haveP(G�wv) > P(G�vw):Now the probabilities P(G�wv) and P(G�vw) an be arbitrarily well approximated by theirorresponding empirial probabilities. Hene we have a test that deides with probabilityone orretly in whih of the two situations R(z1) = R(z02) = v, R(z2) = R(z01) = w orR(z1) = R(z02) = w, R(z2) = R(z01) = v we are. For the rest of this proof we will withoutloss of generality assume that R(z1) = R(z02) = w, R(z2) = R(z01) = v.Next we will reonstrut �j[z2; z01℄. To this end we stop the random walk S, wheneverRÆS has walked from w to v in time ~T (whih will happen in�nitely often with probabilityone, again, sine S is reurrent). Aording to the above we then know with probabilityone that S is either in z2 or in z01, both with positive probability. Just as in the proof ofLemma 5.4.4 the empirial distribution of the �rst olor read after R ÆS has passed fromw to v in time ~T then reveals the olor of the points neighboring v but outside [z1; z2℄ and[z01; z02℄.To understand this in greater detail, �rst onsider the Markov hain on fz2; z01g, thatenters z2 after eah time S has walked from z1 to z2 in time � and that enters z01 aftereah time S has walked from z02 to z01 in time � and otherwise stays where it is. It is easy



198 Chapter 5. Reonstrution of Seneries with Correlated Colorsto see, that this Markov hain has the uniform distribution (harging eah of z02, z01 withprobability 1=2) as its invariant measure. Hene also, the empirial distribution of theolors read in the next step after eah time the path R Æ S has walked from w to v willonverge to a distribution that assigns probability 1=4 to eah of �(z2�1); �(z2+1); �(z01�1), and �(z01 + 1) (of ourse, some of these olors will agree, in this ase the probabilityof this olor is just the sum of the above probabilities). Now note that we indeed know�(z2� 1) = �(z01+1). Hene we are able to �gure out the olors of �(z2+1) and �(z01� 1).As a matter of fat, if the limiting empirial distribution � of the olors read in the nextstep after eah time the path R Æ S has walked from w to v, satis�es �(�(z2 � 1)) = 1,then �(z2 + 1) = �(z01 � 1) = �(z2 � 1) = �(z01 + 1):If �(�(z2 � 1)) = 3=4, then there will be exatly one i 2 f0; 1; 2g n f�(z2 � 1)g with�(i) 6= 0 and the olors of �(z2 + 1) and �(z01 � 1) will be this i and �(z2 � 1). If �nally�(�(z2� 1)) = 1=2 there will be one or two i's with i 2 f0; 1; 2gnf�(z2� 1)g and �(i) 6= 0the olor(s) of �(z2+1) and �(z01�1) will be this i (resp. these i's). Atually, �(�(z2�1))annot be less that 1=2 sine �(z2 � 1) = �(z01 � 1).Following these ideas and the ideas already presented in the proof of Lemma 5.4.4 weare then able to reonstrut � indutively on [z2; z01℄ (note that due to symmetry we donot need to are about whether we reonstruted � from z2 to z01 or from z01 to z2).So up to now, we know �j[z1; z02℄ (up to reetion symmetry). It remains to reonstrut� on Z n [z1; z02℄. To this end reall that we are in the situation, where between everytwo points v1 6= v2 2 ImR there are at least two shortest rossings of (v1; v2) by Rand that there are exatly two rossings of (v; w) by R. Now let us take a sequene ofverties (vn)n2N0 in V3 suh that suh that v0 = w, d(vn; vn+1) = 1, and suh that d(vn; v)inreases. Note, that then there an be at most two rossings of (vn; v) by R. Aordingto the above we an then reonstrut �j[z(n)1 ; z(n)2 ℄, where z(n)1 ; z(n)2 2 Z are assoiated to vnvia the representation of � as a random path on T3 (more preisely the intervals [z(n)1 ; z2℄and [z01; z(n)2 ℄ are the intervals assoiated to the rossings of (v; vn) by R). As d(v; vn)!1also jz(n)1 j ! 1 and jz(n)2 j ! 1. Hene we an �nd an algorithm that reonstruts �j[a; b℄for eah �nite interval [a; b℄.The last step is just as in Corollary 5.4.1 to onatenate the di�erent reonstrutionto reonstrut � up to equivalene on all of Z.The last step in proving that the algorithm proposed in Setion 3 really works onsistsof showing that Lemma 5.4.7 implies that it works in Case B.Lemma 5.4.8. In Case B we an �nd a mapping A : f0; 1; 2gN ! f0; 1; 2gZ withA(�) � �:Proof. All what is left to show is, how we an get into the situation of Lemma 5.4.7, inpartiular, how we an guarantee the existene of two points v; w 2 V3 suh that thereare preisely two rossings of (v; w) by R.To this end take any sequene vn 2 ImR suh that d(vn; vn+1) = 1 and d(o; vn) isinreasing to in�nity (o the origin of T3). Then, aording to Lemma 5.4.1, the numberof rossings Nn of (o; vn) by R with probability one onverges to a limit whih is either 1



5.5. Examples 199or 2. As we are in Case B this limit an only be 2. As Nn is always an integer this meansthat Nn equals 2 for all but a �nitely number of n's. Hene if we apply the reonstrutionalgorithm proposed in Lemma 5.4.7 to v = o and w = vn, we will get the orret senerywith probability one for all but a �nite number of n's. Thus, if we denote by An thereonstrution proposed in Lemma 5.4.7 based on the points v = o and w = vn, we knowthat A(�) := limn!1An(�)exists with probability one (up to equivalene) in any reasonable topology as the sequenewill be essentially onstant (onstant for all but a �nite number of n's). With probabilityone this limit will agree (up to equivalene) with �.This �nishes the proof of the fat that the algorithm proposed in Setion 3 works.5.5 ExamplesIn this setion we shall disuss situations where the only assumption of Theorem 5.2.1,the transiene of the representation R of the senery � is satis�ed and also suh examples,where this assumption is violated, although the distribution of the olors is stationaryand ergodi.Before we start with these examples, let us remark that, of ourse, the situation wherethe olors are the output of an i.i.d. experiment, that is the situation where �(z) are i.i.d.random variables for z 2 Z andminfP(�(0) = 0);P(�(0) = 1);P(�(0) = 2)g > 0;is overed by Theorem 5.2.1. As a matter of fat, this was already shown by one of theauthors in [9℄ and has been the starting point of the present paper.Before presenting a large lass of examples where the ondition of the transiene of Ris satis�ed, we �rst disuss three ounterexamples, whih will motivate the onditions inthis main lass of examples given in Theorem 5.9 below. The ounterexamples will showthat in a ertain sense the lass of distribution we give below is the largest \natural lass"for Theorem 5.2.1 to hold.The �rst example will be one, where R trivially annot be transient.Example 5.5.1. Consider a distribution of � produed by the following mehanism: Takea time-homogeneous Markov hain Xn on the set of olors f0; 1; 2g with the followingtransition probabilitiesP (Xn+1 = 0jXn = 0) = P (Xn+1 = 1jXn = 0) = P (Xn+1 = 2jXn = 0) = 13 ;and P (Xn+1 = 0jXn = 1) = P (Xn+1 = 0jXn = 2) = 1:This Markov hain is irreduible and aperiodi (due to the holding in 0), and hene ergodi(even mixing of any kind). Now hoose a oloring of the integers Z aording to Xn, by,



200 Chapter 5. Reonstrution of Seneries with Correlated Colorsfor example, attahing the olor 0 to 0 2 Z, and then �rst oloring the positive integersZ+ aording to Xn and then Z� independently aording to the same distribution. Then,of ourse, the distribution of the olors inherits the properties of the the Markov hainXn, in partiular, it admits a stationary distribution, is ergodi and mixing of any kind.Note however, that ImR onsists of 6 points only. Thus, of ourse, R as a randompath on T3, annot be transient and hene the main assumption of Theorem 5.2.1 is notful�lled.The above example illustrated that R might be reurrent, although all nie ergodiproperties (suh as stationarity and mixing properties) are ful�lled. The reason, of ourse,is that, as demonstrated above, R despite of ful�lling all these nie properties, may stillhave a �nite image. The next example shows that on the other hand also, ImR may bein�nite and R is still not transient.Example 5.5.2. Probably the easiest example where ImR is in�nite and still not tran-sient, is that of a one-dimensional walk. More preisely, we hooseP(�(0) = 0) = P(�(0) = 1) = 1=2;and, of ourse, P(�(0) = 2) = 0 and let the �(z); z 2 Z be i.i.d. Then R is equivalent to aone-dimensional random walk on the integers Z without drift and holding. As, of ourse,suh a random walk is reurrent, so is R and hene the main assumption of Theorem5.2.1 is again not ful�lled.This example might, of ourse, not be too surprising, as it is well-known that a one-dimensional random walk on the integers Z without drift and holding is reurrent. How-ever, we gave this example, as it is the building blok of the following example, whihis de�nitely more surprising. It basially states, that the ondition of transiene of Rmight even be violated, when ImR is in�nite and the distribution of the olors has nieergodi properties. Even more is true: in the example below ImR will be as \trulytwo-dimensional" as possible, in the sense that there are three in�nite branhes in ImR.Example 5.5.3. Consider the distribution of � produed by the following random meh-anism. Take the following set of words (by whih we mean a sequene of olors)S :=[l�0 f(x0; x1; : : : ; x2l) :x0 2 f0; 1g; x1; : : : ; xl 2 f0; 1; 2g; xl+x = xl�x; x = 1; : : : lgand introdue the following probability distribution � on S:�((x0; x1; : : : ; x2l)) = 12l+23lfor a (x0; x1; : : : ; x2l) 2 S.Moreover, let us hoose a random senery � aording to � in the following way. Wehoose two independent sequenes of independent words aording to �. Moreover, withprobability 1=2 we hoose the staring point of the senery to be either 0 or 1. If the startingpoint is 1 we attah the �rst of the two random sequenes to the positive integers starting



5.5. Examples 201with 1, that is we attah the �rst word of, say L letters, to 1; : : : ; L 2 N, after that thenext word of, say L0 letters, to the points L+1; : : : ; L+L0, and so on. After that we do thesame thing for the seond sequene and the non-positive integers Z�0 . If the starting pointis 0, we attah attah the �rst sequene in the same way to Z+0 and the seond sequeneto Z�.Disussion of Example 5.5.3:First note that � is indeed a probability distribution on S. Indeed, seleting an elementfrom S aording to � orresponds to �rst hoosing its length 2l + 1 (note that S onlyonsists of vetors of an odd length) with probability 2�(l+1) (whih works asPl�0 2�l�1 =1) and then seleting one of the elements of S of length 2l + 1 with uniform probability.Note that, as a matter of fat, there are 2� 3l di�erent hoies for (x0; x1; : : : ; x2l) 2 S.Hene � is indeed a probability on S.With the help of renewal theory we now show that the sequene of olors produedby this mehanism is stationary and ergodi. Indeed, if we onsider the renewal proess,suh that there is a renewal time, whenever a word from S is �nished, then the greatestommon divisor of these renewal times is one (sine all words have odd length) and themean renewal time is �nite (whih follows immediately from the de�nition of �). Hene itfollows from renewal theory that there exists a stationary measure for the renewal times.Hene also the orresponding distribution of the olors on Z inherits this stationarityproperty.To see that this distribution also is mixing and hene ergodi we have to understandthat the shift is ergodi under the distribution indued by �. So let � be the right-shifton Z. We have to prove that for any two measurable events A and Blimt!1P(�t(B)jA)! P(B):First of all observe that for every A;B 2 �(�i; i 2 Z) the probabilities P(A) and P(B) anbe arbitrarily well approximated by P(An) and P(Bn) whereAn; Bn 2 �(�i; i 2 f�n; : : : ; ng)for some n 2 N large enough.Indeed,let " > 0 be given. By a standard exerise in measure theory there exists ann 2 N and an event An(") 2 �(�(i); i 2 f�n; : : : ; ng)suh that P(A�An(")) < "(where for two sets A;A0 we denote by A�A0 the symmetri di�erene between A andA0).By the same arguments, for a given set B 2 �(�(i)) there exists Bn(") 2 �(�(i); i 2f�n; : : : ; ng) suh that P(B�Bn(")) < ":Hene by stationarity there also existsBsn(") 2 �(�(i); i 2 f�n + s; : : : ; n+ sg)



202 Chapter 5. Reonstrution of Seneries with Correlated Colorswith P(�s(B)�Bsn(")) < ":(and indeed Bsn(")) = �s(Bn("))).Again by stationarity (we may shift the whole situation by n), it suÆes to assumethat An("); Bn(") 2 �(�(i); i 2 f0; : : : ; ng)for some n large enough and hene that Hene we may without loss of generality assumethat Bsn(") 2 �(�(i); i 2 fs; : : : ; n+ sg):Then for " � 12P(A) we haveP(An) = P(An \ A) + P(An n A) � P(A) + 12P(A) = 32P(A)and thereforejP(�t(B)jA)� P(B)j = jP(�t(B) \ A)� P(B)P(A)jP(A)� jP(Btn(") \ An("))� P(Bn("))P(An(")j+ 4"23P(An)� 32 jP(�t(Bn("))jAn("))� P(Bn("))j+ 6":Thus if we an show that jP(�t(Bn("))jAn(")) � P(Bn("))j ! 0 we also know thatjP(�t(B)jA)� P(B)j ! 0.Thus it suÆes to assume thatA;B 2 �(�i; i 2 f0; : : : ; ng)for some n 2 N large enough.Moreover let us deompose P(B) in the following wayP(B) =Xs�0 P(Bj the last renewal before 0 is at time � s) (5.5.1)�P( the last renewal before 0 is at time � s):Similarly,P(�t(B)jA) =Xs�0 P(�t(B)j the last renewal before t is at time t� s; A)�P( the last renewal before t is at time t� sjA): (5.5.2)



5.5. Examples 203Now P(�t(B)j the last renewal before t is at time t� s; A)= P(�t(B) \ there is a renewal between times n and tjthe last renewal before t is at time t� s; A)+P(�t(B) \ there is no renewal between times n and tjthe last renewal before t is at time t� s; A)= P(B \ there is a renewal between times n� t and 0jthe last renewal before 0 is at time � s)+P(�t(B) \ there is no renewal between times n and tjthe last renewal before t is at time t� s; A)= P(Bj the last renewal before 0 is at time � s)�P(B \ there is no renewal between times n� t and 0jthe last renewal before 0 is at time � s)+P(�t(B) \ there is no renewal between times n and tjthe last renewal before t is at time t� s; A)where we have used the stationarity of P.Now we have a �nite expeted renewal time implying that as t!1P(B \ there is no renewal between times n� t and 0jthe last renewal before 0 is at time � s)! 0as well as P(�t(B) \ there is no renewal between times n and tjthe last renewal before t is at time t� s; A)! 0:This establishes equality between the �rst fators in (5.5.1) and (5.5.2).For the seond fators in (5.5.1) and (5.5.2) observe that due the same arguments bywhih we established the existene of a stationary measureP( the last renewal before t is at time t� sjA)onverges independently of A (by whih we mean that the limit is independent of A) toa number, whih atually isP( the last renewal before 0 is at time � s):Hene the right hand sides of (5.5.1) and (5.5.2) onverge to eah other as t ! 1yielding that P(�t(B)jA)! P(B)as t ! 1. Thus the distribution of the olors indued by � is stationary, mixing andhene ergodi.Moreover, note that all v in V3 have a positive probability of being in ImR. However,still R is not transient. To understand why, observe that the senery � in this example



204 Chapter 5. Reonstrution of Seneries with Correlated Colorsmay be onsidered as a senery drawn aording to the distribution onsidered in Example5.5.2, modi�ed by random exursions of length 2l. As already remarked in Example 5.5.2,R there is equivalent to a one-dimensional symmetri random walk. In terms of thisrandom walk the exursions of length 2l may be interpreted as a holding. As the expetedholding time isPl�0 2l(1=2)l+1 and hene �nite this holding does not spoil the reurreneof the random walk. Thus also in this example R is reurrent and therefore the onditionof Theorem 5.2.1 is not ful�lled again.At this point a little remark seems to be due.Remark 5.5.1. Note that although in the examples above (in partiular Examples 5.5.2and 5.5.3) R is not transient and hene our main result Theorem 5.2.1 is not appliable,this does not mean that these seneries an not be reonstruted at all. As a matter of fat,the senery in Example 5.5.2 has been proven to be reonstrutible in [10℄ by ompletelydi�erent methods and the same might hold true for the senery in Example 5.5.3.Before we give our main lass of examples, let us quikly mention that there indeedare examples of two olor seneries that an be reonstruted with the help of Theorem5.2.1.Example 5.5.4. Like in Example 5.5.2 the easiest example of a two olor senery thatan be reonstruted with the help of Theorem 5.2.1 is that of an i.i.d. biased senery.More preisely, we hooseP(�(0) = 0) = p and P(�(0) = 1) = 1� p;(and, of ourse, P(�(0) = 2) = 0) for some p 2 (0; 1) with p 6= 1=2, and let the �(z); z 2Z be i.i.d. Then R is equivalent to a one-dimensional random walk on the integers Zwith drift. As, of ourse, suh a random walk is transient, so is R and hene the mainassumption of Theorem 5.2.1 is ful�lled and thus � an be reonstruted.Let us now give our main lass of examples. We will avoid the troubles we had inExample 5.5.3 by assuming that � is generated by a hidden Markov hain on a �nite statespae. To also avoid the troubles we had in Example 5.5.2 we additionally have to requirethat � is \essentially tree-like". Let us de�ne this notion �rst.De�nition 5.5.1. We will all a lass of seneries essentially tree-like, if for their rep-resentation R the following holds:fv 2 V3 : P (v 2 ImR) > 0gonsists of three distint in�nite branhes. Thus, more preisely, we will all a lass ofseneries essentially tree-like, if there is a vertex v0 2 V3 suh thatfv 2 V3 : P (v 2 ImR) > 0g n fv0ghas three in�nite onneted omponents.Let us �rst show that De�nition 5.5.1 is not empty:



5.5. Examples 205Example 5.5.5. Let the random variables f�(z); z 2 Zg be i.i.d. withP (�(1) = 0) > 0; P (�(1) = 1) > 0 and P (�(1) = 2) > 0:Then fv 2 V3 : P (v 2 ImR) > 0g = V3 and thus the lass of seneries is essentiallytree-like (one e.g. take the origin as v0).Remark 5.5.2. The notion essentially tree-like should not be onfused with that a �xedsenery � has a representation R = R(�) that has three distint in�nite branhes. Indeed,the latter is never the ase, beause these branhes would orrespond to distint, in�nite,onneted subset of Z. Obviously, there are only two suh subsets.The ounterexamples above show that the lass of distribution we give below is thelargest \natural lass" for Theorem 5.2.1 to hold.Theorem 5.5.1. Consider the distribution of � produed by the following random meha-nism. Take an aperiodi, irreduible, reurrent and stationary Markov hain (Xn)n2Z ona �nite state spae X. Letf : X ![l�1f(�1; : : : ; �l) : �i 2 f0; 1; 2g; i = 1; : : : ; lgbe a mapping from X the set of all words of �nite length. Now selet a senery aordingto Xn and f . By this we mean, that we take a realization of Xn, and plae f(X0) to theintegers 0; 1; : : : ; jf(X0)j � 1, then we plae f(X1) to the next integers and so on plaingone word after the other. In the same way we olor the negative integers by (f(Xn)n2Z�).If then � is essentially tree-like, R is almost surely transient.Example 5.5.6. This example (the simplest one an probably give) shows that the lassof de�ned in Theorem 5.9 above is not empty: Every i.i.d. senery, i.e. every senerywith i.i.d. olors, falls into the lass desribed in Theorem 5.9. Indeed we simply takeX = f0; 1; 2g and f(x) = x for x = 0; 1; 2:. Moreover take the \independent" Markovhain on X, i.e. the Markov hain Xn with P(Xi = x) = Px 2 (0; 1) for all x 2 X andn 2 Z. Then it follows immediately that the orresponding senery is essentially tree-likeand obeys the onditions of Theorem 5.9.Before we start to prove Theorem 5.9 let us de�ne:De�nition 5.5.2. In the tree T3 let us de�ne the ball and the sphere of radius r > 0entered in some vertex v 2 V3, respetively., asB(v; r) := fw 2 V3 : d(v; w) � rgand S(v; r) := fw 2 V3 : d(v; w) = rgTheorem 5.9 will be proved after the following lemma whih justi�es the notion \es-sentially tree-like" in the sense that the number of points that an possibly be visited bythe senery grows exponentially.



206 Chapter 5. Reonstrution of Seneries with Correlated ColorsLemma 5.5.1. Under the onditions of Theorem 5.5.1 assume that ImR is essentiallytree-like. Then there exists a onstant � > 0 suh that for eah v 2 V3 and r 2 N the ballof radius r entered in v, i.e. B(v; r) \ fv 2 V3 : P (v 2 ImR) > 0g, ontains at least e�rverties.Proof. To show this lemma we will prove that under these onditions ImR is indeed anin�nitely branhing tree by exploiting the essential self-similarity of ImR. By the latterwe mean that given two verties v1; v2 2 ImR suh that both are, for example, oloredby reading the endpoint of a word f(x); x 2 X, then the neighborhoods of v1 and v2 areisomorphi.So, if ImR is essentially tree-like, by de�nition, it will ontain three disjoint, in�nitebranhes b1; b2; b3 and without loss of generality we an assume that v0 = o. i.e. thesplit point is assumed to be the origin. For onveniene let X = fx0; : : : ; xlg, f(x0) =(�1; : : : ; ��) where � i 2 f0; 1; 2g, (i = 1; : : : ; �), and assume that the olor of o is produedby reading �1. This means we read the olor of the origin is read in the �rst letter of theword belonging to x0.De�ne L =Pli=0 jf(xi)j.Now (Xn)n2N is a stationary and reurrent Markov hain on X. This immediatelyimplies that P(Xn = xjjX1 = xi) > 0 for some n � jXj = l + 1and all xi; xj 2 X (beause have to be able to ome bak to xi from some point in X).In partiular, P(Xn = xijX1 = xi) > 0 for some n � jXj = l + 1and all xi 2 X.Reall that eah xi in X produes a word f(xi). Say, we �nd this word in the senery,starting in z0 2 Z. The above onsiderations imply that we have a positive probabilityto see f(xi) again the latest every L steps. This implies that for all v1 2 ImR there is av2 6= v1 2 ImR suh that d(v1; v2) � L and the olor of v2 as read at the same position ofthe same word as the olor of v1. Otherwise the random path R would return to v1 everyL steps ontraditing the assumption that it is in�nite. Thus for every point v 2 V3 everypossible situation, i.e. every olor read at any position of any of the words, ours withina ball of radius L.We will apply these onsiderations to the origin o. We take two auxiliary pointsa1; a2; a3 2 V3 with ai 2 bi (reall that bi was the i'th branh) and d(o; ai) = 2L fori = 1; 2; 3. Applying the above shows that there are verties v1; v2; v3 2 V3 with vi 2 biand d(vi; ai) � L for i = 1; 2; 3, suh that the olor of vi is read by R at �1. Obviously,vi 6= o for eah i. On the other hand, the situation at vi is the same as at o, that means,in partiular, at vi there are three di�erent in�nite branhes for all i.Continuing indutively yields the desired result.Now we are ready to prove that R is transient.Proof of Theorem 5.5.1. The basi idea of the proof will be to show that, if R were reur-rent, then for any �xed vertex v 2 ImR the distane d(v; R(n)) would be stohastiallybounded below by a random walk with positive drift. This, of ourse, is a ontradition,sine a random walk with positive drift is transient and thus R would also have to betransient.



5.5. Examples 207The way to derive this ontradition is to �rst analyze a Markov hain that is obtainedform R by stopping it, when is has moved to the next point a ertain distane apart fromthe previous point. We will see that this Markov hain has the tendeny to move awayfrom the points it has previously visited. By omparing this hain to a (transient) randomwalk with drift on the line we see that it is transient as well. But R and this hain arenever far apart from eah other. Hene also R is transient.More preisely in what follows take d1 < d2 2 N and typially we will think of d1 asbeing muh smaller than d2 (a more preise desription will be given below).Again letX = fx0; : : : ; xlg and f(x0) = (�1; : : : ; ��) where � i 2 f0; 1; 2g, (i = 1; : : : ; �),and take L =Pli=0 jf(xi)j. Consider the following Markov hains indued by R, Xn, and�. Take 
 = V3 �X � f1; : : : ; maxi2f0;:::;lg jf(xi)jgand ~Xn := (Xn;1; Xn;2; Xn;3) := (R(n); w; k)where w 2 X is the word where R(n) is read, and k is the position in w where R(n) isread. Note that ~Xn is again a Markov hain. Moreover, introdue a sequene of stoppingtimes (tn)n2Z suh that t0 = 0 andtn := infft > tn�1; d(R(t); R(tn�1)) = d2g; n 2 Nand t�n := supft < t�n+1; d(R(t); R(t�n+1)) = d2g; n 2 N :Let ~Yt = (Yt;1; Yt;2; Yt;3) where for t 2 [tn; tn+1) Yt;1 = Xtn;1, Yt;2 = Xt;2 and Yt;3 = Xt;3.Note that ~Yt inherits the Markov property from ~Xt. We will prove that ~Yt is transient.This also implies that R(t) is transient sined(R(t); Yt;1) � d2and d2 is independent of t.Let for any n 2 Z denote yn := Ytn;1. The transiene of yn will be proved by showingthat, if yn were reurrent, for any �xed vertex v0 2 V3 the inrement d(v0; yn+1)�d(v0; yn)would be stohastially bounded below by the inrement of a random walk with positivedrift. That random walk an go by a distane d2 to the left with probability 1=4 andgo by d2=2 to the right with probability 3=4. Let n0 2 N be �xed and without loss ofgenerality in the following we will assume that the olor of yn0 (that is '(yn0)) is read at�l (that is, it is equal to �l and read at the last position of f(x0)).Let us assume that 4jd2 and take the unique point z0 suh that d(yn0; z0) = 14d2 andd(v0; z0) = d(v0; yn0)� 14d2 (see Figure 2 below).The set �Denote � := fv 2 S(yn0; d2) n S(z0; 34d2)g:We have that for suh v 2 �d(v; v0) � d(yn0; v0) + d2=2:



208 Chapter 5. Reonstrution of Seneries with Correlated ColorsTo understand this and the following, one should keep in mind, that Figure 2 illustratesthe tree geometry in T3. Thus a path from v0 to v 2 �, has to follow the path from v0 toyn0 at least until z0. On the other hand forv 2 S(yn0; d2) n �we have by the triangle inequalityd(v; v0) � d(yn0; v0)� d2:Hene, if we an, for example, show thatP(yn0+1 2 S(yn0; d2) \ S(z0; 34d2)) � 14we are done, sine then d(yn0+1; v0) an be smaller than d(yn0; v0) by d2 with probability atmost 1=4. On the other hand, it will inrease by d2=2. Thus, the inrement d(yn0+1; v0)�d(yn0; v0) is bounded below by the inrement of a random walk, whih at eah step ando the following: go to the left by a distane d2 with probability 1=4 or go to the right bya distane d2=2 with probability 3=4. We thus get:E (d(yn0+1; v0)� d(yn0; v0)) � ��14 + 12 � 34� d2 = 18d2:In order to bound P(yn0+1 2 S(yn0; d2) \ S(z0; 34d2)) we will use Lemma 5.5.1 above. Theidea is that Lemma 5.5.1 tells us that in a neighborhood of yn0 there are many pointswith the same olor as yn0 and, where this olor is read at the same position of the sameposition as yn0. Hene the situation in any of these points is the same as in yn0. On theother hand (as we will prove) most of these points belong to disjoint \�rst exit regimes"of S(yn0; d2). Sine the situation in all of the points is the same, the probabilities to leavethe irle S(yn0; d2) via a partiular of the orresponding segments are about the same.In partiular, the probability to leave S(yn0; d2) via S(yn0; d2) n � annot be too large.More preisely, in order to bound P(yn0+1 2 S(yn0; d2) \ S(z0; 34d2)) we onsider theball B(yn0; d1) with d1 � d2. As we have shown in Lemma 5.5.1 this ball ontainsexponentially many points (in d1). By the same argument one an show that there existsa sphere inside B(yn0; d1) ontaining M := e�d1 many points (for some � > 0) the olorof whih is read at the same point ��. Let us all these points v1; : : : ; vM .Now let us assume, that our proposition was wrong and R was reurrent. Then forany given " > 0 we ould hoose d2 large enough suh that with probability larger than1� " the random path R will visit eah point inside a ball of radius d1 around its startingpoint before �rst exiting a ball of radius d2 � d1 around the starting point.Instead of bounding nowP(yn0+1 2 S(yn0; d2) \ S(z0; 34d2))we will rather bound� := maxz2S(yn0 ; 14 d2)P(yn0+1 2 S(yn0; d2) \ S(z; 34d2))



5.5. Examples 209This means, we will bound the maximum of the probabilities to �rst exit S(yn0; d2) via asegment similar to S(yn0; d2) \ S(z; 34d2). In order to do so, we will bound�0 := maxz2S(yn0 ; 14d2)P(y0n0+1 2 S(yn0; d2 � d1) \ S(z; 34d2 � d1));where y0n0+1 is the vertex where the path R �rst exits S(yn0; d2�d1) when starting in yn0.Note that both maxima are atually attained and let zmax be suh that�0 := P(y0n0+1 2 S(yn0; d2 � d1) \ S(zmax; 34d2 � d1)):Note that the streth yn0zmax is uniquely de�ned by its orresponding sequene ofolors and its starting point yn0 . Sine the situation is ompletely idential in eah ofthe points v1; : : : ; vM and in yn0 we an �nd z1; : : : ; zM that orrespond to zmax when wereplae yn0 by v1; : : : ; vM . More preisely the points z1; : : : ; zM are de�ned by the fatthat the streth vizi has the same olor sequene as yn0zmax, (for eah i = 1; : : : ;M).The points v1; : : : vM and y1; : : : yMObviously, the probability of �rst exiting S(vi; d2�d1) via S(vi; d2�d1)\S(zi; 34d2�d1)when starting in vi also equals �0. Let us all zi and zj equivalent, if the strethes viziand vjzj interset inside B(yn0 ; d1). Note that the strethes vizi and vjzj always dereasethere distane to S(yn0; d2). Hene, if zi and zj are not equivalent, then the strethesvizi and vjzj do not interset at all and zi and zj and S(vi; d2 � d1) \ S(zi; 34d2 � d1) andS(vj; d2 � d1) \ S(zj; 34d2 � d1) have distane at least 2d2 � 2d1. Moreover, observe thatfor a given i 2 f1; : : : ;Mg at most 2d1 of the fz1; : : : ; zMg an be equivalent to zi. Thisfollows from the fat that two strethes vizi and vjzj an only interset at di�erent \times"(that is their distane from vi { or vj, respetively { must be di�erent). As eah strethhas to leave B(yn0; d1) after at most 2d1 steps, there, indeed an be at most 2d1 of the zjequivalent to zi. AsM is an exponential in d1, but 2d1 is of ourse only linear, we an haveas many non-equivalent zi's as we wish. We will denote the number of non-equivalent zi'sby M 0 2 N .Now, one we are �rst exiting S(yn0; d2� d1) via S(yn0; d2� d1)\S(zmax; 34d2� d1) weare at distane at d1 from S(yn0; d2). De�neZ := fz 2 V3 : d(yn0; z) = 14d2; d(zmax; z) = d1g:By onstrution of d1 the probability of visiting eah point in a ball of radius d1 beforeleaving a ball of radius d2 � d1 for the �rst time is at least 1� ". Hene, one we are inS(yn0; d2�d1)\S(zmax; 34d2�d1) the probability to leave S(yn0; d2�d1) for the �rst timevia [z2Z S(yn0; d2) \ S(z; 34d2)is at least 1� ". Sine " an be arbitrarily small this shows in partiular that�(1� ") � �0:Moreover introdue a random variableN , whih is equal to i 2 f1; : : :M 0g if R(t) visitsS(vi; d2�d1)\S(zi; 34d2�d1) before visiting any of the S(vj; d2�d1)\S(zj; 34d2�d1); j 6= i



210 Chapter 5. Reonstrution of Seneries with Correlated Colorsand exiting S(yn0; d2) for the �rst time. If R(t) does not visit any of the S(vi; d2 � d1) \S(zi; 34d2 � d1) before exiting S(yn0; d2) for the �rst time we set N equal to 0. Now, oneR(t) is in vi the probability that P (Ni = i) is at least �0 (by onstrution of the vi andzi. On the other hand R(t) hits with probability at least 1� " any of the vi before exitingS(yn0; d2 � d1) for the �rst time, i.e. before the value of N an be determined. Thisimplies 1 � M 0Xi=1 P (N = i) �M 0(1� ")�0:Sine M 0 an be made as large as we wish, �0 and hene also � are as small as we wish,for example less than 1=4. Therefore, under the assumption that R is reurrent,E (d(yn0+1; yn0�1)) � 98d2:But this implies that Yn;1 is transient. Indeed, by the tree struture of T3 the distaneof Yn;1 to any �xed point v0 is stohastially larger than the distane to the origin of a ahomogeneous random walk Zn on the integer line Z with jump length d2 andP(Zn+1 = z + d2jZn = z) = 1� P(Zn+1 = z � d2jZn = z) = 34for all n 2 N and z 2 Z. This is a ontradition.Hene Yn;1 is transient and therefore also R is transient, whih is what we laimed.The next theorem basially states that under the onditions of Theorem 5.5.1 therandom path R (the representation of � as a random path on T3) is not only transient butalso has positive speed with probability exponentially lose to one. Theorem 5.5.2 will bethe basis for an exeptionally good test for distinguishing two seneries.Theorem 5.5.2. Under the onditions of Theorem 5.5.1 (in partiular we also assumethat � is essentially tree-like) there exist onstants 0; 1; 2 > 0 suh that for all n 2 Nand every �xed v0 2 V3P(minfd(v0; R(n)); d(R(�n); v0)g � 2n) � 0e�1n:Proof. The proof is intrinsially related to the proof of Theorem 5.5.1. We will make useof the notations introdued there. Let Y 0m := Xtm;1. Let us (for a moment) assume thatfor any �xed vertex v0 the distane (d(v0; Y 0m))m an be stohastially bounded below bythe distane to the origin of a random walk on the line with drift. Hene the existene ofonstants 00; 01; 02 > 0 suh thatP(minfd(v0; Y 0m) � 02m) � 00e�01m (5.5.3)follows immediately from an exponential estimate for this dominating random walk.In order to onlude the desired result from (5.5.3), we need to understand that thereexist onstants 3; 4 > 0 suh thatP(tn � 3n) � e�4n (5.5.4)(reall that tn was the n'th stopping time). But this follows form deomposing tn intotn = (tn � tn�1) + (tn�1 � tn�2) + : : :+ (t1 � t0):



5.5. Examples 211By the Markov property of ~Xt and ~Yt the random variables (tm� tm�1) are stohastiallyindependent. Also, sine the state spae X of the Markov hain Xn is �nite all these (tm�tm�1) an be stohastially dominated from above by a random variable Tmax (desribingthe exit time of ~Xt from a irle of radius d2 when starting in the state with the longestexit time). Now Tmax has a �nite moment generating funtionEe�Tmax <1: (5.5.5)This follows, sine X is �nite. Therefore we an �nd onstants L1 < 1 and p > 0 suhthat independent of where we start with R(n) we have hit the sphere of radius d2 enteredin the starting point after L1 steps with probability at least p > 0. This implies (5.5.5)and therefore by large deviation estimates also (5.5.4).It remains to show that for any �xed vertex v0 the distane (d(v0; Y 0m))m an bestohastially bounded below by the distane to the origin of a random walk on the linewith drift.Lemma 5.5.2 below states that the maximum probability for R to ever reah a point atdistane d from v0 when starting in v0 tends to zero as d goes to in�nity. More preisely,it says that for every (t0; v0; w0; k0) withP( ~Xt0 = (v0; w0; k0)) > 0we have that limd!1 maxv:d(v;v0)=dP(9s > 0 : R(t0 + s) = vj ~Xt0 = (v0; w0; k0)) = 0: (5.5.6)Assuming that Lemma 5.5.2 below is true, we hoose d2 large enough suh that for d = 14d2we have maxv:d(v;v0)=d P(9s > 0 : R(t0 + s) = vj ~Xt0 = (v0; w0; k0)) � 110 :Let Zn be a random walk on the line that in eah step either steps to the left by d0 (thishappens with probability 110) or it steps to the right by 12d0 (this happens with probability910). Then (d(v0; Y 0m))m an be stohastially bounded below by the distane of Zn to theorigin. Indeed, for �xed n0 let z0 denote the unique vertex in V3 at distane d from yn0 andat distane 3d from yn0�1. If, after time tn0 the random path R never visits z0 the pointyn0+1 is at distane at least 2d = d22 from yn0. This happens with probability 9=10. Bythe tree struture of T3 this shows that indeed (d(v0; Y 0m))m an be stohastially boundedbelow by the distane to the origin of a random walk on the line with drift.Thus the statement of the theorem follows.It remains to showLemma 5.5.2. For all (t0; v0; w0; k0) withP( ~Xt0 = (v0; w0; k0)) > 0we have that limd!1 maxv:d(v;v0)=dP(9s > 0 : R(t0 + s) = vj ~Xt0 = (v0; w0; k0)) = 0:



212 Chapter 5. Reonstrution of Seneries with Correlated ColorsProof. Assume Lemma 5.5.2 was wrong. Then there exists a sequene v0; v1; v2 : : : 2 V3suh that vi; vi+1 are neighbors (for all i 2 N0) but vi 6= vi+2 (for all i 2 N0) suh thatlimn!1P(9s > 0 : R(t0 + s) = vnj ~Xt0 = (v0; w0; k0)) > 0:Hene for A := \n2Nf9s > 0 : R(t0 + s) = vngit holds P(Aj ~Xt0 = (v0; w0; k0)) > 0:But this implies that P(Aj ~Xt0 = (v0; w0; k0)) = 1:Indeed, otherwise P(Aj ~Xt0 = (v0; w0; k0)) 2 (0; 1) and hene alreadyP(\n�Nf9s > 0 : R(t0 + s) = vngj ~Xt0 = (v0; w0; k0)) =: p 2 (0; 1)for some N 2 N . But then we ould stop R the �rst time that ( ~Xt;2; ~Xt;3) = (w0; k0)(whih happens in�nitely often sine the original Markov hain (Xn) on X is reurrent),after R(t) has visited vN . This �rst segment of points has probability at most p. But at( ~Xt;2; ~Xt;3) = (w0; k0) the situation is the same as in (v0; w0; k0), so again we �nd a �nitesegment of the sequene of vi's with probability at most p and so on. This shows that ifP(Aj ~Xt0 = (v0; w0; k0)) 2 (0; 1) we already know that P(Aj ~Xt0 = (v0; w0; k0)) = 0.Moreover there only an be one sequene v0; v1; v2 : : : 2 V3 suh that vi; vi+1 are neigh-bors (for all i 2 N0) but vi 6= vi+2 (for all i 2 N0) and P(Aj ~Xt0 = (v0; w0; k0)) = 1.This follows from the tree struture of T3. Indeed, if there were two suh sequenes theyeventually needed to be on disjoint branhes of T3. But then R in order to visit bothsequenes with probability one, needs to visit the bifuration point of the two sequenesin�nitely often (ontraditing its transiene).Eventually we show that also P(Aj ~Xt0 = (v0; w0; k0)) = 1 annot hold. Again weexploit that R is essentially tree-like.Let us all a sequene essentially k-periodi, if it is k-periodi up to a �nite numberof elements. By de�nition the quasi-period k of an essentially k-periodi sequene is theperiod of the periodi part that sequene. Now reall that the olors '(v0); '(v1); '(v2); : : :are produed by a Markov hain on �nite state spae X. Sine moreover eah wordf(x); x 2 X had a �nite length, there is just a �nite number of possible positions forthe seond and third oordinate of the proess ~Xt. Sine the situation is the same,whenever the seond and third oordinate of the proess ~Xt are in the same point andthere is just one sequene v0; v1; v2 : : : 2 V3 satisfying the above onditions, the sequene'(v0); '(v1); '(v2); : : : is essentially periodi. Sine we do not are for a �nite number ofelements we an and will assume that it is periodi.Now R is essentially tree like. This means in partiular that we an �nd a pointv00 2 V3 with the following properties.� v00 =2 fv0; v1; v2; : : :g.� P(9s > 0 : R(t0 + s) = v00j ~Xt0 = (v0; w0; k0)) > 0.



5.5. Examples 213� '(v0) = '(v00) and moreover the olor of v0 and v00 are read in the same word at thesame position.� d(v00; fv0; v1; v2; : : :g) � 3L, where L := Px2X jf(x)j. This latter ondition ensuresthat for all but possibly the �rst L olors the sequene '(v00); '(v01); '(v02); : : : followsthe same period as '(v0); '(v1); '(v2); : : :.Let us take suh a v00. Sine the situation in v00 is ompletely idential to the situationin v0, there exists a sequene v00; v01; v02; : : : suh that v0i; v0i+1 are neighbors (for all i 2 N0)but v0i 6= v0i+2 (for all i 2 N0) suh thatlimn!1P(9s > 0 : R(t0 + s) = v0nj ~Xt0 = (v00; w0; k0)) = 1:But then the sequenes v0; v1; v2 : : : and v00; v01; v02; : : : have to merge. Otherwise (sine v00van be reahed from v0 with positive probability) from v0 there would be two disjointsequenes that are both visited with probability one in ontradition to what was shownabove. Say the sequenes v0; v1; v2 : : : and v00; v01; v02; : : : merge in vn 2 fv0; v1; v2 : : :g. Thenfor some n0 and all j 2 N vn+j = v0n0+jand also '(vn+j) = '(v0n0+j):However, '(vn�1) 6= '(v0n0�1);sine vn an only have one neighbor of the olor '(vn�1). Hene n 6= n0. Hene by theabove the sequene '(v00); '(v01); '(v02); : : : has quasi-period n�n0. On the other hand, sinewe have hosen d(v00; fv0; v1; v2; : : :g) � 3L, the quasi-periodi sequene '(v00); '(v01); '(v02); : : :in n0 � 1 is already in its \periodi part". But then its period is the same as that of'(v0); '(v1); '(v2); : : :, in partiular'(vn�1) = '(v0n0�1);This is a ontradition. Hene the lemma is true.Theorem 5.5.2 is extremely useful when we try to attak one of the original problemof this area, that is the senery distinguishing problem, where we have to tell from theolor reord on whih of two seneries the this olor reord has been produed. Of ourse,in prinipal, already Theorem 5.5.1 shows that we an distinguish two seneries drawnindependently and at random from a distribution satisfying the onditions of Theorem5.5.1. On the other hand, for all possible appliations this test is not pratiable. We nowshow that, indeed, as a onsequene of Theorem 5.5.2 there is a pratiable test based onvery little information that works \exponentially well".More preisely, we show that given any senery � randomly drawn from a distributionsatisfying the onditions of Theorems 5.5.1 and 5.5.2 and another senery � of whih weknow nothing at all, there is a test that works exponentially well for a set of senerieswith probability exponentially lose to one. Here the notions \exponentially well" and\with probability exponentially lose to one" stand for the following. Given that we know



214 Chapter 5. Reonstrution of Seneries with Correlated Colors�j[0; n℄ (so the �rst n+1 observations) and, for example, two points in the representationof �, namely v = R(m+) where m+ := minfm 2 N : d(o; R(m)) � n1=3gand w = R(m�) where m� := maxfm 2 Z� : d(o; R(m)) � n1=3g(where, as above, R(�) = R(�; �) is the representation of � on T3) we an �nd a test, whihfor a subset of �'s of probability larger than 1�k0e�k1n1=3 has failure probability less thane�k2n1=3 . Let us formalize this in a theorem:Theorem 5.5.3. Let � be randomly drawn from a distribution satisfying the onditionsof Theorems 5.5.1 and 5.5.2 and let � be another senery of whih we know nothing atall. Assume that we know �j[0; n℄,v = R(m+) where m+ := minfm 2 N : d(o; R(m)) � n1=3g;and w = R(m�) where m� := maxfm 2 Z� : d(o; R(m)) � n1=3g;(where, as above, R(�) = R(�; �) is the representation of � on T3). Then we an �nd a testT : f0; 1; 2gn+1 � V3 � V3 ! f�; �gonstants k0; k1; k2; k3 > 0 and a set � � f0; 1; 2gZ withP(�) � 1� k0e�k1n1=3suh that, whenever � 2 �P(T (�j[0; n℄; v; w) = �j� has been produed on �) = 0:and P(T (�j[0; n℄; v; w) = �j� has been produed on �) � k2e�k3n1=6 :Remark 5.5.3. Note that we are able to improve the known tests for senery distinguish-ing in the following important features:1. � an be drawn from a large lass of distributions admitting orrelations between theolor of di�erent sites.2. � an be arbitrary.3. No knowledge is required about �.4. Only very limited knowledge about � is required



5.5. Examples 215Proof of Theorem 5.5.3. For �xed � we propose is the following test T :Whenever R Æ S reahes v = v(�) or w(�) within [0; n℄ we say that the senery is �,otherwise we say that it is �.� will be the set of seneries � suh that we have a fair hane to see v and w in the�rst n observations and that v(�) and w(�) are di�erent from any v(�) and w(�). Formallywe de�ne the following set of seneries. For a senery � letm+ := m+(�) := minfm 2 N : d(o; R(m)) � n1=3gand m� := m+(�) := maxfm 2 Z� : d(o; R(m)) � n1=3gthen for some onstant � > 0 (note that R depends on �).� := f� : maxm+; jm�j � �n1=3; R(i) =2 fv(�); w(�)g for i = �n;�n + 1; : : : ; ng: (5.5.7)Here R(i) is the images of the senery � in the lattie point i 2 Z. Then for � largeenough and some onstants k0; k1 > 0 it holdsP(�) � 1� k0e�k1n1=3 : (5.5.8)Indeed, applying Theorem 5.5.2 to the origin v0 = o shows thatP(f� : maxm+; jm�j � �n1=3g) � k00e�k01n1=3 (5.5.9)for � large enough and some onstants k00; k01 > 0. On the other hand, triviallyP(R(i) =2 fv(�); w(�)g) = 1for i = �n1=3 + 1; : : : ; n1=3 � 1 and any �. Moreover, applying Theorem 5.5.2 to thev0 = v(�) gives P(R(i) = v(�)) � k000e�k001n1=3for jij � n1=3 and similarly P(R(i) = w(�)) � k000e�k001n1=3for jij � n1=3 for some onstants k000 ; k001 > 0. So altogetherP(� : 9i 2 f�n;�n + 1; : : : ; ng : R(i) 2 fv(�); w(�)g) � 2nk000e�k001n1=3� k0000 e�k0001 n1=3for some onstants k0000 ; k0001 > 0. Together with (5.5.9) this implies (5.5.8).If now � 2 �, then indeedP(T (�j[0; n℄; v; w) = �j� has been produed on �) = 0;sine T (�j[0; n℄; v; w) = � if and only if we read v(�) or w(�) and by onstrution thisannot happen on �. On the other hand T (�j[0; n℄; v; w) = � while � has been produed



216 Chapter 5. Reonstrution of Seneries with Correlated Colorson � an only happen, if the random walk S does not reah neither m� nor m+ in [0; n℄.Hene for � 2 � P(T (�j[0; n℄; v; w) = �j� has been produed on �)= P(S does not reah neither m� nor m+ in [0; n℄)= P(jS(i)j � �n1=3 for all i = 0; : : : ; n)Now indeed there are positive onstants k2; k3 > 0 suh thatP(jS(i)j � �n1=3 for all i = 0; : : : ; n) � k2e�k2n1=3 :To see why, just observe that by the loal Central Limit Theorem, for eah time intervalI[t0; t1℄ of length n2=3 we haveP(jS(i)j � �n1=3 for all i 2 IjjS(t0)j � �n1=3) � k4 < 1for a positive onstant k4 > 0. Sine there are n1=3 disjoint intervals of length n2=3 in[0; n℄ this gives (by onditioning)P(jS(i)j � �n1=3 for all i = 0; : : : ; n)= P(jS(i)j � �n1=3 for all i = 0; : : : ; n2=3)��P(jS(i)j � �n1=3 for all i = n2=3 + 1; : : : 2n2=3jjS(n2=3)j � �n1=3)� : : :� kn1=34 � k2e�k2n1=3 :This �nishes the proof.
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Chapter 6Information reovery from arandomly mixed up message-text(submitted)By J�uri Lember and Heinrih MatzingerThis paper is onerned with �nding a �ngerprint of a sequene. As input data oneuses the sequene whih has been randomly mixed up by observing it along a randomwalk path. A sequene ontaining order exp(n) bits reeives a �ngerprint with roughlyn bits information. The �ngerprint is harateristi for the original sequene. With highprobability the �ngerprint depends only on the initial sequene, but not on the randomwalk path.16.1 Introdution and Result6.1.1 The information reovery problemLet � : Z! f0; 1g designate a double-in�nite message-text with 2 letters. Suh a oloringof the integers is also alled a (2-olor) senery. Let S = fS(t)gt2N be a reurrent randomwalk on Z starting at the origin. In this paper we allow the random walk S to jump,i.e. P (jS(t + 1) � S(t)j > 1) > 0. We use S to mix up the message-text �. For thiswe assume that � is observed along the path of S: At eah point in time t, one observes�(t) := �(S(t)). Thus, � designates the mixed up message-text, whih is also the senery� seen along the path of S.The information reovery problem an be desribed as follows: observing only one pathrealization of the proess �, an one retrieve a ertain amount of information ontainedin �?A speial ase of the information reovery problem is when one tries to reonstrut thewhole �. This problem is alled the senery reonstrution problem . In many ases beingable to reonstrut a �nite quantity of the information ontained in �, already impliesthat one an reonstrut all of �. This paper is onerned with the information reovery1MSC 2000 subjet lassi�ation: Primary 60K37, Seondary 60G10, 60J75.Key words: Senery reonstrution, jumps, stationary proesses, random walk, ergodi theory.219



220 Chapter 6. Information Reovery from a randomly mixed up message-textproblem in the ontext of a 2-olor senery seen along a random walk with jumps. Themethods whih exist so far seem useless for this ase: Matzinger's reonstrution methods[Mat99a, Mat00℄ do not work when the random walk may jump. Furthermore, it seemsimpossible to reyle the method of Matzinger, Merkl and L�owe [LMM01℄ for the 2-olorase with jumps. The reason is that their method, requires more than 2-olors. Hene,the fundamentally new approah presented in this paper.6.1.2 Main assumptionsLet us explain the assumptions whih remain valid throughout this paper:� � = f�(z)gz2Z is a olletion of i.i.d. Bernoulli variables with parameter 1=2. Thepath realization � : z 7! �(z) is the senery from whih we want to reover someinformation. Often the realization of the proess f�(z)gz2Z is also denoted by  .� S = fS(t)gt2N is a symmetri reurrent random walk starting at the origin, i.e.P (S(0) = 0) = 1. We assume that S has bounded jump length L <1, whereL := maxfzjP (S(1)� S(0) = z) > 0g:We also assume that S has positive probability to visit any point in Z, i.e. for anyz 2 Z there exists t 2 N , suh that P (S(t) = z) > 0:� � and S are independent.� m = m(n) designates a natural number depending on n, so that:14 exp � �nlnn� � m < exp(2n)where � is a positive onstant not depending on n.� For all t 2 N , let �(t) := �(S(t)). Let� := (�(0); �(1); : : :)designate the observations made by the random walk S of the random senery �.Hene � orresponds to the senery � seen along the path of the random walk S.We need also a few notations:� For every k 2 N , let �k0 := (�(0); �(1); : : : ; �(k)) and let ��k0 := (�(0); �(�1); : : : ; �(�k)).� Let f : D ! I be a map. For a subset E � D we shall write f jE for the restritionof f to the set E.Thus, when [a; b℄ 2 Z is an integer interval and � is a senery, then �j[a; b℄ standsfor the vetor (�(a); : : : ; �(b)) . We also write �ba for �j[a; b℄ and  ba for  j[a; b℄. Thenotation �m20 := (�(0); �(1); �(2); : : : ; �(m2)) is often used.



6.1. Introdution and Result 221� Let a = (a1; : : : ; aN), b = (b1; : : : ; bN+1) be two vetors with length N and N + 1,respetively. We write a v b, ifa 2 f(b1; : : : ; bN ); (b2; : : : bN+1)g:Thus, a v b holds if a an be obtained from b by "removing the �rst or the lastelement".6.1.3 Main resultThe 2-olor senery reonstrution problem for a random walk with jumps is solved intwo phases:1. Given a �nite portion of the observations � only, one proves that it is possible toreonstrut a ertain amount of information ontained in the underlying senery �.2. If one an reonstrut a ertain amount of information, then the whole senery �an a.s. be reonstruted. This is proven in the seond phase.This paper solves the �rst of the two problems above. Imagine that we want to transmitthe word �m0 . During transmission the letor head gets razy and starts moving around on� following the path of a random walk. At time m2, the letor head has reahed the pointm. Can we now, given only the mixed up information �m20 , retrieve any information aboutthe underlying ode �m0 ? The main result of this paper theorem 6.1.1, shows that withhigh probability a ertain amount of the information ontained in �m0 an be retrieved fromthe mixed up information �m20 . This is the �ngerprint of �m0 , refered to in the abstrat.Here is the main result of this paper:Theorem 6.1.1. There exists a onstant  > 0 not depending on n suh that :For every n > 0 big enough, there exist two mapsg : f0; 1gm+1 ! f0; 1gn2+1ĝ : f0; 1gm2+1 ! f0; 1gn2and an event Enell OK 2 �(�(z)jz 2 [�m; m℄) suh that all the following holds:1) P (Enell OK)! 1 when n!1:2) For any senery  2 Enell OK, we have:P � ĝ(�m20 ) v g(�m0 )���S(m2) = m; � =  � > 3=4:3) g(�m0 ) is a random vetor with (n2+1) omponents whih are i.i.d. Bernoulli variableswith parameter 1=2.The mapping g an be interpreted as a oding that ompresses the information on-tained in �m0 ; the mapping ĝ an be interpreted as a deoder that reads the informationg(�m0 ) from the mixed-up observations �m2+10 . The vetor g(�m0 ) is the �ngerprint of �m0mentioned in the abstrat. We all it the g-information. The funtion ĝ will be referred



222 Chapter 6. Information Reovery from a randomly mixed up message-textto as the g-information reonstrution algorithm.Let us explain the ontent of the above theorem more in detail. The event:nĝ(�m20 ) v g(�m0 )ois the event that ĝ reonstruts the information g(�m0 ) orretly (up to the �rst or lastbit), based on the observations �m20 . The probability that ĝ reonstruts g(�m0 ) orretlyis large onditional on the event En1;S := fS(m2) = mg. The event En1;S is needed to makesure the random walk S visits the entire �m0 up to time m2. Obviously, if S does not visit�m0 , we an not reonstrut g(�m0 ).Condition 3) of our main theorem ensures that the ontent of the reonstruted informa-tion is large enough.The reonstrution of the g-information works with high probability, but onditional onthe event that the senery is niely behaved. The event Enell OK that the senery isniely behaved, has large probability for big n. Suppose  is a (non-random) senerysuh that Enell OK holds whenever �j[�m; m℄ =  j[�m; m℄. In this situation we write 2 Enell OK. In a sense, Enell OK ontains \ typial" (piees of) seneries. These are theseneries, for whih the g-information reonstrution algorithm works with high probabil-ity.6.1.4 History and related problemsA oloring of the integers � : Z ! f0; 1; : : : ; C � 1g is alled a C-olor senery. Thesenery reonstrution problem is: given only one path realization of f�(t)gt2N, an wea.s. reonstrut �? In other words, does one path realization of � a.s. uniquely determine�? In general, it does not: in many ases it is not possible to distinguish a senery from ashifted one. Furthermore, Lindenstrauss proved [Lin99℄ the existene of seneries whihan not be reonstruted. However, one an reonstrut \typial" seneries: Matzingertakes � randomly, independent of S and shows that one an reonstrut a.s. the seneryup to shift and reetion. In [Mat00℄ and [Mat99a℄, he proves this for 2-olor seneriesobserved along the path of simple random walk or a simple random walk with holding.In [Mat99b℄, he reonstruts 3-olor i.i.d. seneries observed along a simple random walkpath. The two ases require very di�erent methods.The senery reonstrution problem varies greatly in diÆulty depending on the numberof olors and the properties of the random walk. In general, when there are less olorsand the random walk is allowed to jump, the problem gets more diÆult. Kesten [Kes98℄notied, that Matzinger's reonstrution methods [Mat99a℄ and [Mat00℄ do not work whenthe random walk is allowed to jump. Matzinger, Merkl and Loewe [LMM01℄ showedthat it is possible to reonstrut a.s. a senery seen along the path of a random walkwith jumps, provided the senery ontains enough olors. However, with more olorsthe system is ompletely di�erently behaved. This implies that the method of Matzinger,Merkl and Loewe is not useful for the 2-olor ase with jumps. For a well-written overviewof the senery reonstrution and senery distinguishing areas, we reommend Kesten'sreview paper [Kes98℄. Senery reonstrution belongs to the �eld whih investigates theproperties of a olor reord obtained by observing a random media along the path of astohasti proess. The T T�1-problem as studied by Kalikow [Kal82℄ is one motivation.The ergodi properties of observations have been investigated by Keane and den Hollander



6.1. Introdution and Result 223[KdH86℄, den Hollander [dH88℄, den Hollander and Stei� [dHS97℄ and Heiklen, Ho�manand Rudolph [HHR00℄.A related problem is the senery distinguishing problem. It an be desribed as follows:let  a and  b be two non-equivalent seneries whih are known to us. Assume that we areonly given one realization of the observations � :=  ÆS; where  2 f a;  bg. Can we a.s.�nd out whether  is equal to  a or  b? If yes, we say that the seneries  a and  b aredistinguishable. Kesten and Benjamini [BK96℄ onsidered the ase where the seneries  aand  b are drawn randomly. They take  a to be an i.i.d. senery whih is independentof  b. In this setting, they prove that almost every ouple of seneries is distinguishableeven in the two dimensional ase and with only 2 olors. Before that Howard [How97℄ hadshown that any two periodial non-equivalent seneries are distinguishable; he also showedthat periodial seneries whih di�er only in one element an be distinguished [How96℄.The problem of distinguishing two seneries whih di�er only in one element is alled thesingle defet detetion problem. Kesten [Kes96℄ showed that one an a.s. detet singledefets in the ase of 5-olor i.i.d. seneries. A generalization of the senery distinguishingproblem is the senery distinguishing problem for error-orrupted observations. The errorproess �t; t 2 N is supposed to be a sequene of i.i.d. Bernoulli variables with parameterstritly smaller than 1=2. Furthermore, it is assumed that the error proess �t; t 2 Nis independent of the (random) seneries and the random walk. Instead of observing� =  ÆS we see the error-orrupted observations �̂. The observations with errors satisfy:�̂t = �t if and only if �t = 0. (In other words, �t = 1 signals an error at time t.) Knowing a and  b, an we a.s. deide if  =  a or if  =  b based on one path realization of theproess �̂ only?Another losely related question is the Harris-Keane oin tossing problem. Here f�(t)gt2Ndesignates a olor reord obtained in one of the following two ways:1. A oin with sides 0 and 1 is tossed independently in�nitely many times;2. The same oin as in ase 1. is ipped, exept at renewal times when a oin with adi�erent bias is ipped. Typial renewal times are the passage times at the originof a reurrent random walk on Z or Z2.The question is whether it is a.s. possible to determine if � is drawn aording to 1. or2.. For this we suppose that we are given only one path realization of f�(t)gt2N . Let undenote the probability of a renewal at time n. Harris and Keane [HK97℄ showed that ifP1n=1 u2n =1, then it is a.s. possible to determine if the observations are drawn aordingto 1. or 2.. They prove that this is not possible if P1n=1 u2n <1 and � is small enough.Levin, Pemantle and Peres [LPP01℄ showed that � is important for the distinguishing.They prove the existene of a phase transition: there exists a ritial parameter � suhthat for j�j > � the ases 1. and 2. an be distinguished a.s., whilst for j�j < � this isnot possible.A generalization [LPP01℄ of the Harris-Keane oin tossing problem onsists in replaingthe renewal times by stopping times. For this we use a senery:  2 f0; 1gN. Every-time t, the random walk is at a loation z, where  (z) = 1 we throw a oin with adi�erent bias form the oin used to generate the i.i.d. sequene. This generalization ofthe Harris-Keane oin tossing problem, is very similar to the senery distinghuishing andreonstrution problems in the presene of random errors. Matzinger and Rolles [MR℄showed that almost every random senery seen with random errors an be reonstruted



224 Chapter 6. Information Reovery from a randomly mixed up message-texta.s. when it ontains a lot of olors. However, their method annot be used for the aseof error orrupted 2-olor seneries.The question of Kesten whether one an detet a single defet in 2-olor seneries leadMatzinger in [Mat99b, Mat00, Mat99a℄ to investigate the senery reonstrution problem.Later Kesten [Kes98℄ asked, whether one an also reonstrut two dimensional randomseneries. Loewe and Matzinger [LM02℄ give a positive answer provided the senery on-tains many olors. Another question was formulated �rst by Den Hollander: to whihextent an seneries be reonstruted when they are not i.i.d. in distribution. Loewe andMatzinger [LM99℄ haraterize those distributions for whih Matzinger's 3-olor reon-strution works. Yet another problem omes from Benjamini: Is it possible to reonstruta �nite piee of a senery lose to the origin in polynomial time? We take for this poly-nomially many observations in the length of the piee we try to reonstrut. Matzingerand Rolles [MRb, MRa℄ provide a positive answer. One of the reent developements inthis �eld, is due to Levin and Peres [LP02℄. They prove that every senery whih hasonly �nite many one's an a.s. be reonstruted up to shift or reetion when seen alongthe path of a symmetri random walk. They prove this result in the more general frameof stohasti seneries. A stohasti senery is a map � : Z ! P(R), where P(R) is theset of all probability measures on R. The observations are generated as follows : if attime t the random walk is at z, then a random variable with distribution �(z) is observed.Hene, at time t, we observe �(t), where: L(�(t)jS(t) = z) = �(z).6.1.5 Organization of the paperIn order to explain the main ideas behind the g-information reonstrution algorithm,we �rst onsider a simpli�ed example in subsetion 6.1.6. In this example, � is a 3-olor i.i.d. senery instead of a 2-olor senery. The 2's are pretty rare in the senery�: P (�(z) = 2) is of negative exponential order in n. The one's and zero's have equalprobability: P (�(z) = 0) = P (�(z) = 1). The (random) loations �zi of the 2's in � arealled signal arriers. For eah signal arrier �zi, we de�ne the frequeny of ones at �zi.The frequeny of one's at �zi is a weighted average of � in the neighborhood of �zi. Theg-information g(�m0 ) if a funtion of the di�erent frequenies of ones of the signal arrierswhih are loated in the interval [0; m℄. The vetor of frequenies works as a �ngerprintfor �m0 . The reading of this �ngerprint works as follows: Typially, the signal arriers areapart from eah other by a distane of order o(en). Suppose that S visits a signal arrier.Before moving to the next signal arrier, it returns to the same signal arrier many timeswith high probability. By doing this, S generates many 2's in the observations at shortdistane from eah other. This implies: when in the observations we see a luster of 2's,there is a good reason to believe that they all orrespond to the same 2 in the underlyingsenery. In this manner we an determine many return times of S to the same signalarrier. This enables us to make inferene about � in the neighborhood of that signalarrier. In partiular, we an preisely estimate the frequenies of ones of the di�erentsignal arriers visited. This allows us to estimate g(�n0 ). The estimator ĝ is the desireddeoder. The details are explained in Subsetion 6.1.6. However, it is important to note,that between this simpli�ed example and our general ase there is only one di�erene: thesignal arriers. In the general ase we an no longer rely on the 2's and the signal arriersneed to be onstruted in a di�erent manner. Everything else { from the de�nition of gand ĝ up to the proof that the g-information reonstrution algorithm works with high



6.1. Introdution and Result 225probability { is exatly the same. (Note that the solution to our information reoveryproblem in the simpli�ed 3-olor ase requires only �ve pages!)For the general ase with a 2-olor senery and a jumping random walk, the main diÆultyonsists in the elaboration of the signal arriers. In Setion 2, we de�ne many oneptswhih are subsequently used for the de�nition of the signal arriers. Also there, sometehnial results onneted to the signal arriers are proved. The signal arriers arede�ned in Setion 3.The main goal of the paper is to prove that the g-reonstrution algorithm works withhigh probability (i.e. that the estimator ĝ is preise). For this, we de�ne two sets ofevents: the random walk dependent events and the senery dependent event. All theseevents desribe typial behavior of S or �. In Setion 3, we de�ne the senery dependentevents and prove that they have high probability. In Setion 4 the same is done for theevents that depend on S.In setion 5, we prove that if all these events hold, then the g-information reonstrutionalgorithm works, i.e. the eventEng works := fĝ(�m20 ) v g(�m0 )gholds. The results of Setion 3 and Setion 4 then guarantee that the g-informationreonstrution algorithm works with high probability. This �nishes the proof of Theorem6.1.1.6.1.6 3-olor exampleIn this subsetion, we solve the senery reonstrution problem in a simpli�ed 3-olorase. We do not hange the assumptions on S.SetupReall that �m0 and �m20 denote the piee of senery �j[0; m℄ and the �rst m observations�j[0; m℄, respetively. Reall also that we want to onstrut two funtions g : f0; 1gm+1 !f0; 1gn2+1 and ĝ : f0; 1gm2+1 ! f0; 1gn2 suh that1) with high probability P � ĝ(�m20 ) v g(�m0 )���S(m2) = m� :2) g(�m0 ) is i.i.d. binary vetor where the omponents are Bernoulli random variableswith parameter 12 .In other words, 1) states that, with high probability, we an reonstrut g(�m0 ) from theobservations, provided that random walk S goes inm2 steps from 0 tom. (Remember thatĝ(�m20 ) v g(�m0 ) means that ĝ(�m20 ) and g(�m0 ) are equal up to one bit.) Thus the funtion ĝrepresents a "reonstrution algorithm" whih tries to reonstrut the information g(�m0 ).(For the simpli�ed ase, we prove that the g-information an be reonstruted with highprobability when S(m2) = m. This di�ers slightly from the main ase where we provethat that the reonstrution of the g-information works with high onditional probability,onditional on the senery. This is a detail of no great importane.)



226 Chapter 6. Information Reovery from a randomly mixed up message-textSine this is not yet the real ase in whih we are interested in this paper, during thepresent subsetion we will not be very formal. For this subsetion only, let us assume thatthe senery � has three olors instead of two. Moreover, we assume that f�(z)g satis�esall of the following three onditions:a) f�(z) : z 2 Zg are i.i.d. variables with state spae f0; 1; 2g,b) exp(n= lnn) � 1=P (�(0) = 2) � exp(n)),) P (�(0) = 0) = P (�(0) = 1).We de�ne m = n2:5(1=P (�(0) = 2)): Beause of b) this meansn2:5 exp(n= lnn) � m(n) � n2:5 exp(n):The so de�ned senery distribution is very similar to our usual senery exept that some-times (quite rarely) there appear also 2's in this senery.We now introdue some neessary de�nitions.Let �zi denote the i-th plae in [0;1) where we have a 2 in �. Thus �z1 := minfz �0j�(z) = 2g, �zi+1 := minfz > �zij�(z) = 2g. We make the onvention that �z0 is the lastloation before zero where we have a 2 in �. For a negative integer i < 0, �zi designatesthe i + 1-th point before 0 where we have a 2 in �. The random variables �zi-s are alledsignal arriers. For eah signal arrier, �zi, we de�ne the frequeny of ones at �zi. By thiswe mean the (onditional on �) probability to see 1 exatly after en0:1 observations havingbeen at �zi. We denote that onditional probability by h(�zi) and will also write h(i) for it.Formally: h(i) := h(�zi) := P��(S(en0:1) + �zi) = 1�����:It is easy to see that the frequeny of ones is equal to a weighted average of the seneryin a neighborhood of radius Len0:1 of the point �zi. That is h(i) is equal to:h(i) := Xz2[�Len0:1 ;Len0:1 ℄z 6=�zi �(z)P �S(en0:1) + �zi = z� (6.1.1)(Of ourse this formula to hold assumes that there are no other two's in [�zi � Len0:1 ; �zi +Len0:1 ℄ exept the two at �zi. This is very likely to hold, see event En6 2 below).Let gi(�m0 ) := I[0;0:5)(h(i)):We now de�ne some events that desribe the typial behavior of �.* Let En6 2 denote the event that in [0; m℄ all the signal arriers are further apart thanexp(n=(2 lnn)) from eah other as well as from the points 0 and m. By the de�nition ofP (�(i) = 2), the event P (En6 2)! 1 as n!1.* Let En1 2 be the event that in [0; m℄ there are more than n2 + 1 signal arrier points.Beause of the de�nition of m, P (En1 2)! 1 as n!1.When En1 2 and En6 2 both hold, we de�ne g(�m0 ) in the following way:g (�m0 ) := (g1 (�m0 ) ; g2 (�m0 ) ; g3 (�m0 ) ; : : : ; gn2+1 (�m0 ))



6.1. Introdution and Result 227Conditional on En1 2 \ En6 2 we get that g (�m) is an i.i.d. random vetor with the ompo-nents being Bernoulli variables with parameter 1=2. Here the parameter 1=2 follows simplyby symmetry of our de�nition [to be preise, P (gi (�mi ) = 1) = 1=2�P (h(i) = 1=2), but wedisregard this small error term in this example℄ and the independene follows from the fatthat the senery is i.i.d. [indeed, gi(�m0 ) depends only on the senery in a radius Len0:1 ofthe point �zi and, due to E6 2, the points �zi are further apart than exp( n2 lnn) > L exp(n0:1)℄.Hene, with almost no e�ort we get that when En1 2 and En6 2 both hold, then ondition2) is satis�ed. To be omplete, we have to de�ne the funtion g suh that 2) holds alsooutside En1 2 \ En6 2. We atually are not interested in g outside En1 2 \ En6 2 - it would beenough that we reonstrut g on En1 2 \ En6 2. Therefore, extend g in any possible way, sothat g (�m0 ) depends only on �m0 and its omponent are i.i.d.ĝ-algorithmWe show, how to onstrut a map ĝ : f0; 1gn2 7! f0; 1gn and an event EnOK 2 �(�) suhthat P (EnOK) is lose to 1 and for eah senery belonging to EnOK the probabilityP�ĝ(�m20 ) v g(�m0 )jS(m2) = m� (6.1.2)is also high. Note, when the senery � is �xed, then the probability (6.1.2) depends on S.The onstrution of ĝ onsists of several steps. The �rst step is the estimation of thefrequeny of one's h(i). Note: due to E6 2 we have that in the region of our interest we anassume that all the signal arriers are further apart form eah other than exp(n=(2 lnn)).In this ase we have that all the 2's observed in a time interval of length en0:3 must omefrom the same signal arrier. We will thus take time intervals T of length en0:3 to estimatethe frequeny of one's.Let T = [t1; t2℄ be a (non-random) time interval suh that t2 � t1 = en0:3 . Assume thatduring time T the random walk is lose to the signal arrier �zi. Then every time we seea 2 during T this gives us a stopping time whih stops the random walk at �zi. We annow use these stopping times to get a very preise estimate of h(i). In order to obtain theindependene (whih makes proofs easier), we do not take all the 2's whih we observeduring T . Instead we take the 2's apart by at least en0:1 from eah other.To be more formal, let us now give a few de�nitions:* Let �t1(1) denote the �rst time t > t1 that we observe a 2 in the observations � aftertime t1. Let �t1(k + 1) be the �rst time after time �t1(k) + en0:1 that we observe a 2 inthe observations �. Thus �t1(k + 1) is equal to minftj�(t) = 2; t � �t1(k) + en0:1g. Wesay that T is suh that we an signi�antly estimate the frequeny of one's for T , if thereare more than en0:2 stopping times �t1(k) during T . In other words, we say that we ansigni�antly estimate the frequeny of one's for T , if and only if �t1(en0:2) � t2 � en0:1 .* Let X̂t1(k) designate the Bernoulli variable whih is equal to one if and only if �(�t1(k)+en0:1) = 1. When �t1(en0:2) � t2�en0:1 we de�ne ĥT the estimated frequeny of one's duringT in the following obvious way: ĥT := 1en0:2 en0:2Xk=1 X̂t1(k):



228 Chapter 6. Information Reovery from a randomly mixed up message-textSuppose we an signi�antly estimate the frequeny of one's for T . Assume En6 2 \ E1 2hold. Then all the stopping times �t1(en0:2) stop the random walk S at one signal arrier,say �zi. Beause of the strong Markov property of S we get then that, onditional on �,the variables Xt1(k) are i.i.d. with expetations hi. Now use the H�o�ding inequality tosee P (jĥT � h(i)j > e�n0:2=4) � exp(�(2en0:2=2)):Hene, with high probability, ĥT is a preise estimate for h(i).The obtained preiseness of ĥT is of the great importane. Namely, it is of smaller orderthan the typial variation of h(i). In other words, with high probability jh(i)� h(j)j is ofmuh bigger order than exp(�n0:2=4); i 6= j. To see this, onsider (6.1.1). Note that, foreah z, �i(z) := P (S(en0:1) + �zi = z) is onstant, and, onditional under the event thatin the radius of L exp(n0:1) are no more 2's in the senery than �zi; we have that �(�zi + z)are iid Bernoulli variables with parameter 12 . HeneV ar[h(i)℄ � X[�Len0:1 ;Len0:1 ℄ 14��0:2(z)�2:Sine our random walk is symmetri we get that Pz2[�Len0:1 ;Len0:1 ℄ 14 (�0:2(z))2 is equal to1/4 times the probability that the random walk is bak at the origin after 2en0:1 time.By the entral loal theorem that probability is of order e�n0:1=2. This is muh biggerthan the order of the preision of the estimation of the frequenies of one's, e�n0:2=4.Sine h(i) is approximately normal, it is possible to show that with high probability allfrequenies h(0); h(1); : : : ; h(n2 + 1) are more than exp(�n0:11) apart from 12 . Moreover,by the similar argument it is possible to show: if f�zigi2I is the set of signal arriers thatS enounters during the time [0; m2℄, then for eah pair i; j 2 I, the frequenies of onessatisfy jh(i)� h(j)j > exp(�n0:11). Let En3 2 be the set on whih both statements holds.De�ne EOK := En1 2\En3 2\En6 2. From now on we assume that EOK hold and we desribethe ĝ-onstrution algorithm in this ase :Phase I) Determine the intervals T � [0; m2℄ ontaining more than en0:2 two's (in theobservations.) Let Tj designate the j-th suh interval. Reall that these are the intervalswhere we an signi�antly estimate the frequeny of one's. Let K designate the totalnumber of suh time-intervals in [0; m2℄.Let �(j) designate the index of the signal arrier �zi the random walk visits during timeTj (due to En6 2, the visited signal arriers are further apart than Len0:2 from eah otherand, hene, there is only one signal arrier that an get visited during time Tj. Thus thede�nition of �(j) is orret.)Phase II) Estimate the frequeny of one's for eah interval Tj, j = 1; : : : ; K. Obtain thus,based on the observations �m20 only, the vetor (ĥT1; : : : ; ĥTK ) = �ĥ(�(1)); ĥ(�(2)); : : : ; ĥ(�(K))�.Here, ĥ(i) denotes the estimate of h(i), obtained by time interval Tj, with �(j) = i.The further onstrution of the ĝ-reonstrution algorithm bases on an important propertyof the mapping � : f1; : : : ; Kg ! Z - with high probability � is a skip free walk, i.e.j�(j) � �(j + 1)j � 1. Hene, the random walk during time [0; m2℄ is unlikely to gofrom one signal arrier to another without signaling all those in-between. By signalingthose in-between, we mean produing in the observations for eah signal arrier �zi a time



6.1. Introdution and Result 229intervals of length en0:3 for whih one an signi�antly estimate the frequeny of one'sh(i). In partiular, the skip-freeness implies that �(1) 2 f0; 1g. The skip-freeness of � isproved in Theorem 5.2.Let �� := minf�(j) : j = 1; : : : ; Kg. Now �� � 1. Let �� := maxf�(j) : j = 1; : : : ; Kg: IfS(m2) = m, then, by En1 2, �� > n2.Phase III) Apply lustering to the vetor (ĥT1 ; ĥT2 ; : : : ; ĥTK ), i.e. de�neCi := fĥTj : jĥTj � ĥTi j � 2 exp(�n0:12)g; f̂i := 1jCijXj2Ci ĥTj ; i = 1; : : : ; K:By En3 2, we have 5 exp(�n0:12) < exp(�n0:11) < jh(i) � h(j)j, if n is big enough. Hene,ĥTj 2 Ci if and only if �(i) = �(j). Thus, for eah di�erent i; j either Ci = Cj orCi \ Cj = ?. Hene, f̂j is the average of all estimates of h(�(j)) and, therefore, f̂j is agood estimate of h(�(j)). Obviously,f̂i = f̂j if and only if �(i) = �(j): (6.1.3)Thus, we an denote f̂(�zi) := f̂j; if �(j) = i and (6.1.3) implies f̂(�zi)) 6= f̂(�zj), if i 6= j.After phrase III we, therefore, end up with a sequene of estimators f̂(�z�(1)); : : : ; f̂(�z�(K))that orrespond to the sequene of frequenies h(�(1)); : : : ; h(�(1)). Or, equivalently, j 7!f̂j is a path of a skip-free random walk � on the set of di�erent reals ff̂(�z��); : : : ; f̂(�z��)g.The problem is that the estimates, f̂(�z�(1)); : : : ; f̂(�z�(K)) are in the wrong order, i.e. weare not aware of the values �(j), j = 1; : : : ; K. But having some information about thevalues �(j) is neessary for estimating the frequenies h(1); : : : ; h(n2+1). So the questionis: How an get from the sequene f̂(�z(�(1)); : : : ; f̂(�z�(K)) the elements f̂(�z1); : : : ; f̂(�zn2+1)?Or, equivalently: after observing the path of � on ff̂(�z��); : : : ; f̂(�z��)g, how an we deduef̂(�z1); : : : ; f̂(�zn2+1)?Real senery reonstrution algorithmWe now present the so-alled real senery reonstrution algorithm - ARn . This algorithmis able to answer to the stated questions up to the (swift by) one element.The algorithm works due to the partiular properties of � and ff̂(�z��); : : : ; f̂(�z��)g. Theseproperties are:A1) �(1) 2 f0; 1g, i.e. the �rst estimated frequeny of one's, f̂1 must be either anestimate of h(1) or of h(0). Unfortunately there is no way to �nd out whih oneof the two signal arriers �z0 or �z1 was visited �rst. This is why our algorithm anreonstrut the real senery up to the �rst or last bit, only;A2) �(K) > n2. This is true, beause we ondition on S(m2) = m and we assume thatthere are at least n2 + 1 2-s in [0; m℄ (event En1 2);A3) � is skip-free (it does not jump);A4) f̂(�zi) 6= f̂(�zj) 8j 6= i, i; j 2 f��; : : : ; ��g.



230 Chapter 6. Information Reovery from a randomly mixed up message-textAlgorithm 6.1.1. Let { = ({1;{2; : : : ;{K) be the vetor of real numbers suh that thenumber of di�erent reals in { is at least n2 + 1. The vetor { onstitutes the input forARn .De�ne R1 := {1. From here on we proeed by indution on j : one Rj is de�ned, wede�ne Rj+1 : {s, with s := 1 + maxfj : {j = Rjg. Proeed until j = n2 + 1 and putARn({) := �R2;R3; : : : ;Rn2+1�:The idea of the algorithm is very simple: take the �rst element {1 of { and onsider allelements of the input vetor { that are equal to {1 and �nd the one with the biggestindex (the last {1). Let j1 be this index. Then take {j1+1 as the �rst output and look forthe last {j1+1. Let the orresponding index be j2 and take {j2+1 as the seond output.Proeed so n2 + 1 times.Let us proof that the algorithmARn works. In our ase the input vetor is f̂ := (f̂1; : : : ; f̂K).Proposition 6.1.1. Let ff̂(�z��); : : : ; f̂(�z��)g and � satisfy A1), A2), A3), A4). ThenARn(f̂) 2 f(f̂(�z1); : : : ; f̂(�zn2)); (f̂(�z2); : : : ; f̂(�zn2+1))g; i:e: ARn(f̂) v (f̂(�z1); : : : ; f̂(�zn2+1)):Proof. By A1) we have that the �rst element of the input vetor, f̂1, is either f̂(�z1) or f̂(�z0).Consider the �rst ase. ThusR1 = f̂(�z1). Proeed by indution: suppose thatRj = f̂(�zj),j < n2+1. Let i(j) be the index of the last f̂(�zj) in vetor f̂ . By A2), i(j) < K. Sine �is skip-free and ends to the right of n2, we have that after the last visits of f̂(�zj), the nextobservation must be f̂(�zj+1): Hene, in this ase, (R1; : : : ;Rn2+1) = (f̂(�z1); : : : ; f̂(�zn2+1))and ARn(f) = (f̂(�z2); : : : ; f̂(�zn2+1)).Similarly, if the �rst element of the f̂ is f̂(�z0), then (R1; : : : ;Rn2+1) = (f̂(�z0); : : : ; f̂(�zn2))and ARn(f) = (f̂(�z1); : : : ; f̂(�zn2)):Phase IV) ApplyARn to f̂ . Denote the outputARn(f̂) by (f1; : : : ; fn2). By Proposition6.1.1we know (f1; : : : ; fn) v (f̂(�z1); : : : ; f̂(�zn2+1): (6.1.4)Now reall that we are interested in reonstruting the gi(�m0 ) := I[0;5)(h(i)) rather thanĥ(i). Thus, having estimates for h(�zi), namely f̂(�zi), we use the obvious estimator for gi:I[0;0:5)(fi).Phase V) De�ne the �nal output of ĝĝ(�m20 ) := �I[0:5;1℄(f1); : : : I[0:5;1℄(fn2)�:Reall that beause of En3 2, with high probability all random variables h(1); : : : ; h(n2+1)are more than exp(�n0:11) apart from 12 . Sine exp(�n0:11) is muh bigger than thepreiseness of our estimate, with high probability we have f̂(�zi) < 0:5 if and only ifh(�zi) < 0:5. By (6.1.4) this meansĝ(�m20 ) = �I[0:5;1℄(f1); : : : I[0:5;1℄(f 2n)� v �I[0:5;1℄(h(�z1)); : : : I[0:5;1℄(h(zn2+1))� = g(�m0 ):Hene, when EOK holds, then ĝ is properly de�ned and the probability (6.1.2) is high.Sine we are not interested in ĝ when EOK does not hold, we extend the de�nition of ĝarbitrary to EOK:



6.2. Whole truth about signal probabilities 2316.2 Whole truth about signal probabilitiesIn the previous setion we onsidered the ase where the senery has three olors: f0; 1; 2g.The loations of the 2's where alled signal arriers. The i-th suh plae was denoted by�zi. In reality we have only two olors 0 and 1. Thus, we need to show that with 2 olorswe also manage to de�ne signal arriers �zi in suh a way that all of the following holds:a) Whenever the random walk passes by a signal arrier, we an reognize that therandom walk is lose to a signal arrier by looking at the observations (with highprobability).b) The probability to be indued in error by the observations, so that one infers that ata ertain time one is lose to a signal arrier when one is not, is small. This type ofmistake never happens up to time m2.) When we pass a signal arrier we are able to estimate its frequeny of one's with highpreision (with high probability).In the present setion, we de�ne and investigate an important onept that leads to thesignal arriers: Markov signal probability.6.2.1 De�nitionsIn this subsetion, we de�ne the main notions of the setion: delayed signal probability,strong signal probability and Markov signal probability. We also give a few equivalentharaterizations of these onepts, and we try to explain their meaning. In the end ofthe subsetion we give a formal de�nition of the frequeny of ones.* Let D � Z and let � : D �! f0; 1g. For example, � an be the senery, � or theobservations, �.Let T = [t1; t2℄ � D be an integer interval of length at least 3. Then we say that T is ablok of � if and only if we have that� (t1) = � (t2) 6= � (t) ; 8t 2℄t1; t2[We all t2� t1 the length of the blok T . The point t1 is alled the beginning of the blok.For example, T is a blok of � with length 4, if �jT = 01110.* Let T = T (�) � N be a time interval, possibly depending on the observations. Forexample, T an be a blok of � or T = [t; t + n2℄ an be a time interval of length n2 + 1suh that �(t) = �(t + 1) = � � � = �(t+ n2). Let I � Z be an integer interval (a loationset). We say that T was generated (by S) on I, if and only if 8t 2 T; S(t) 2 I.* We now de�ne the delayed signal probability. To simplify the notations afterwards,de�ne M =M(n) := n1000 � n2; ~M := n1000 � 2n2:Fix z 2 Z and let Sz denote the random walk translated by z, i.e. for all t 2 N ,Sz (t) := S (t) + z. We de�ne the random variable Ædz in the following way:Ædz := P �� (Sz (M)) = � � � = � �Sz �n1000 � 1�� = � �Sz �n1000�� ����� : (6.2.1)



232 Chapter 6. Information Reovery from a randomly mixed up message-textIn other words, Ædz is the onditional probability (onditional on �) to observe only oneolor in the time interval [n1000 � n2; n2℄ if the random walk starts at z. We shall all Ædzdelayed signal probability at z.During time n1000 the random walk an not move more than Ln1000. Thus, Ædz dependsonly on the senery � in the interval [z � Ln1000; z + Ln1000℄. Let, for eah z 2 ZIz := [z � Ln1000; z + Ln1000℄: (6.2.2)We have that Ædz is a random variable whih is measurable with respet to �(�(s)js 2 Iz).Sine the distribution of � is translation invariant, the distribution of Ædz does not dependon z.* For some tehnial reason, we need a stronger version of the delayed signal probability.Again, let z 2 Z. We de�ne the strong signal probability at z, ~Ædz ; as follows~Ædz := P��(Sz(M)) = � � � = �(Sz(n1000)); Sz(M+1); Sz(2); : : : ; Sz(n1000) 2 [z�L ~M; z+L ~M ℄�����:Note that ~Ædz is measurable with respet to the sigma algebra �(�(s)js 2 [z�L ~M; z+L ~M ℄).Also note that, obviously, Æz � ~Æz: However, the di�erene is not too big. Indeed, H�o�dinginequality states that for some onstant d > 0Ædz � ~Ædz = P��(Sz(M)) = � � � = �(Sz(n1000)); 9s 2 fM; : : : ; n1000g : jz � Sz(s)j > L ~M ������ P�jS(M)j > L( ~M � n2)� � exp(�dn999): (6.2.3)* Next we de�ne the Markov signal probability at z.Let z 2 Z. Roughly speaking, the Markov signal probability at z, denoted by ÆMz , is theonditional (on �) probability to have (at least) n2+1 times the same olor generated onIz exatly n1000�n2 after we observe n2+1 times the same olor generated on Iz. In thisformulation the part "after we observe a string of n2 + 1 times the same olor generatedon Iz" needs to be lari�ed. The explanation is the following: every time there is in theobservations n2 + 1 times the same olor generated on Iz, we introdue a stopping time�z(i). The position of the random walk at these stopping times de�nes a Markov hainwith state spae Iz. As we will prove later, this Markov hain fS(�z(k))gk�1 onvergesvery quikly to a stationary measure, say �z. So, by "M after we observe n2+1 times thesame olor generated on Iz" we atually mean: "M time after starting the random walkfrom an initial position distributed aording to �z". Sine the distribution of S(�z(i))onverges quikly to �z, ÆMz is lose to the probability of observing n2 +1 times the sameolor generated on Iz exatly M time after time �z(i). In other words, ÆMz is lose tothe onditional (on �) probability of the event that we observe only one olor in the timeinterval [�z(i) + n1000 � n2; �z(i) + n1000℄ and that during that time interval the randomwalk S is in Iz. Thus (for k big enough) ÆMz is lose to:P��(�z(i)+M) = � � � = �(�z(i)+n1000) and S(�z(i)+M); : : : ; S(�z(i)+n1000) 2 Izj��:(6.2.4)The ergodi theorem then implies that on the long run the proportion of stopping times�z(i) whih are followed after M by n2 + 1 observations of the same olor generated onIz onverges a.s. to ÆMz . Atually, to make some subsequent proofs easier, we do not take



6.2. Whole truth about signal probabilities 233a stopping time �z(i) after eah n2 + 1 observations of the same olor generated on Iz.Rather we ask that the stopping times be apart by at least en0:1 .In order to prove how quikly we onverge to the stationary measure, we also view theexplained notions in terms of a regenerative proess. The renewal times will be de�ned asthe stopping times, denoted by #z(k), whih stop the random walk at the point z�2Len0:1 .To simplify some proofs, we also require that there is at least one stopping �z(i) between#z(k) and #z(k + 1). Thus #z(0) denotes the �rst visit by the random walk S to thepoint z � 2Len0:1 . We de�ne �z(1) to be the �rst time after #z(0) where there happensto be n2 + 1 times the same olor generated on Iz. Then, #z(1) is the �rst return of Sto z � 2Len0:1 after �z(1) and so on. Let us give the formal de�nitions of all introduednotions.* Let #z(0) denote the �rst visit of S to the point z � 2Len0:1 . Thus#z(0) = minft � 0jS(t) = z � 2Len0:1g:* Let �z(1) designate the �rst time after #z(0) where we observe n2 + 1 zero's or one's ina row, generated on Iz. More preisely:�z(1) := min�t > #z(0) ���� � (t) = � (t� 1) = ::: = � (t� n2)and S(t� n2); S(t� n2 + 1); : : : ; S(t) 2 Iz � :One �z(i) is well de�ned, de�ne �z(i+ 1) in the following manner:�z(i+ 1) := min�t > �z(i) + en0:1 ���� � (t) = � (t� 1) = ::: = � (t� n2)and S(t� n2); S(t� n2 + 1); : : : ; S(t) 2 Iz � :* Let #z(k) denote the onseutive visits of S to the point z � 2Len0:1 provided thatbetween two visits random walk S generates (at least one) n + 1 onseutive 0-s or 1-son Iz. More preisely,#z(k + 1) := minft > #z(k)jS(t) = z � 2Len0:1 ; 9j : #z(k) < �z(j) < tg; k = 1; 2 : : : :Basially, the de�nition above says: if #z(k) is de�ned, we wait until we observe n2 + 1same olors generated on Iz. Sine S(#z(k)) = z � 2Len0:1 , then the �rst n2 + 1 sameolors generated on Iz an not happen earlier than en0:1 times after #z(k). This means,the �rst n2 + 1 same olors generated on Iz an not happen earlier than en0:1 times afterlast stopping time �z, say �z(i) (this happens before #z(k)). Thus, the �rst n2 + 1 sameolors generated on Iz is atually �z(i+ 1): Observing �z(i+ 1); we just wait for the nextvisit of S to the z � 2Len0:1 . This de�nes #z(k + 1):* Let Xz;i, i = 1; 2; : : : designate the Bernoulli variable whih is equal to one if exatlyafter time M the stopping time �z(i) is followed by a sequene of n2 + 1 one's or zero'sgenerated on Iz. More preisely, Xz;i = 1 if and only if�(�z(i) +M) = �(�z(i) +M + 1) = � � � = �(�z(i) + n1000)and S(j) 2 Iz 8j = �z(i) +M; : : : ; �z(i) + n1000



234 Chapter 6. Information Reovery from a randomly mixed up message-text* De�ne �z(0) := 0. Let �z(k) designate the number of stopping times �z(k) ourringduring the time from #z(0) to #z(k). Thus �z(k) is de�ned by the inequalities:�z(�z(k)) � #z(k) < �z(�z(k) + 1):For all k, S(#z(k)) = z � 2Ln1000. Hene, for all i, #z(k) 6= �z(i) and the inequalitiesabove are strit.* De�ne the following variables:Xz(k) = �(k)Xi=�(k)+1Xz;i; Zz(k)=�(k)� �(k � 1); k = 1; 2; : : :Thus, Zz(k) is the number of stopping times ourring during the time interval fromtime #z(k � 1) to time #z(k). Note that Zz(k) � 1, 8k. The random variable Xz(k)designates the number of suh stopping times whih, during the same time interval, havebeen followed exatly after time M by a sequene of n2 + 1 0's or 1's generated on Iz.Note that onditional on � the variables Xz(1), Xz(2); : : : are i.i.d. and the same holds forZz(1), Zz(2); : : :.* We de�ne: ÆMz := E [Xz(1)j �℄E [Zz(1)j �℄ : (6.2.5)We all ÆMz Markov signal probability at z.In the following we give some equivalent forms of (6.2.5).Note that onditional on �, Xz;i is a regenerative proess with respet to the renewal�z(k). Hene, onditioning on �, we havelimr!1 rXi=1 Xz;ir = limk!1 �(k)Xi=1 Xz;i�(k) = limk!1Pki=1Xz(i)Pki=1Zz(i) = E [Xz;1j �℄E [Zz;1j �℄ : a:s: (6.2.6)We ount (up to time r) all sequenes of length n2 + 1 of one's or zero's, generated onthe interval Iz aording to the stopping times �z(i), k = 1; 2; : : :. Among suh sequenes,the proportion of those sequenes whih are followed after exatly time M by anothersequene of n2 + 1 zero's or one's generated on the interval Iz onverges a.s. to ÆMz , as rgoes to in�nity.On the other hand, the limit in (6.2.6 ) an be represented as follows. Fix � and z. LetYi := S(�z(i)), i = 1; 2; : : : denote the Markov hain obtained by stopping the randomwalk S by �z(i). The state spae of Yi is Iz. Beause of the nature of S, Yi is �nite,irreduible aperiodi and, therefore, an ergodi Markov hain.Let �z denote the stationary distribution of fYkg. In the present setion z is �xed, so wewrite �. The measure � is a disrete probability measure on Iz, so � = (�(j))j2Iz. Foreah state, j 2 Iz de�ne the hitting times �j(l), l = 1; 2; 3; : : :. Formally,�j(1) := minfi � 1 : Yi = jg; �j(l) := minfi > �j(l � 1) : Yi = jg; l = 2; 3 : : : :



6.2. Whole truth about signal probabilities 235Hene, 1r rXi=1 Xz;i =Xj Nj(r)r 1Nj(r) Nj(r)Xl=1 Xz;�j(l);where Nj(r) := maxfl : �j(l) � rg, r = 1; 2; 3; : : :. Sine �j(l), l = 1; 2; 3; : : : is a (delayed)renewal proess with the orresponding renewal numbers Nj(r) and with the expetedrenewal time 1�(j) we get Nj(r)r ! �(j) a:s::On the other hand, Xz;i is a regenerative proess with respet to eah �j(l); l = 1; 2; 3; : : :.Hene 1Nj(r) Nj(r)Xl=1 Xz;�j(l) ! E[Xz;�j(2)℄; as r!1 a:s::Sine E[Xz;�j(2)℄ = P (Xz;�j(2) = 1). The latter equalsP�Sj(M); Sj(M+1); � � � ; Sj(n1000) 2 Iz and �(Sj(M)) = �(Sj(M+1)) = � � � = �(Sj(n1000)�:This an be rewritten as Xl2Iz P (j; l)Æz(l);where P (j; l) := P (S(M) = j � l) andÆz(l) := P�Sl(0); Sl(1); : : : ; Sl(n2) 2 Iz and �(Sl(0)) = �(Sl(1)) = : : : = �(Sl(n2))�(6.2.7)HeneÆMz =Xj2Iz �(j)P�Sj(M); Sj(M + 1); � � � ; Sj(n1000) 2 Iz; �(Sj(M)) = � � � = �(Sj(n1000)�(6.2.8)or ÆMz = Xj;l2Iz �(j)P (j; l)Æz(l): (6.2.9)Using the same notation, we have an equivalent form of writing the delayed signal prob-ability Ædz =Xl=Iz P (z; l)Æz(l): (6.2.10)Formula (6.2.9) an be interpreted as follows: let U be a random variable with distribution�z and let S be a random walk, independent of U . Let SU denote the translation of S byU , i.e., for eah t, SU(t) = U + S(t). Then (6.2.9) statesÆMz = P��(SU(M)) = � � � = �(SU(n1000)) and SU(M); � � � ; SU(n1000) 2 Izj��:(6.2.11)Thus, ÆMz is the limit-version of (6.2.4) when i!1.



236 Chapter 6. Information Reovery from a randomly mixed up message-text*We now de�ne the frequeny of ones. To obtain the onsisteny with the Markov signalprobability, we formally de�ne the frequeny of ones in terms of regenerative proesses.However, we also derive the analogue of (6.2.11), whih explains the meaning of the notion.Let Uz;i = �(S(�z(i) + en0:1)) and de�neUz(k) := �(k)Xi=�(k)+1Uz;i:Now, let h(z) := E(Uz(1)j�)E(Zz(1)j�) :The random variable h(z) is �(�(i) : i 2 [z � L(n1000 + en0:1); z + L(n1000 + en0:1)℄)-measurable; h(z) is alled as frequeny of ones at z. As in (6.2.6), onditioning on �, wehave limr!1 rXi=1 Uz;ir = h(z) a:s::With the same argument as above, we getlimr!1 1r rXi=1 Uz;i = limr!1Xj Nj(r)r 1Nj(r) Nj(r)Xl=1 Uz;�j(l) =Xj �(j)E(Uz;�j(2)):Now, E(Uz;�j(2)) = i=j+Len0:1Xi=j�Len0:1 �(i)P (Sj(i))and, thereforeh(z) =Xj=Iz �(j) j+Len0:1Xi=j�Len0:1�(i)P (Sj(i)) = z+L(n1000+en0:1 )Xi=z�L(n1000+en0:1 )�(i)Xj=Iz�(j)P (Sj(en0:1) = i): (6.2.12)Now, it is easy to see that in terms of U and S as in (6.2.11), i.e. U and S are independent,U has law �z, we haveh(z) = P (�(U + S(en0:1)) = 1j�) = E[�(U + S(en0:1))j�℄; (6.2.13)6.2.2 Auxiliary resultsIn the present setion we investigate the relations between ÆMz and Ædz . Note that theyonly depend on the senery � in the interval [z � Ln1000; z + Ln1000℄. In other words,ÆMz ; Ædz 2 ���(j)jj 2 [z � Ln1000; z + Ln1000℄�:The distribution of both ÆMz and Ædz does not depend on partiular hoie of z. Hene,w.l.o.g., in the following we onsider the point z = 0, only.De�ne pM := maxfP (S(M) = z)jz 2 Zg.We all a blok big, if its length is bigger than nlnn .



6.2. Whole truth about signal probabilities 237Proposition 6.2.1. For any Æ 2 [pM ; 2pM ℄ we have that the following holds:a P (Ædz � Æ) � exp(��n= lnn), where � := ln(1:5)b P �Ædz � Æ� � (0:5)n > exp (�n) If all bloks of �j[z � Ln1000; z + Ln1000℄ are shorter than n= lnn + 1, then Ædz < Æ.Formally:�Ædz � Æ	 � � [z � Ln1000; z + Ln1000℄ ontains a big blok of � 	d Conditional on �Ædz � Æ	 it is likely that [z�Ln1000; z+Ln1000℄ ontains at most 0:5 lnnbig bloks of �. More preisely:P �EÆ;z�� Ædz � Æ� � �2Ln1000�0:5 lnn (0:5)�0:5nwhereEÆ;z := � [z � Ln1000; z + Ln1000℄ has less than 0:5 lnn big bloks of � 	In order to prove Proposition 12.4.9, we use the following lemma. The proof of it an befound in [LMM01℄.Lemma 6.2.1. There exists a onstant a > 0 suh that for eah t; r 2 N, for eah subsetI � Z, and for eah j 2 I and for every mapping � : Z �! f0; 1g we have the followingimpliation:if all bloks of � in I are shorter or equal to r, thenP � � (Sj (0)) = � (Sj (1)) = � � � = � (Sj (t))and Sj (0) ; Sj (1) ; :::; Sj (t) 2 I � � exp��atr2� :Proof that  holds: W.l.o.g. assume z = 0. Suppose that the length of all bloksof �j[�Ln1000; Ln1000℄ is at most n= lnn. Let I := [�Ln1000; Ln1000℄. Denote Æ(l) = Æ0(l),where Æ0(l) is as in (6.2.7). If the all the bloks in I are not longer than n= lnn we get byLemma 6.2.1 that for all j 2 IÆ(j) � exp�� an2(n= lnn)2� = n�a lnn.By (6.2.10) we get thatÆd0 = Ln1000Xj=�Ln1000P (0; j)Æ(j) � Ln1000Xj=�Ln1000P (0; j)n�a lnn � n�a lnn (6.2.14)The expression on the right side of the last inequality is of smaller order than any negativepolynomial order in n. By the loal entral limit theorem pM is of order n�M2 . Thus, forn big enough Æd0 < pM � Æ:



238 Chapter 6. Information Reovery from a randomly mixed up message-textProof that a holds: W.l.o.g. assume z = 0. De�ne the eventEz := f�(z) = �(z + 1) = � � � = �(z + nlnn)gPart  states that fÆd0 � Æg � [z2[�Ln1000;Ln1000℄Ez.Thus, P �Æd0 � Æ� � Ln1000Xz=�Ln1000 P (Ez).Now, learly P (Ez) = exp�� ln(2)nlnn � :So, P (Æd0 � Æ) � 2Ln1000 exp�� ln (2)nlnn � : (6.2.15)The dominating term in the produt on the right side (6.2.15) is exp (� ln (2)n= lnn).Hene, for n big enough, the expression on the right side of (6.2.15) is smaller thanexp(� ln(1:5)nlnn ).Proof that b holds: It suÆes to prove thatP (Ædz � 2pM) � (0:5)n:W.l.o.g assume z = 0. De�ne E := f�(0) = �(1) = � � � = �(n)g. We are going to showthat E � fÆd0 � 2pMg and P (E) � exp(�n).Reall the de�nition of Æ(j). If E holds, then for any j 2 [0; n℄ we haveÆ(j) � P�Sj(t) 2 [0; n℄; 8t 2 [0; n2℄�Now, beause of the entral limit theorem, there is a onstant b > 0 not depending on n,suh that for all j 2 [n=3; 2n=3℄ we have:P�Sj(t) 2 [0; n℄; 8t 2 [0; n2℄� > b:By the loal entral limit theorem, again, for all j 2 [n=3; 2n=3℄ we have, for n big enough,that P (0; j) � pM2 : (6.2.16)Using (6.2.10) and (6.2.16) we �nd that when E holds, thenÆd0 � 2n3Xj=n3 bP (0; j) � bnpM6 : (6.2.17)



6.2. Whole truth about signal probabilities 239For n big enough, obviously the right side of (6.2.17) is bigger than 2pM . This proves E �fÆd0 � 2pMg. Furthermore, we have that P (E) = 0:5n. The inequality 0:5n > exp(�n)�nishes the proof.Proof that d holds: W.l.o.g. assume z = 0. For a blok T , the point inf T is alled thebeginning of the blok. Let t1; t2; : : : denote the beginnings of the onseutive big bloksin [�Ln1000;1): De�ne t0 := �Ln1000 and gi := ti� ti�1, i = 1; 2; : : : : So, gi measures thedistanes between onseutive big bloks. Clearly, gi-s are i.i.d. Note,EÆ;0 � n0:5 lnnXi=1 gi � 2Ln1000o � \0:5 lnni=1 ngi < 2Ln1000o:Note P (g1 < 2Ln1000) � Ln1000�1Xz=t0 P (a big blok begins at z) � 2Ln1000(0:5) nlnn :Hene, P (EÆ;0) � P (gi � 2Ln1000)0:5 lnn = �2Ln1000�0:5 lnn(0:5)0:5n:Combining this with b, we getP (EÆ;0jÆd0 > Æ) � P (EÆ;0)P (Æd0 > Æ) � �2Ln1000�0:5 lnn(0:5)�0:5n ! 0:Lemma 6.2.2.P �Ædz � Æ� �2Ln1000��0:5 lnn � 2P �Ædz ^ ÆMz � Æ(1� O(M� 12 ))� :6.2.3 Proof of Lemma 7.2.9In the present subsetion we prove Lemma 7.2.9. To the end of the setion we assumez = 0. At �rst we de�ne fenes.Fenes* An interval [t; t+ 4L� 1℄ � D is alled a fene of �, if0 = �(t) = �(t+ 1) � � � = �(t+ L� 1) 6= �(t+ L) = � � � = �(t+ 2L� 1) 6=�(t+ 2L) = � � � = �(t+ 3L� 1) 6= �(t+ 3L) = � � � = �(t+ 4L� 1)The point t+ 2L is the breakpoint of the fene. So, T is a fene of � orresponding to theL = 3, if and only if �jT = 000111000111.Let z0 := �Ln1000 and let zk, k = 1; 2; : : : be de�ned indutively: zk denotes the breakpointof the �rst fene of senery � in [zk + 4L;1). We all the points zk the breakpoints ofonseutive fenes (of senery �). De�ne li := zi � zi�1, i = 1; 2; : : : and N := maxfk :zk�1 � Ln1000g < Ln1000. The random variables li measure the distanes between thebreakpoints of onseutive fenes, they are i.i.d. Let l := Ln1000 � zN , l � lN+1. The



240 Chapter 6. Information Reovery from a randomly mixed up message-textmoment generating funtion of l1, say M(�), does not depend on n and it is �nite, if� > 0 is small enough. Let M := exp(�l1) < 1 and hoose C > 1 suh that �C > 1.Now de�ne the event Eb := fl; li � Cn; i = 1; 2; : : : ; Ngand apply the large deviation inequality to see P (l1 > Cn) = P (�l1 > �Cn) < Me��Cn:Now, P (Eb) � Ln1000Xi=1 P (li > Cn) = Ln1000P (l1 > Cn) < Ln1000Me��Cn:Applying b, we getP (Eb jÆd0 � Æ) � P (Eb)P (Æd0 � Æ) � Ln1000Me(1��C)n ! 0: (6.2.18)MappingLet O denote the set of all possible piees of seneries in I := [�Ln1000; Ln1000℄, i.e.O := f0; 1gI: The random variables Æd0 , ÆM0 as well as the events fÆd0 > Æg, EÆ;0, Ebdepend on the restrition of the senery to I, only. Hene they an be de�ned on theprobability spae (O; 2O; P ), where P stands for the normalized ounting measure.De�ne C := fÆd0 > Æg \ EÆ;0 \ Eb � O:Hene C onsists of all piees of seneries, �, with the following properties: Æd0(�) is biggerthan Æ, the number of big bloks is less than 0:5 lnn and the gaps between the breakpointsof the onseutive fenes in I is at most Cn.Let � 2 C and let z0; z1; : : : ; zN be the breakpoints of onseutive fenes (restrited to I)of �. Sine � � Eb, we have N � 2Ln999. Now partition the interval I as follows:I = I1 [ I2 [ � � � [ IN [ IN+1; (6.2.19)where Ik := [zk�1; zk�1℄, k = 1; : : : ; N; IN+1 := [IN ; Ln1000℄: Let l(Ik) := zk�kk�1 denotethe length of Ik. We shall all the partition (6.2.19) the fene-partition orresponding to�. The fenes guarantee that any blok of �, that is longer than L is a proper subsetof one interval Ik. Sine � 2 fÆd0 > Æg \ EÆ;0, there is at least one and at most 0:5 lnnbig bloks. Let I�k , k = 1; : : : N�, N� � 0:5 lnn denote the k � th interval ontaining atleast one big blok. Similarly, let Iok , k = 1; : : : ; N + 1 � N� denote the k � th intervalwith no big bloks. Clearly, most of the intervals Ik are without big bloks, in partiularPk l(Iok) > Ln1000. De�ne jo := minfj : jXk=1 l(Iok) > Ln1000g:To summarize - to eah � 2 C orresponds an unique fene-partition, an unique labelling ofthe interval aording to the bloks, and, therefore, unique jo. We now de�ne a mappingB : C ! O as follows:B(�) := (�jIo1 ; �jIo2 ; : : : ; �jIojo; �jI�1 ; : : : ; �jI�N�; �jIojo+1; : : : ; �jIoN+1�N�):



6.2. Whole truth about signal probabilities 241We also de�ne the orresponding permutation:�� : I ! I; ��(I) = (Io1 ; Io2 ; : : : ; Iojo; I�1 ; : : : ; I�N�; Iojo+1; : : : ; IoN+1�N�):Thus, B(�) = � Æ ��.Sine all big bloks of � are ontained in the intervals Ik, the mapping B keeps all bigbloks unhanged, and just moves them loser to the origin.The mapping B is learly not injetive. However, B(�1) = B(�2) implies that the fene-partitions orresponding to �1 and �2 onsists of the same intervals, with possibly di�erentorder. Also the intervals with big bloks (marked with star) are the same, but possiblydi�erently loated. Moreover, the ordering of the similarly marked bloks orrespondingto �1 and �2 are the same (i.e. if the 8-th interval, I8, of the partition orresponding to�1 is the 20-th interval, I20, of the partition orresponding to �2, then their marks arethe same. If I8 in its partition is the seventh interval with o (I8 = Io7 in the partitionorresponding to the �1), then the same blok in the seond partition must be also theseventh interval with o (I20 = Io7 in the partition orresponding to �2). Therefore, thepartition orresponding to �1 and �2 di�er on the loation of the star-intervals, only. Sinethe number of intervals is smaller than 2Ln1000 and the number of star-intervals is at most0:5 lnn, the number of di�erent partitions with the properties desribed above, is less than(2Ln1000)0:5 lnn. This means jB(C)j(2Ln1000)0:5 lnn > jCj: (6.2.20)Proof of Lemma 7.2.9: Beause of the ounting measure and (6.2.20) we getP (B(C))P (C) = jB(C)jjCj > (2Ln1000)�0:5 lnn:By Propositions 12.4.10 and 6.2.3,P (B(C)) � P�Æd0 ^ ÆM0 � Æ(1� O(M� 12 ))�:By (6.2.18) and d) of Proposition 12.4.9, we get:P (C)P (Æd0 > Æ) = P (EÆ;0 \ EbjÆd0 � Æ) > 0:5;provided n is big enough. These relations yield:P�Æd0 ^ ÆM0 � Æ(1� O(M� 12 ))�� (2Ln1000)�0:5 lnn � 0:5 � P (Æd0 > Æ):The lemma is proved.Proposition 6.2.2. For any & 2 B(C) we haveÆd0(&) � Æ[1�O(M� 12 )℄:



242 Chapter 6. Information Reovery from a randomly mixed up message-textProof. Let & 2 B(C). Choose � 2 B�1(&). Let fIkg be the fene-partition orre-sponding to �. Let Æ�z (l), Æ&z(l) denote the probabilities de�ned in (6.2.7), with � replaedby � and &, respetively. As already noted, beause of the fening-struture, any sequeneof onseutive one's or zero's an be generated on the one interval Ik, only. More preisely,if l 2 Ik, thenÆ�0(l) = P �Sl(0); : : : ; Sl(n2) 2 Ik ; �(Sl(0)) = : : : = �(Sl(n2))�: (6.2.21)By the argument of the proof of  of Proposition 12.4.9, we get that eah interval withoutbig bloks, Iok , has the property: the probability of generating n2 +1 onseutive zeros orones is smaller than n�a lnn. In other words Æ�0(l) � n�a lnn; 8l 2 Io; where Io := [kIok .Denote I� := [kI�k . Now, by (6.2.10) and (6.2.21) we haveÆd0(�) =Xl2I P (0; l)Æ�0(l) = �Xl2Io+Xl2I��P (0; l)Æ�0(l)�Xl2Io P (0; l)n�a lnn +Xl2I� P (0; l)Æ�0(l)� n�a lnn +Xl2I� P (0; l)Æ�0(l) � n�a lnn + pMXl2I� Æ�0(l):Sine � 2 C, Æd0(�) � Æ � pM ; we haveXl2I� Æ�0(l) � Æ � n�a lnnpM � 1� n�a lnnpM = 1�O� pMna lnn�; (6.2.22)Clearly O( pMna lnn ) = o(n��), for all � � 0.Now onsider & = M(�). Let J1; J2; : : : JN+1 denote the new loation of the intervals Iiafter applying the mapping �� to I. Fix an j 2 I and let j 2 Jk. The equation &jJk = �jIkand (6.2.21) implyÆ&0(j) = P �Sj(0); : : : ; Sj(n2) 2 I; &(Sj(0)) = � � � = &(Sj(n2))�� P �Sj(0); : : : ; Sj(n2) 2 Jk; &(Sj(0)) = � � � &(Sj(n2))�= P �Sl(0); : : : ; Sl(n2) 2 Ik; �(Sl(0)) = � � � = �(Sl(n2))� = Æ�0(l);where l = �(j) 2 Ik. This means Æ&0(j) � Æ�0(��(j)); 8j 2 I: In partiular,Xj2Jk Æ&0(j) �Xl2Ik Æ�0(j) (6.2.23)If I1 = J1 and IN+1 = JN+1, i.e. the �rst and last intervals do not ontain big bloks,then, obviously, (6.2.23) is an equation.Let J� = ��(I�), i.e. J� is the union of all intervals with big bloks in the new loation.The length of I� (and, therefore, that of J�) is at most 0:5Cn lnn. Thus, J� is at mostCn+0:5Cn lnn from the origin. Let n be so big, that Cn+0:5Cn lnn � n2: Then, j � n2for eah for eah j 2 J�. Denote by:po = minfP (S(M) = i) : jij � n2g:



6.2. Whole truth about signal probabilities 243Now from (6.2.22) and (6.2.23) we getÆd0(&) =Xj P (0; j)Æ&0(l) �Xj2J� P (0; j)Æ&0(j) �Xl2I� P (0; j)Æ�0(l)� poXl2I� Æ�0(l) � (Æ � n�a lnn) popM = Æ(1� pM � popM � n�a lnnpoÆpM )= Æ[1� O(M� 12 )℄� O( pMna lnn ) = Æ[1�O(M� 12 )℄:Proposition 6.2.3. For any & 2 B(C) we haveÆM0 (&) � Æ[1� O(M� 12 )℄:Proof. We use the notation and the results of the previous proof. By the representa-tion (6.2.8) we haveÆM0 (&) = Xi;j2I �(i)P (i; j)Æ&0(j) � Xi;j2J� �(i)P (i; j)Æ&0(j) (6.2.24)where � = f�(i)gi2I is the stationary measure of Yk = S(�0(k)), k = 1; 2; : : :.Use loal entral limit theorem (CLT in the sequel) to estimatemini;j2J� P (j; i) � minfP (i; j) : ji� jj � n2g � pM exp��dn2M �� O(M�1)= pM �1�O�n2M ��� O(M�1) = pM�1�O( 1pM )�: (6.2.25)with d;  being onstants not depending on n.Hene, beause of (6.2.24), (6.2.22) and (6.2.25)ÆM0 (&) ��(J�)[pM�1�O( 1pM )�℄Æ � n�a lnnpM=�(J�)�1�O( 1pM )�(Æ � n�a lnn) = �(J�)�1� O( 1pM )�Æ: (6.2.26)
We now estimate �(J�). We shall show thatP (Yk+1 2 J�jYk = j) � 1� o(M�1) 8j 2 I:Then �(J�) =Pj P (Yk+1 2 J�jYk = j)�(j) � 1� o(M�1) and, by (6.2.26)ÆM0 (&) � �(J�) � (1� o(M�1))Æ[1�O(M� 12 )℄ = Æ[1�O(M� 12 )℄:Estimation of �(J�)



244 Chapter 6. Information Reovery from a randomly mixed up message-textFix an j 2 I and de�ne � as the �rst time after en0:1 when n2 + 1 onseutive 0-s or 1-sare generated on I. Formally,� := min�t � en0:1��� � (t) = � (t� 1) = ::: = � (t� n2)and Sj(i) 2 I; 8i = t� n2; : : : ; t �where � = & Æ Sj. ClearlyP (Sj(�) 2 J�) = P (Yk+1 2 J�jYk = j):Thus, it suÆes to estimate P (Sj(�) 2 J�).At �rst note that by (6.2.22) and (6.2.23,) we get Pj2J� Æ�0(j)! 1. Sine jJ�j � n2 (andn is big enough), we dedue the existene of j� 2 J� suh thatÆ�0(j�) > 1n3 : (6.2.27)Then, beause of the fenes we have:fSj(�) 62 J�g = fSj(� � n2); : : : ; Sj(�) 2 InJ�; �(� � n2) = � � � = �(�)g:Now, let �k be the k-th visit after time en0:1 � n2 to the interval I. Let � �k be the k-thvisit after time en0:1 � n2 to the point j�. De�ne the eventsFk := fSj(�k � n2); : : : ; Sj(�k) 2 InJ�; �(�k � n2) = � � � = �(�k)g; k = 1; 2 : : :F 0k = [n2000�1i=0 fSj(�k + i) = j�g; k = 1; 2; : : :F �k = f�(� �k ) = � � � = �(� �k + n2)g; k = 1; 2; : : :We onsider the eventsE1 := f� > �n2020g [ fSj(�) 2 J�g; E2 := f� �n10 � �n2020 � n2g; E3 := [n10k=1F �kThe event E1 ensures that within the �rst n2020 visits of Sj to I no onseutive 0's or 1'swere generated on InJ�. The event E2 ensures that before time �n2020 � n2 the randomwalk visits at least n10 times the point j�. Finally, the event E3 ensures that during thesen10 visits of j�, at least one of them is a beginning of n2 onseutive 0's or 1's. If theseevents hold, then � � �n2020 and Sj(�) 2 J�. ThusE1 \ E2 \ E3 � fSj(�) 2 J�g:Next, we give upper bounds for the probabilities P (E1); P (E2); P (E3).1) Note that: E1 � [n2020k=1 Fk, implies: P (E1) �Pn2020k=1 P (Fk). For eah k,P (Fk) = Xl2InJ� P [Sl(0); : : : ; Sl(n2) 2 InJ�; &(Sl(0)) = � � � = &(Sl(n2))℄�� P (Sj(�k � n2) = l):



6.2. Whole truth about signal probabilities 245There is no big bloks in InJ�, hene by the argument of :P [Sl(0); : : : ; Sl(n2) 2 InJ�; &(Sl(0)) = � � � = &(Sl(n2))℄ � n�a lnn;implying that: P (E1) � n2020�a lnn:2) To estimate P (E2) we use the H�o�ding inequality. By entral limit theorem thereexists a onstant p > 0 not depending on n suh that P (F 0k) � p. Also note that F 0kand F 0l are independent if jk � lj � n2000. Hene, the set fF 0kg, k = 1; : : : ; n2020 ontainsa subset fF 0kig i = 1; : : : n20 onsisting of independent events. Let Xi := IF 0ki : Now,�n2018 + n2000 � �n2019 � �n2020 � n2, if n is big enough. This meansn n18Xi=1 Xi � n10o � E2:Now, when n is big enough, we haveP (E2) � P� n18Xi=1 Xi < n10� = P� n18Xi=1 (Xi � EXi) < n10 � n18Xi=1 EXi�� P� n18Xi=1 (Xi � EXi) < �(n18p� n10)� � P� n18Xi=1 (Xi � EXi) < �n17� �� exp(�2n34n18 ) = exp(�2n16):3) Note F �l ; F �k are independent, if jk � lj > n2 Let fF �kig, i = 1; 2; : : : ; n7 be a subset offF �k g onsisting on independent events, only. By (6.2.27), P (F �k ) > 1n3 , 8k. NowP (E3) � P (\n7i=1F �ki) = n7Yi=1(1� P (F �ki)) ��1� 1n3�n7 : (6.2.28)The right side of (6.2.28) is smaller than (0:5)n4 if n is big enough.Thus, P (Sj(�) 2 J�) � 1� [n2020�a lnn + exp(�2n16) + (0:5)n4℄= 1� O(n�2020+a lnn) = 1� o(M�1):6.2.4 CorollariesWe determine the ritial value r. Sine we hoose it within the interval [pM ; 2pM ℄, it hasall properties stated in Proposition 12.4.9 and Lemma 7.2.9. However, we also have toensure that with high probability the signal probabilities Ædz and ÆMz are signi�antly awayfrom r. By "signi�antly" we mean that the di�erene between these probabilities andr is bigger than a polynomially small quantity in n. This polynomially small quantitywill be denoted by �. Thus, r must be properly hosen and that will be done with thehelp of Corollary 6.2.2.At �rst, some preliminary observations.



246 Chapter 6. Information Reovery from a randomly mixed up message-textProposition 6.2.4. For any j > 2, there exists an interval [a; b℄ � [pM ; 2pM ℄ of lengthpM= (nj+2) suh that P (Æd0 < bjÆd0 � a) � 1nj (6.2.29)Proof. We do the proof by ontradition. Assume on the ontrary that there exists nointerval [a; b℄ � [pM ; 2pM ℄ of length l := pM=nj+2 suh that (6.2.29) is satis�ed. Letai := pM + il, i = 0; : : : ; nj+2. Sine [ai; ai+1℄ � [pM ; 2pM ℄ is an interval of length l, byassumption: P (Æd0 � ai+1jÆd0 � pM + ai) � �1� 1nj �; i = 1; : : : ; nj � 1:Now, by b) of Proposition 12.4.9:e�n < P (Æd � 2pM) = nj+2�1Yi=0 P (Æd0 � ai+1jÆd0 � ai) � �1� 1nj �nj+2: (6.2.30)Sine (1� 1nj )nj < e�1, we have (1� 1nj )nj+2 < e�n2 . Thus, (6.2.30) implies e�n < e�n2 -a ontradition.Corollary 6.2.1. Let [x; y℄ � [pM ; 2PM ℄ be an interval of length l. Then there exists ansubinterval [u; v℄ � [x; y℄ of length le2n suh thatP (Æd0 < vjÆd0 > u) � 1en : (6.2.31)Proof. The proof of the orollary follows the same argument that the proof of Proposition6.2.4: (6.2.31) together with the statement b) of Proposition 12.4.9 yield the ontradition:exp(�n) < P (Æd0 � 2pM) � P (Æd0 � v) � h�1� 1en �enien < exp(�en):The next proposition proves the similar result for ÆM0 ^ Æd0 . Sine we do not have theanalogue of b) of Proposition 12.4.9, we use Lemma 7.2.9, instead.Proposition 6.2.5. Let [a; b℄ � [pM ; 2pM ℄ be suh that 2pM � b > pMO(M� 12 ). For anyi > 2 there exists an interval [x; y℄ � [a; b℄ with length (b� a) =ni+2 suh that, for n bigenough P (ÆM0 < yjÆM0 ^ Æd0 > x) � P (ÆM0 ^ Æd0 < yjÆM0 ^ Æd0 > x) � 1ni : (6.2.32)Proof. Suppose that suh a (sub)interval does not exists. Then follow the argument ofthe previous proof to getP�ÆM0 ^Æd0 � 2pM(1�O(M� 12 ))� � P �ÆM0 ^Æd0 � b� � �1� 1ni�ni+2 < exp(�n2): (6.2.33)By Lemma 7.2.9 and b) of Proposition 12.4.9P�ÆM0 ^ Æd0 � 2pM(1�O(M� 12 ))� � 0:5(2Ln1000)�0:5 lnn exp(�n): (6.2.34)For n big enough, the right side of (6.2.34) is bigger than e�2n. This ontradits (7.1.1).



6.2. Whole truth about signal probabilities 247The following orollary spei�es r and �.Corollary 6.2.2. Let � := �pM=8�n�10054, ~� = �e�2n. Then there exists r 2 [pM +�; 2pM ��℄ suh that, for n big enough, simultaneously,P �Æd0 � r ��� � exp((lnn)3)P �Æd0 ^ ÆM0 � r ��� ; (6.2.35)P (ÆM0 < r +�jÆM0 ^ Æd0 � r ��) � n�10000 (6.2.36)and P (Æd0 < r ��+ ~�jÆd0 � r ��) � exp(�n): (6.2.37)Proof. By Proposition 6.2.4 there exists an interval [a; b℄ � [pM ; 2pM ℄ of length pM=n52suh that P (Æd0 � b)P (Æd0 � a) = P (Æd0 � bjÆd0 � a) > 1� 1n50 > 0:5: (6.2.38)We now onsider the interval [a; a+b2 ℄. Note that:2pM � a+ b2 � b� b + a2 = b� a2 = pM2n52 > pMO(M� 12 ):Now use Proposition 6.2.5 with i = 10000 to �nd a subset [x; y℄ 2 [a; a+b2 ℄ with lengthl := b�a2 n�10002 = pM2 n�10054 suh that (6.2.32) holds.Let us now take z = x+ l4 . By Corollary 6.2.1, there exists an subinterval [u; u+ ~�℄ 2 [x; z℄with length l4e2n suh that P (Æd0 < u+ ~�jÆd > u) � exp(�n): (6.2.39)Now take � := l4 = �pM=8�n�10054, r := u +�: Sine [r ��; r +�℄ � [x; y℄, we havethat P (ÆM0 < r +�jÆM0 ^ Æd0 > r ��) � P (ÆM0 ^ Æd0 < r +�jÆM0 ^ Æd0 > r ��) �P (ÆM0 ^ Æd0 < yjÆM0 ^ Æd0 > r ��) = P (�� r < ÆM0 ^ Æd0 < y)P (ÆM0 ^ Æd0 > �� r) �P (y > ÆM0 ^ Æd0 > x)� P (x � ÆM0 ^ Æd0 � r ��)P (ÆM0 ^ Æd0 > x)� P (x < ÆM0 ^ Æd0 � r ��) � P (y > ÆM0 ^ Æd0 > x)P (ÆM0 ^ Æd0 > x) =P (ÆM0 ^ Æd0 < yjÆM0 ^ Æd0 > x) � 1n10000 :Hene, (6.2.36) holds.Sine u = r ��, we also have that (6.2.37) holds.It only remains to show that the hosen r also satis�es (6.2.35).Clearly � > 2pMO(M� 12 ) > rO(M� 12 ). That implies:P�Æd0 ^ ÆM0 � r(1� O(M� 12 )�� P (Æd0 ^ ÆM0 � r ��):Combine this with Lemma 7.2.9 to getP (Æd0 � r)0:5(2Ln1000)�0:5 lnn � P (Æd0 ^ ÆM0 � r ��) (6.2.40)



248 Chapter 6. Information Reovery from a randomly mixed up message-textSine [r ��; r +�℄ � [a; b℄ we haveP (Æd0 � a) � P (Æd0 � r ��) � P (Æd0 � r) � P (Æd0 � b):Now, by (6.2.38) P (Æd0 � r)P (Æd0 � r ��) � P (Æd0 � b)P (Æd0 � a) > 0:5:The last inequality above, together with (6.2.40) impliesP (Æd0 � r ��) � 0:25(2Ln1000)0:5 lnnP (Æd0 ^ ÆM0 � r ��) (6.2.41)Now, the relation 0:25(2Ln1000)0:5 lnn � exp((lnn)3)together with (6.2.41) establishes (6.2.35).6.3 Senery-dependent eventsIn the present setion we de�ne and investigate the signal points and Markov signalpoints. We show that with high probability the loation of the signal points followsertain lustering struture. This struture gives us the desired signal arriers in the2-olor ase.6.3.1 Signal pointsWe are now going to de�ne the Markov signal points, strong signal points and signalpoints { these are the loation points, where the orresponding signal probabilities areabove the ritial value r. The Markov signal points form the ore of the signal arriers,the (strong) signal points will be used in our proofs. In an oversimpli�ed way, we ould saythat the Markov signal points are plaes in the senery � where the onditional probabilityto see in the observations some rare unusual pattern is above r. The unusual pattern isbasially a string of n2, zero's or one's.In the present subsetion, with the help of the signal points, we de�ne many other im-portant notions, and we also investigate their properties.In the following, � and r are as in Corollary 6.2.2. In partiular, � = pM8 n�10054.* A (loation) point z 2 Z is alled signal point, if Ædz > r ��.* A (loation) point z 2 Z is alled strong signal point, if ~Ædz > r ��.* A (loation) point z 2 Z is alled Markov signal point, ifÆdz > r �� and ÆMz > r ��:* We all a Markov signal point z regular, if ÆMz > r +�.* Let �z1 be the �rst Markov signal point in [0;1). Let �zk be de�ned indutively: �zk isthe �rst Markov signal point in [�zk�1 + 2Ln1000;1). Let �z0 be the Markov signal point



6.3. Senery-dependent events 249in (�1; 0℄ whih laies losest to the origin. Let �z�k be de�ned indutively: �z�k is theright-most Markov signal point in (�1; �z�(k�1)�2Ln1000℄. Thus : : : ; �z�2; �z�1; �z0; �z1; �z2; : : :is a sequene of ordered random variables whih we all signal arrier points.* For given z, the setNz := [z � L(n1000 + en0:3); z � L(n1000)℄ [ [(z + Ln1000; z + L(n1000 + en0:3)℄is alled the neighborhood of z.*We say that the neighborhood of z is empty, if Nz does not ontain any blok of � longerthan n0:35 .Thus, fNz is empty g � �(�i; i 2 Nz).* We say that z has empty border, if the set Iz � [z � ~M; z + ~M ℄ does not ontain anyblok of � longer than n0:35. Thus, fNz is empty g � �(�i; i 2 Iz � [z � ~M; z + ~M ℄).* Let p, ~p and pd be the probability, that a �xed point is a Markov signal point, a strongsignal point or a signal point, respetively.From (6.2.3), part a) of Proposition 12.4.9 and by (6.2.35) of Corollary 6.2.2 we knowpd � exp(�dn999) < ~p � pd; (6.3.1)p � pd � exp(� �nlnn); (6.3.2)pdp � exp((lnn)3): (6.3.3)* We now de�ne a onstrution, whih we are going to use later:For eah j = 0; 1; 2; : : : ; 2Ln1000 partition the set Z\[�Ln1000+j;1) into adjaent integerintervals of length 2Ln1000. Let Ik;j denote the k-th interval of the partition who's �rstinterval starts at �Ln1000 + j. Thus,I1;j = [j � Ln1000; j + Ln1000℄; I2;j = [j + Ln1000 + 1; j + 3Ln1000 + 1℄;I3;j = [j + 3Ln1000 + 2; j + 5Ln1000 + 2℄;: : :Ik;j = [j + kLn1000 + k � 1; j + (k + 2)Ln1000 + k � 1℄:Let zj;k denote the midpoints of Ik;j. Henezj;1 = j; zj;2 = j + 2Ln1000 + 1; : : : ; zj;k = j + 2kLn1000 + (k � 1):For, eah j, the intervals Ik;j, k = 1; 2; : : : are disjoint. Thus, the eventsfzk;j is a Markov signal pointg; k = 1; 2; : : :are independent with the same probability p.



250 Chapter 6. Information Reovery from a randomly mixed up message-textLet k0 denote the integer valued random variable that shows the index of the �rst intervalIk;0 whih has its midpoint being a Markov signal point. By suh a ounting we disregardthe �rst interval. Thus, k0 > 1 and, formally, k0 is de�ned by the relationsÆz2;0 ^ ÆMz2;0 � r ��; : : : ÆMzk0�1;0 ^ Ædzk0�1;0 � r ��; ÆMzk0;0 ^ Ædzk0;0 > r ��Clearly, k0�1 is a geometrial random variable with parameter p and, hene, Ek0 = 1p+1.* Let Z be the loation of the �rst Markov signal point after 2Ln1000. Reall �z1 is theloation of the �rst Markov signal point after 0. Note, that for eah i � 0, we haveP (�z1 � i) < P ([ij=0fi is a Markov signal pointg) � pi (6.3.4)and P (Z � i) � p(i� 2Ln1000); i � 2Ln1000: (6.3.5)>From (6.3.4) and (6.3.2) we getP (�z1 � 2Ln1000) � p2Ln1000 � 2Ln1000 exp(� �nlnn)! 0: (6.3.6)* We now estimate EZ. For this note: Z � zk0;0 = 2k0Ln1000 + k0 � 1 andEZ � (1p + 1)2Ln1000 + 1p � 3pLn1000: (6.3.7)>From (6.3.3) we get EZpd � 3pdp Ln1000 � 3Ln1000 exp((lnn)3): (6.3.8)On the other hand by (6.3.5) we have, for eah x, EZ � xP (Z � x) � x(1 � px): Now,take x = (2p)�1 and use (6.3.2) to getEZ � 14p � 14 exp( �nlnn): (6.3.9)* Take m(n) = pn2:5EZq.By (6.3.3) and b) of Proposition 12.4.9 we getn2:5EZ � 3Ln1002:5pd exp((lnn)3) � 3Ln1002:5 exp((lnn)3 + n) < exp(2n);implying 14 exp( �nlnn) � m < exp(2n); (6.3.10)provided n is big enough.* Next, we de�ne the random variables whih we are using later:Xz := IfÆdz>r��; ÆMi >r��g; z = 0; 1; 2; : : : :



6.3. Senery-dependent events 251Thus, Xz indiates, whether z is a Markov signal point or not. The random variables Xzare identially distributed with mean p.We estimate the number of Markov signal points in [0; m℄, where  > 1 is a �xed integer,not depending on n . For this de�ne:E0 := n mXz=0 Xz � n10000o:Thus, when E0 holds, the interval [0; m℄ ontains at most n10000 Markov signal points.To estimate P (E0) we use the Markov inequality and (6.3.7)P (E0) = P� mXi=0 Xi > n10000� < (m+ 1)pn10000 � (n2:5EZ + 1)p+ 1n10000< 3Ln1002:5�10000 + (+ 1)n�10000 = o(1):* Finally, de�ne Z0 < Z1 < � � � < Zk < � � � as follows:Z0 := 0, Z1 := Z, and, let Zk+1 be the �rst Markov signal point that is greater than2Ln1000 + Zk.Note the di�erenes: Z, Z2 � Z1, Z3 � Z2, : : :, Zk+1 � Zk; : : : are i.i.d. Also:fNo Markov signal points in [0; 2Ln1000℄g = fZi = �zi for all ig := Ens : (6.3.11)From (6.3.6) we know that P (Ens )! 1: (6.3.12)
6.3.2 Senery-dependent eventsNext, we desribe the typial behavior of the signal points in the interval [0; m℄. Here > 1 is a �xed integer, not depending on n. Among others we show that, with highprobability, for eah signal arrier point �zi in [0; m℄, the orresponding frequeny of ones,h(�zi), vary more than e�n0:11 (events �En3 and �En4 below). We also show that, with highprobability, all signal points in [0; m℄ have empty neighborhood.All the properties listed below depend on the senery � only. Therefore we refer to themas the senery dependent events.We now de�ne all senery dependent events, �En1 ; : : : ; �En9 and prove the onvergene oftheir probabilities. All the events will be de�ned on the interval [0; m℄, where  > 1 isa �xed integer. Thus, if a point z is suh that Nz 62 [0; m℄, by the neighborhood of z,we mean Nz \ [0; m℄. This means �Eni 2 �(�z : z 2 [0; m℄). The exat value of  will bede�ned in the next hapter (in onnetion with the event En2;S). During this hapter,  isassumed to be any �xed integer bigger than 1.At �rst, we list the events of interest:



252 Chapter 6. Information Reovery from a randomly mixed up message-text�En1 := f�zn2+1 � mg;�En2 := fevery signal point in [0; m℄ has an empty neighborhoodg;�En3 := fevery pair �z1;�z0 of signal arrier points in [0; m℄ satis�es : jh(�z)� h(�z0)j � e�n0:11 if �z 6= �z0g;�En4 := fevery signal arrier point �z; in [0; m℄ satis�es : jh(�z)� 12 j � e�n0:11g;�En5 := fevery signal point z 2 [0; m℄ satis�es ÆMz 62 [r ��; r +�℄g;�En6 := f for all signal arrier points �zi in [0; m℄ we have EZn11001 � j�zi � �zi+1j � EZn�11001g;�En7 := fno signal arrier points in [m� EZn�11001; m+ EZn�11001 ^ m℄ [ [0; EZn�11001℄g;�En8 := fevery strong signal point in [0; m℄ has empty borderg;�En9 := fevery signal point in [0; m℄ is a strong signal pointg:Proof that P ( �En1 )! 1If �En1 holds, then in [0; m℄ we have more than n2 signal arrier points .De�ne the random variables Z0 < Z1 < � � � < Zk < � � � as in (6.3.11). Let En1a :=fZn2+1 � mg: Sine Es \ En1a � �En1 , it suÆes to show that P (En1a)! 1. To see this, weuse the Markov inequality:P (En1a) = P (Zn2+1 > m) � EZn2+1m � (n2 + 1)n2:5 ! 0:Proof that P ( �En2 )! 1�En2 = f there exists a signal point in [0; m℄ with non� empty neighborhoodg:Clearly,�En2 = [mz=0E2(z); where E2(z) := fz is a signal point and Nz is not emptyg:For eah z, the events fNz is emptyg and fÆz > r ��g are independent. Thus, for eahz, P (E2(z)) = P (Æz > r ��)P (Nz is empty) = pdP (Nz is not empty):We obviously have P (Nz is empty) = P (No is empty) andP (No is not empty) =P (No ontains at least one blok longer than n0:3) < 2L exp(n0:3)2�n0:35 :



6.3. Senery-dependent events 253Hene, from (6.3.8):P ( �En2 ) � mpd2L exp(n0:3)(12)n0:35 � 6n2:5L2n1000 exp((lnn)3 + n0:3)2�n0:35= 6L2n1002:5 exp(n0:3 + (lnn)3)2�n0:35 ! 0;if n!1.Proof that P ( �En8 )! 1For eah z, the events fÆdz > r ��g and fz has empty border g are independent. Nowuse the same argument as in the previous proof.Proof that P ( �En5 )! 1Note �En5 = fthere exists a non� regular Markov signal point z 2 [0; m℄g:As in the previous proof, write:�En5 = [mz=0E5(z); where E5(z) := fz is a non� regular Markov signal pointg:For eah z,P (E5(z)) = P (ÆMz ^ Ædz > r ��)P (ÆMz � r +�jÆMz ^ Ædz > r ��)= pP (ÆMz � r +�jÆMz ^ Ædz > r ��):>From (6.2.36) of Corollary 6.2.2 we have:P (ÆMz � r +�jÆMz ^ Ædz > r ��) � n�105 :Thus, from (6.3.7) P ( �En5 ) � mpn�105 � (n2:5EZ + 1)pn�105 = 3Ln1002:5�100000 +pn�105 ! 0; as n!1.Proof that P ( �En9 )! 1We use the same argument as in the previous proof. Note�En9 = fthere exists a signal point z 2 [0; m℄ that is not a strong signal pointg:As in the previous proof, write�En9 = [mz=0E9(z); where E9(z) := fz is a non� strong signal pointg:Reall (6.2.3): ~Ædz > Ædz � exp(�dn999). Sine, for n big enough, exp(�dn999) < ~� =�exp(�2n), we get ~Ædz > Ædz � ~�:Now, for eah z,P (E9(z)) = P (Ædz > r ��)P (~Ædz � r ��jÆdz > r ��)= pdP (~Ædz � r ��jÆdz > r ��) � pdP (Ædz � ~� � r ��jÆdz > r ��)� pdP (Ædz � r ��+ ~�jÆdz > r ��):



254 Chapter 6. Information Reovery from a randomly mixed up message-textBy (6.2.37) of Corollary 6.2.2 we now have:P (E9(z)) � pd exp(�n):Hene, by (6.3.8):P ( �En9 ) � mpd exp(�n) � pd(EZn2:5+1) exp(�n) � 3Ln1000 exp (lnn)3 exp(�n)+o(1) = o(1):Proof that P ( �En6 )! 1Consider random variables Z0 < Z1 < � � � < Zk < � � � as in (6.3.11). Let N = maxfi :Zi � mg. De�neEn6b := fZi � Zi�1 � EZn10001; i = 1; 2; : : : ; n1000g (6.3.13)�En6 := fZi � Zi�1 � EZn�11001; i = 1; 2; : : : ; n1000g (6.3.14)and note that: Es \ En6b \ En6a \ fN � n10000g � �En6 :Sine E � fN � n10000g, we get P (N � n10000) ! 1. We also know that P (Es) ! 1.Thus, it suÆes to show that P (En6b ); P (En6 ) ! 0 as n ! 1. Now, by the Markovinequality, (6.3.5) and (6.3.7):P (En6b ) = P (91 � i � n10000 suh that : Zi � Zi�1 > EZn10001)�Pn10000i=1 P (Zi � Zi�1 > EZn10001) = n10000P (Z > EZn10001) �n10000 EZEZn10001 = 1n ;P (En6 ) = P (9 1 � i � n10000 suh that : Zi � Zi�1 < EZn�11001)�Pn10000i=1 P (Zi � Zi�1 < EZn�11001) � n10000P (Z < EZn�11001) <pEZn�1001 � 3Ln1000�1001 = 3Ln :Proof that P ( �En7 )! 1Consider the event fthere is no signal arrier points in [0; EZn11001℄g:Every signal arrier point is a Markov signal point. Hene, for the proof, it suÆes to show,that with high probability there is no Markov signal points in the interval [0; EZn11001℄.Now, by (6.3.4) and (6.3.7)P (No Markov signal points in [0; EZn11001℄) =P (Zo > EZn�11001) � pEZn�11001 � 3Ln�11001+1000 = o(1):Thus P (No Markov signal points in [0; EZn�11001℄)! 1.Now repeat the same argument for the intervals [m;m�EZn�11001℄ and [m;m+EZn�11001℄.



6.3. Senery-dependent events 2556.3.3 Proof of P ( �En3 )! 1 and P ( �En4 )! 1The proof relies on the rate of onvergene in the loal entral limit theorem (LCLT insequel). In the next subsetion we present some tehnial preliminaries related to theproof.Some preliminariesLet S be the symmetri random walk with span 1. De�ne: pN (k) = P (S(N) = k). Therandom walk S has lattie +n � z,z 2 Z; its variane is �2.Loal CLT ([?℄, page 197):supk ����pNpN (k)� 1p2� expf� k22�2N g��� = O( 1pN ) (6.3.15)or supk ���pN(k)� 1�pNp2� expf� k22�2N g��� = O( 1N ):Denote qN (k) := 1�pNp2� expf� k22�2N g jkj � LN:Let tN := (lnN)b, b > 1.We estimate: jp2N(k)� q2N (k)j � (pN(k) + qN (k)) supk jpN(k)� qN (k)j� [2qN(k) +O( 1pN )℄O( 1N ) = O( 1pNN )and LpNXk>tN+j[p2N(k)� q2N(k)℄ � (LpN)O( 1pNN ) = O( 1N ); j = �tN ; � � � ; tN :Estimate:p2N(k)Pk>tN+j p2N(k) � p2N(k)PLpNk>tN+j p2N (k) � q2N (k) +O( 1N )PLpNk>tN+j[p2N(k)� q2N(k)℄ +PLpNk>tN+j q2N(k)� O( 1N )PLpNk>tN+j q2N(k)� O( 1N ) ;for all k and j = �tN : : : ; tN .Now, LpNXk>tN+j q2N(k) = 12�2�N LpNXk>tN+j exp(� k2�2N )and LpNXk>tN+j exp(� k2�2N ) � LpNXk>2tN exp(� k2�2N ) > LpNXk>2tN exp(�L2�2 ) =M(LpN � 2tN):



256 Chapter 6. Information Reovery from a randomly mixed up message-textThus, for eah j = �tN ; : : : ; tN ,supk p2N(k)Pk>tN+j p2N(k) � O( 1N )KN (LpN � 2tN)� O( 1N ) = l K4K1pN �K2tN �K3 = O( 1pN )(6.3.16)where K;K1; K2; K3; K4 are onstants.Let � be a probability distribution on f�tN ;�tN +1; : : : ; 0; : : : ; tN � 1; tNg. Consider theonvolutionsuN(k) = tNXj=�tN pN (k � j)�j; k = �(LN � tN ); : : : ; LN + tN : (6.3.17)If pN(k) � pN (k + 1) for all k � 0, then for eah k > tN , we have the boundspN (k + tN) � uN(k) � pN(k � tN): (6.3.18)In this ase, tN+LNXk>tN uN(k) � NXl>2tN pN(l):And from (6.3.16), taking j = tN we may dedue that:suptN<k u2N(k)Pk>tN u2N(k) � sup0<k p2N(k)Pk>2tN p2N(k) � O( 1pN ): (6.3.19)Generally, hoose an atom � := �j > 0. ThenuN(k) � �pN(k + j); u2N(k) � �2p2N(k + j)and tN+LNXk>tN u2N(k) � �2 NXk>tN+j p2N (k): (6.3.20)Sine supk>tN u2N(k) � supk>0 p2N(k); we get from (6.3.16):suptN�k u2N(k)Pk>tN u2N(k) � supk p2N (k)�2Pk>tN+j p2N(k) = O( 1N 14 ): (6.3.21)In partiular, from (6.3.21) follows:P u3N(k)P u2N(k)pP u2N(k) � maxk uN(k) Pu2N(k)Pu2N(k)pPu2N(k) � maxk uN(k)pPu2N(k) � O� 1N 14 �:(6.3.22)Suppose that arrays uk := uN(k) and vk := vN(k), tN < k � LN + tN both satisfy(6.3.22). ThenP(u3k + v3k)P(u2k + v2k)pP(u2k + v2k) � maxfuk; vkg P(u2k + v2k)P(u2k + v2k)pP(u2k + v2k) (6.3.23)� maxfmaxk ukpP u2k ;maxk vkpP v2k g = O(N� 14 ) (6.3.24)



6.3. Senery-dependent events 257Let us make one more observation. Sine exp(�9t2N2�2N )! 1, there exists a 0 > 0 suh thatexp(�9t2N2�2N ) > 0for eah N big enough. Thus, there exists a onstant  > 0 suh thatpN(k) > pN ; 8jkj � 3tN :Take � as previously. Then uN(k) � p(k + j)� � �pN :Hene there exists C > 0: u(l) � CpN 8l suh that jl + jj � 3tN .In partiular uN(k) � CpN ; �2tN � k � 2tN : (6.3.25)Proof that P ( �En3 )! 1De�ne the random variables z1, z2, : : : as follows: z1 is the �rst Markov signal point in[0;1), zk is the �rst Markov signal point in [zk�1 + en0:3 ;1): Note that a.s. there arein�nitely many suh points.>From the signal arrier part we know that, if eah Markov signal point in [0; m℄ hasempty neighborhood, i.e. �En2 holds, then they form lusters whih have radius at most2Ln1000 and lie at least en0:3 apart from eah other. In this ase all signal arrier pointsin [0; m℄ oinide with the zi's de�ned above. We de�ne the event:En3a := nfor eah i; j � n10000; i 6= j we have jh(zi)� h(zj)j � exp(�n0:11)o:Then: En3a \ �En2 \ E0 � �En3 :Sine P (En3a \ E0)! 1, it suÆes to show that P (En3a)! 1 as n!1.Let zi; zj, i 6= j. For simpliity denote them as z and z0 Let�n := exp(�n0:11):Consider the event: En(i; j) := fjh(z)� h(z0)j � �ng:For eah y 2 Z, de�ne the random vetor:�n(y) := ��(y � Ln1000 � en0:1); �(y � Ln1000 � en0:1 + 1); : : : ; �(y + Ln1000)�:Now, let �n := �n(z) and �0n := �n(z0). They are independent.fn := z+L(n1000+en0:1 )Xk=z+Ln1000+1 un(k)�(k); f 0n := z0+L(n1000+en0:1 )Xk=z0+Ln1000+1 u0n(k)�(k);



258 Chapter 6. Information Reovery from a randomly mixed up message-textwhere un(k) := z+Ln1000Xi=z�Ln1000 P (Si(en0:1) = k)�i; u0n(k) := z0+Ln1000Xi=z0�Ln1000 P (Si(en0:1) = k)�0iand �i, i = z � Ln1000; � � � ; z + Ln1000 and �0i, i = z0 � Ln1000; � � � ; z0 + Ln1000 denote theatoms of the stationary measure orresponding to z and z0, respetively.Reall that by (6.2.13)h(z) := z+L(n1000+en0:1 )Xk=z�L(n1000+en0:1 ) un(k)�(k); f 0n := z0+L(n1000+en0:1 )Xk=z0�L(n1000+en0:1 ) u0n(k)�(k):Note that onditioning on �n, the oeÆients un(k) beome onstants.(More preisely, fn has the same distribution as~fn := L(n1000+en0:1 )Xk>Ln1000 ~un(k)�(k);with ~un(k) := Ln1000Xj=�Ln1000 P (Sj(en0:1) = k)~�j = Ln1000Xj=�Ln1000 P (S(en0:1) = k � j)~�j;with ~� := f~�jg := f�z+jg, �Ln1000 � j � Ln1000 being a random probability measureindependent of �Ln1000+1; : : : �en0:1 . In this setup, onditioning on �n means onditioningon ~�.)Hene P�fn � EfnpDfn � xj�n� = P�PL(en0:1+N1000)k>Ln1000 un(k)(�(k)� 12)12qPL(en0:1+N1000)k>Ln1000 u2n(k) � xj�n�;where (un(k)) are the �xed oeÆients of type (6.3.17) (with N = en0:1 , b = 10000). Nowthe Berry-Esseen inequality for independent random variables (see, [?℄, Thm 3, p.111)states:supx ���P�P un(k)(�(k)� 12)12pP u2n(k) � xj�n�� �(x)��� � A P u3n(k)P u2n(k)pP u2n(k) ; (6.3.26)with some onstant A not depending on n and un(k)-s. By (6.3.22) (with N = en0:1 ,b = 10000), the right side of (6.3.26) is bounded by O(e�n0:14 ): Here � stands for thestandard normal distribution funtion.By similar argument, onditioning on (�n; �0n) and using (11.5.18) instead of (6.3.22) yields:supx ���P �fn � f 0n � �n�n � xj�n; �0n�� �(x)��� = O(e�n0:14 ); (6.3.27)with �n := E(fn � f 0n), �n :=pDfn +Df 0n where (fn and f 0n are independent.)



6.3. Senery-dependent events 259Let gn := hn � fn, g0n := h0n � f 0n. The event En(i; j) an be written as:En(i; j) := ffn � f 0n 2 gn � g0n + [��n; �n℄g:Given �n and �0n, the random variable gn � g0n is a onstant. By (11.5.15) we haveP (En(i; j)j�n; �0b) = P�f 0n�fn��n�n 2 gn�g0n+[��n;�n℄��n�n j�n; �0n� �2 supx ���P �f 0n�fn��n�n � xj�n; �0n�� �(x)��� + supn�(a)� �(b)��a� b = 2�np2��no �O(e�n0:14 ) +q 2� �n�n :Next, we estimate the standard deviation �n. For that note: beause of (6.3.25) u2n(z +Ln1000 + 1) � C2e�n0:1 , u02n(z0 + Ln1000 + 1) � C2e�n0:1 if n is big enough. Thus,�n =pDfn +Df 0n = 12qXu2N(k) +X u02N (k) > 12p2C2en0:1 = p2Ce�n0:12 :Hene, for n big enough there exists a onstant C2 <1 suh thatr 2� �n�n � 1p� exp(�n0:11 + n0:12 ) � C2 exp(�n0:05): (6.3.28)Thus, (6.3.28), (11.5.15) give:P (En(i; j)) � O(e�n0:114 ) +O(e�n0:05) = O(e�n0:05):By de�nition En3a = \n10000i;j;i6=jEn(i; j)and P (En3a) � n10000Xi;j;i6=jP (En(i; j)) < n20000O(e�n0:05) = o(1):Outline of the proof that P ( �En4 ) is lose to oneDenote the Use (6.3.26) to get:P ( �En4 j�n) = P (jfn + gn � 0:5j � �nj�n) = P (fn + gn 2 [0:5� �n; 0:5 + �n℄j�n)= P (fn 2 [(0:5� gn)� �n; 0:5� gn + �n℄j�n)= P�fn � EfnpDfn 2h0:5� Efn � gn � �npDfn ; 0:5� Efn � gn + �npDfn ij�n�� 2 supx P�fn � EfnpDfn � xj�n�+ supn�(a)� �(b)���a� b =r 2� �npDfno� O(e�n0:14 ) +r 2� �npDfn = O(e�n0:05);



260 Chapter 6. Information Reovery from a randomly mixed up message-textbeause pDfn > C exp(�n0:12 ): The rest of the proof goes as previously.* In the following we onsider the senery dependent events de�ned on [�m; m℄. Forthis, we de�ne the events ~Eni , i = 1; : : : ; 9, where ~Eni is de�ned exatly as �Eni , with[�m; 0℄ instead of [0; m℄:Finally, we de�ne the events: Eni := ~Eni \ �Eni :The results of the present setion show that 8 i = 1; : : : ; 9,P (Eni )! 0; n!1:6.3.4 What is a signal arrier?Let us briey summarize the main ideas of the previous setions.A signal arrier is a plae in the senery, where the probability to generate a blok ofn2 + 1 times the same olor is high. However, it is lear that suh a plae an not be toosmall. In the 3-olor example the signal arrier depends on only one bit of the senery. Inthe 2-olor ase, it takes many more bits to make the senery (loally) atypial. We sawin Proposition 12.4.9, that for z to be a signal point, it is neessary that the interval Izontains at least one big (longer than n= lnn) blok of �. Thus, if a point z is a (Markov,strong) signal point or not, depends on �jIz.If z is a signal point, then the senery � is atypial in the interval Iz: Ædz is high. Thus,signal points would be our andidates for the signal arriers, if, for eah z, we ouldestimate Ædz . The latter would be easy, if we knew when the random walk visits z. Thenjust take all suh visits and onsider the proportion of those visits that were followed byn2 + 1 same olors after M steps. Unfortunately, we do not know when the random walkS visits z. But we do know (we observe) when S generates bloks with length at least n2.Thus we an take these observations (times) as the visits of (the neighborhood of) z andestimate the probability of generating n2+1 times the same olor,M steps after previouslyobserving n2 + 1 times the same olor. This idea yields the Markov signal probability.The problem now is to loalize the area where the random walk (during a given timeperiod) an generate n2+1 times the same olors in the observations. If this area was toobig, we ould neither estimate the Markov signal probability nor understand where weare. To loalize the desribed area, we showed (event En2 ) that signal points have emptyneighborhood. In the next setion we shall see that the probability to generate a blok ofn2+1 times the same olor on the empty neighborhood is very small. This means, if S islose to a signal point z, then, with high probability, (and during a ertain time period)all strings of n2+1 times the same olors in the observations are be generated on Iz. Thefat that all signal points have also empty borders (events En8 and En9 ) makes the latterstatement preise. Thus, a Markov signal point seems to be a reasonable signal arrier.But whih one? Note, if z is a Markov signal point, i.e. Iz ontains at least one big blok,then, very likely the point z + 1 is a Markov signal point, too. In other words, Markovsignal points ome in lusters. However, when En2 holds, then eah point in suh a lusterhas empty neighborhood. On the other hand, for z to be a Markov signal point, it isneessary to have at least one big blok of � in Iz. This means that the diameter of everyluster of Markov signal points is at most 2Ln1000. The distanes between the lusters areat least L(en0:3�n1000). Hene, in 2-olor ase one an think of signal arriers as lusters of



6.4. Events depending on random walk 261Markov signal points (provided En2 holds, but this holds with high probability). However,to make some statements more formal, for eah luster we have one representator, namelythe signal arrier point. Sine the diameters of the lusters are at most 2Ln1000, ourde�nition of signal arrier points ensures that di�erent signal arrier points belong todi�erent lusters. If the luster is loated in [0;1), then the signal arrier point is theleft most Markov signal point in the luster; if the luster is loated in (�1; 0), then thesignal arrier point is the right most Markov signal point in the luster. The event En7ensures that there are no Markov signal points in the 2Ln1000-neighborhood of 0, so �z1 and�z0 belong to di�erent lusters, too. The exat hoie of a signal arrier point is irrelevant.However, it is important to note that given a luster, everything that makes this lustera signal arrier luster (namely, the big bloks of senery) is inside the interval I�z, where�z is the signal arrier point orresponding to the luster. In partiular, all bloks in theobservations that are longer than n2 will be generated on I�z. This means that the signalarrier points, �zi (or the orresponding intervals I�zi) serve as signal arriers as well. Atleast, if we are able to estimate ÆM�zi with great preision. This is the subjet of the nextsetion.6.4 Events depending on random walkIn the previous setion we saw: if all senery dependent events hold, then the signal arrierpoints are good andidates for the signal arriers. In this ase the signal is an untypiallyhigh Markov signal probability. Hene, to observe this signal, we must be able to estimatethe Markov signal probability. In the present setion we de�ne these estimators and in thenext setion we will see that they perform well, if the random walk S behaves typially.We desribe the typial behavior of S in terms of several events depending on S. Themain objetive of the present setion is to show that the (onditional) probability of suhevents tends to 1 as n tends to in�nity.6.4.1 Some preliminariesAs argued in Subsetion 6.3.4, the main idea of the estimation of the Markov signalprobability is very simple - given a time interval T , onsider all bloks in the observations�jT that are bigger than n2. Among these observations alulate the proportions of suhbloks, that after exatly M steps, are followed by another suh blok. The time intervalused for this estimation must be big enough to get a preise estimate but, on the otherhand, it must be in orrespondene with the size of an (empty) neighborhood. Reall thatthe neighborhood Nz onsisted of two intervals of length Len0:3 . Hene, the optimal sizeof the interval T is en0:3 :We now de�ne the neessary onepts related to the desribed estimate - stopping times(that stop when a string of at least n2 + 1 times the same olor is observed) and theBernoulli variables that show whether the stopping times are followed (after M step) byanother suh string or not. For tehnial reasons after stopping the proess, we wait atleast en0:1 steps until we look for the next blok.* Let t > 0 and let �̂t(1) be the smallest s � t suh that:�(t) = �(t� 1) = � � � = �(t� n2): (6.4.1)



262 Chapter 6. Information Reovery from a randomly mixed up message-textWe de�ne the stopping times �̂t(i), i = 2; 3; : : : indutively: �̂t(i) is the smallest t ��̂t(i� 1) + en0:1 suh that (6.4.1) holds.* Let Xt;i be the Bernoulli random variable that is one i�:�(�̂t(i) +M) = �(�̂t(i) +M + 1) = ::: = �(�̂t(i) +M + n2):Let T = T (t) := [t; t+ en0:3 ℄. De�ne:Æ̂MT = ( 1en0:2 Pen0:2i=1 Xt;i if �̂t(en0:2) < t + en0:3 � en0:10 otherwise: (6.4.2)* We de�ne some analogues of �̂t and Xt.Let z 2 Z and t 2 N .Let �z;t(1) designate the �rst time after t where we observe n2 zero's or one's in a row,generated on the interval Iz. More preisely:�z;t(1) := min�s > 0 ���� � (s) = � (s� 1) = � � � = � (s� n2)S(j) 2 Iz; 8j = s� n2; : : : ; s � :One �z;t(i) is well de�ned, de�ne �z;t(i+ 1) in the following manner:�z;t(i + 1) := min�t � �z;t(i) + en0:1 ���� � (s) = � (s� 1) = ::: = � (s� n2)S(j) 2 Iz; 8j = s� n2; : : : ; s � :* Let Xz;t;i, i = 1; 2; : : : designate the Bernoulli variable whih is equal to one if exatlyafter time M the stopping time �z;t(i) is followed by a sequene of n2 + 1 one's or zero'sgenerated on Iz. More preisely, Xz;t;i = 1 i��(�z;t(i) +M) = �(�z;t(i) +M + 1) = � � � = �(�z;t(i) + n2) andS(�z;t(i) +M); : : : ; S(�z;t(i) + n1000) 2 Iz:De�ne Æ̂Mz;t := 1en0:2 en0:2Xi=1 Xz;t;i:As argued in Subsetion 7.3.14, fS(�z;t;i)g is an ergodi Markov proess with state spaeIz and with the stationary measure Iz. Hene,1j jXi=1 Xz;t;i ! ÆMz ; a:s:Now we an apply some large deviation inequality to see that if j � exp(n0:2), then Æ̂Mz;tgives a very preise estimate of ÆMz .The problem is that the random variables Xz;t;i and, hene, the estimate Æ̂Mz;t is a priorinot observable. This is beause we annot observe whether a string of n2 + 1 times thesame olor in the observations is generated on Iz or not. Thus, we an not observe neither



6.4. Events depending on random walk 263�t;z(i) nor Xt;z;i. However, the event En3;S, stated below, ensures that with high probabilityÆ̂Mz;t is the same as Æ̂MT , provided that during the time interval T , the random walk S islose to z (the sense of loseness will spei�ed later).*We de�ne the estimates for the frequeny of ones. Again, we de�ne a general, observable,estimate: ĥt and its theoretial, a priori not-observable ounterpart: ĥz;t.De�ne ĥt := ( 1en0:2 Pen0:2i=1 �(�t(i) + en0:1) if; �̂t(en0:2) < t + en0:3 � en0:10 otherwise: ;ĥz;t := 1en0:2 en0:2Xi=1 �(�z;t(i) + en0:1):* Finally, we de�ne the stopping time that stop the walk, when a new signal arrier isvisited.Let : : : ; �z�1; �z0; �z1; : : : denote the signal arrier-points in R. Denote Ii := Izi and let �(k)denote the time of the k-th visit of S to one of the intervals Ii in the following manner:when an interval Ii is visited, then the next stop is on a di�erent interval.More preisely, let �(0) be the �rst time t � 0 suh that S(t) 2 [iIi. Denote I(�(k)) theinterval Ii visited at time �(k). Then de�ne �(k) indutively:�(k + 1) = minft > �(k)jS(t) 2 [iIi; S(t) =2 I(�(k))g:6.4.2 Random walk-dependent eventsIn this setion, we de�ne the events that haraterize the typial behavior of the ran-dom walk S on the typial senery on the interval [�m; m℄. The (piee of) senery�j[�m; m℄ is typial if it satis�es all the senery-dependent events Eni , i = 1; : : : ; 9. Re-all, that the events Eni are the same as the events �Eni de�ned in Setion 4.2 with [0; m℄replaed by [�m; m℄. Also reall that  > 1 is an arbitrary �xed onstant not dependingon n, and m = pn2:5EZq:Hene, throughout the setion we onsider the seneries belonging to the set:Eell OK := \9i=1Eni : (6.4.3)Clearly, Eell OK depends on n. We know that P (Eell OK)! 1 if n!1.Let  : Z! f0; 1g be a (non random) senery. Let P (�) designate the measure obtainedby onditioning on f� =  g and fS(m2) = mg. Thus,P (�) := P (�j� =  ; S(m2) = m): (6.4.4)Let P (�j ) denote P (�j� =  ).We now list the events that desribe the typial behavior of S. The objetive of the setionis to show: if n is big and  n :=:  2 Eell OK then all listed events have big onditional



264 Chapter 6. Information Reovery from a randomly mixed up message-textprobabilities P : The events depending on the random walk are:En1;S := fS(m2) = mg ;En2;S := f8t 2 [0; m2℄ we have that S(t) 2 [�m; m℄g ;En3;S := f8t 2 [0; m2℄; it holds : Æ̂MT � r; if ÆdS(s) � r �� 8s 2 T (t)g;En4;S := f�(n25000) � m2g;En5;S := f8k � n25000 we have: if �(k) � m2 then �̂�(k)(en0:2) � �(k) + en0:3 � en0:1g;En6;S := 8<: for any t 2 [0; m2℄ satisfying �(t) = � � � = �(t + n2)there exists s 2 [t; t+ n2℄ suh thatS(s)is ontained in a blok of � bigger thann0:35 9=; ;
En7;S(z; t) = n���Æ̂Mz;t � ÆMz ��� < e�n0:12o ; z 2 Z; t > 0;En7;S := \mz=�m \m2t=0 En13;S(z; t);En8;S(z; t) = n���ĥz;t � h(z)��� < e�n0:12o ; z 2 Z; t > 0;En8;S := \mz=�m \m2t=0 En8;S(z; t);We now estimate the onditional probabilities of all listed events. In most ases weprove statements like P (Enj;S)! 1. This means: for an arbitrary sequene  n 2 Enell OK,we have: limn!1P (Enj;SjS(m2) = m; � =  n) = 1:6.4.3 ProofsAt �rst note that by LCLT, we have:P (E1;S) = 1m +O( 1m2 ):Clearly, E1;S does not depend on �, i.e. P (E1;Sj ) = P (E1;S). Using (6.3.10) we get:P (E1;Sj ) � exp(�2n)�O(exp(�4n)) � exp(�3n): (6.4.5)>From (6.4.5) follows that for any event E,P (E) = P (E; S(m2) = mj )P (S(m2) = mj ) � P (Ej )exp(�3n) : (6.4.6)



6.4. Events depending on random walk 265Proposition 6.4.1. For eah � > 0 there exists (�), independent of n, suh that for eah , P (En2;S) � 1� �, provided n is big enough.Proof. At �rst note, that, for eah n, the event En2;S is independent of the senery  .Thus, P (En2;S) = P (En2;SjS(m2) = m):De�ne Ena () = f8t 2 [0; m2℄ we have that S(t) � mgEnb () = f8t 2 [0; m2℄ we have that S(t) � �mgClearly, En2;S = Ena () \ Enb ():We now �nd , not depending on n suh that P (Ena ()); P (Enb ()) � �2 :Let us de�ne the stopping time #:# := minftjS(t) > mg:Let for all j 2 1; : : : ; L:pj := P�S(m2) = m, # � m2 and S(#) = m + j�We have that P �Ena () \ En1;S� = LXj=1 pj:Our random walk S is symmetri. By the reetion priniple, for all j 2 1; : : : ; L, wehave:pj = P (S(m2) = m + j + (m+ j �m) = 2m+ 2j �m, # � m2 and S(#) = m + j):Thus pj � P (S (m2) = 2m�m+ 2j ) andP �Ena () \ En1;S� � LXj=1 P �S(m2) = m(2� 1) + 2j� : (6.4.7)By LCLT, for big m, the right side of (6.4.7) an be made arbitrary small in omparisonto P (S (m2) = m) by taking  big enough. In other words, there exists  , not dependingon n suh that: PLj=1 P (S (m2) = 2m+m + 2j )P (S (m2) = m) � �2 :This means P �Ena () \ En1;S�P �En1;S� = P (Ena ()) � �2 :Similar argument gives P (Enb ()) � �2 :



266 Chapter 6. Information Reovery from a randomly mixed up message-text* Note, that the hoie of  does not depend on n. From now on, we �x  suh thatProposition 6.4.1 holds with � > 18 . This partiular  is used in the de�nition of allsenery-dependent events and, therefore, in the de�nition of Eell OK as well as in thede�nitions En4;S, En5;S:* In what follows, we often use these versions of the Hoe�ding inequality:Let X1; : : : ; XN be independent random variables with range in [a; b℄. Let SN denote theirsum. Then: P (jSN � ESN j � �) � 2 exp(�2 �2N(b � a)2 ) � exp(�d0�2N );P ( 1N jSN � ESN j � �) � 2 exp(�2 �2N(b� a)2 ) � exp(�d0�2N): (6.4.8)For our random walk, this gives:P (jS(N)j � �) � 2 exp(� �24L2N ) � exp(�d�2N )P (jS(N)N j � �) � 2 exp(��2N4L2 ) � exp(�d�2N); (6.4.9)for some d0; d > 0.We also use the following results: let X1; : : : ; XN be i.i.d. random variables with mean 0and �nite variane �2: Let M+n = maxi=1;:::;N Si; Mn = maxi=1;:::;N jSij: ThenM+N�pN ) sup0�t�1Wt; and � MN�pN ; S(N)�pN �) ( sup0�t�1 jWtj;W (1)); (6.4.10)where Wt is standard Brownian motion. It is well-known that 8x > 0, P (sup0�t�1Wt �x) = 2�(x)� 1.Proof that lim infn P (En4;S) � 1� 18 :For eah n, �x an arbitrary  n 2 Enell OK. Sine  n 2 Enell OK � En6 , we have that forevery signal arrier point �zi 2 [�m; m℄:�zi+1 � �zi; �zi � �zi�1 � EZn�11001: (6.4.11)For this proof, let � := EZ and N(n) := �2n�24000. Sine m � n2:5� + 1, we haven25000 �N = n25000 � �2n�24000 = �2n1000 > m2. Hene, if En4;S fails, then there must beat least one k 2 f0; : : : ; n25000� 1g suh that �(k+1)� �(k) < N . Moreover, if En4;S fails,then for eah k 2 f0; : : : ; n25000 � 1g it holds �(k) � m2. We formalize this observation.Let: Ea;4(k) := f�(k + 1)� �(k) � N; �(k) � m2gEa;4 := \n25000�1k=0 Ea;4(k): (6.4.12)We have: En4;S � Ea;4: (6.4.13)



6.4. Events depending on random walk 267By Proposition 6.4.1, for n big enough, P (En2;S) � 18 . Thus,P (En4;S) � P (E4;a \ En2;S) + P (En2;S) � 18 + n25000�1Xk=0 P (Ea;4(k) \ En2;S): (6.4.14)We now bound P (Ea;4(k)).Suppose En2;S holds. Then �(k) � m2 implies that the signal arrier visited at time�(k) is in [�m; m℄. By (6.4.11) this means that the losest signal arrier point is atleast at distane �n�11001. Let Ii be I(�(k)). Theninffjt� sj : t 2 Ii; s 2 Ijg � �n�11001 � 2Ln1000; (6.4.15)where j 2 fi� 1; i+ 1g. By (6.3.9), �2 > n25000: Then � > n12500 � 2Ln12002, implying�n�11001 � 2Ln1000 � �n�11002: (6.4.16)We onsider the eventEa;4(k) \ En2;S � f�(k + 1)� �(k) < N; S(�(k)) 2 [�m; m℄g:>From (6.4.15) and (6.4.16) it follows that:P��(k + 1)� �(k) < N; S(�(k)) 2 [�m; m℄��� n� �P (�(k + 1)� �(k) < N ���S(�(k)) 2 [�m; m℄; � =  n� �P �supl�N jS(l)j > �n�11001 � 2Ln1000� � P (supl�N jS(l)j > �n�11002g:Use the following maximal inequality:P (maxl�N jS(l)j > �n�11002) � 3maxl�N P�jS(l)j > �3n�11002�: (6.4.17)By the Hoe�ding inequality, for eah l � N :P�jS(l)j > �3n�11002� � exp(�d�2n�220049l ) � exp��d�2n�220049N �� exp��dn24000�220049 � = exp��dn19969 �:Hene, P (Ea;4(k)j ) � exp��dn19969 �; P (Ea;4j ) � n25000 exp��dn19969 �:By (6.4.6), we get P (Ena;4) � n25000 exp�3n� dn29969 �:The right side of the last inequality tends to 0 if n!1. Relation (6.4.13) now �nish theproof.



268 Chapter 6. Information Reovery from a randomly mixed up message-textProof that P (En3;S)! 1Let t � 0 be an integer and de�ne the stopping times �̂ot (1); �̂ot (2); : : : as follows:�̂ot (1) is the smallest time s � t+ en0:1 suh that:�(s� n2) = �(s� n2 + 1) = � � � = �(s) and ÆdS(s) � r ��: (6.4.18)One �̂ot (k) is well de�ned, de�ne �̂ot (k + 1) to be the smallest time s � �̂ot (k) + en0:1 suhthat (6.4.18) holds.Let Xot;k be the Bernoulli variable whih is equal to one if and only if�(�̂ot (k) +M) = �(�̂ot (k) +M + 1) = � � � = �(�̂ot (k) +M + n2):Finally de�ne: Æ̂Mo;t := 1en0:2 en0:2Xk=1 Xot;k:Let En3;S(t) := nÆ̂Mo;t < ro :Clearly, \t20;:::;m2En3;S(t) � En3;S; imlpying P (En3;Sj ) � m2Xt=0 P (En3;S(t)j ); (6.4.19)where  is an arbitrary �xed senery.Note, for any �xed senery  , the random variables Xot;1; Xot;2; : : : are learly independent(but not neessarily identially distributed). However, for eah i, E(Xot;ij ) � r � �,implying that r � 1en0:2 en0:2Xi=1 E(Xot;ij ) � �:Reall � = pMn10054 . We know that � � n��, where � is an integer bigger than 11000.Thus, by (6.4.8)P (En3;S(t)j ) = P (Æ̂Mo;t � rj ) = P� 1en0:2 en0:2Xi=1 Xot;i � rj �� P� 1en0:2 en0:2Xi=1 (Xot;i � EXot;k) � �j �� exp(�d0�2en0:2)� exp �� (d0n�2�en0:2)�:Now, use (6.4.6), (6.4.19) and (6.3.10) to getP (En3;S) � m2 exp(�d0n�2�en0:2 + 3n) � exp�7n� (d0n�2�en0:2)�! 0;



6.4. Events depending on random walk 269as n!1.Proof that P (En6;S)! 1Let: En6;S(t) = 8<: if �(t) = �(t+ 1) = � � � = �(t + n2)then 9s 2 [t; t+ n2℄ suh thatS(s) is ontained in a blok of � longer than n0:35 9=; :We have that En6;S = \t2[0;m2℄En6;S(t)and thus P (En6;S) � m2Xt=0 P (En6;S(t)):Note: En6;S(t) = 8<: 8s 2 [t; t+ n2℄ the random walk S(s)is ontained in a blok of � with length at most n0:35and �(t) = �(t+ 1) = � � � = �(t + n2) 9=; :Fix a senery  . Let I = Z= [ B( ), where B( n) is a blok of  bigger than n0:35 andthe union is taken over all suh bloks. Note I = [kIk, where Ik are disjoint intervals, atleast n0:35 far from eah other. Thus, if S(t) 2 Ik, then S(t + s) 62 Il for eah l 6= k andfor eah s = 1; : : : ; n2.HeneP (En6;S(t)j ) =Xj2I P�S(t); : : : ; S(t+ n2) 2 I and �(t) = � � � = �(t + n2)jS(t) = j�P (S(t) = j)Xk Xj2Ik P�Sj(0); : : : ; S(n2) 2 Ik and �(t) = � � � = �(t + n2)�P (S(t) = j):By Lemma 6.2.1, there exists a onstant a > 0 not depending on n suh that, for eah j,P�Sj(0); : : : ; S(n2) 2 Ik and �(t) = � � � = �(t + n2)� � exp��an2n0:7�: (6.4.20)Then, P (En6;S(t)j ) � exp(�an1:3):Thus, by (6.4.6): P (En6;S(t)) � exp (�an1:3 + 3n)! 0and by (6.3.10) m2 exp(�an1:2 + 3n) � e7n�an1:3 ! 0:Proof that P (En7;S)! 1



270 Chapter 6. Information Reovery from a randomly mixed up message-textPreliminariesReall that the de�nitions of stopping times involved:a) #z(k), k = 0; 1; : : : stands for onseutive visits of S to the point z � 2Len0:1 , providedthat between #z(k) and #z(k + 1) at least one n2 + 1 same olors have been generatedon Iz;b) �z(1) (�z(i), i = 2; 3; : : : ) is the �rst time after #z(0), (after �z(k�1)+ en0:1) observingn2 + 1 times the same olor generated on Iz.In Setion 7.3.14 the stopping times #z(k), �z(i) as well as the random variables Xz;i wereused to de�ne the random variables �z(k), Xz(k) and Zz(k). The latter were used tode�ne ÆMz .We �x an arbitrary time t and de�ne the ounterparts of all the above-mentioned stoppingtimes and random variables starting from t.In Setion 12.5.8 we already de�ned the t-ounterpart of �z(i) and Xz;i, namely �z;t(i),and Xz;t;i, i = 1; 2; : : :.Reall that in the de�nition of �z;t(1), the starting point #z(0) was replaed by t, theindution for �z;t(i) is the same as the one for �z(i), i = 2; 3; : : :.The Bernoulli random variables Xz;t;i were de�ned exatly as Xz;i with the stopping times�z;t(i) instead of the �z(i)'s.We de�ne the t-ounterpart of #z(k), k = 0; 1; : : :.* Let #z;t(0) = t and let#z;t(k) := fmin s > #z;t(k � 1) : S(s) = z � 2Len0:1 ; 9j : s > �z;t(j) > #z;t(k � 1)g:We use #z;t(k) to de�ne the t-analogues of �z, Zz and Xz.* More preisely, let �z;t(0) = 0 and let �z;t(k) be de�ned by the inequalities�z;t(�z;t(k)) < #z;t(k) < �z;t(�z;t(k) + 1):The de�nition of Zz;t and Xz;t is straightforward:Xz;t(k) = �z;t(k)Xi=�z;t(k�1)+1Xz;t;i; Zz;t(k) = �z;t(k)� �z;t(k � 1); k = 1; 2; : : :Note that, if � is �xed, then, for all t > 0, the random variables Xz;t(1);Xz;t(2); : : :are independent and the random variables Xz;t(2);Xz;t(3); : : : are i.i.d. with the samedistribution as Xz(k). The same holds for Zz;t(1); Zz;t(2); : : :. Also note, that Zz;t(k) � 1,k = 1; 2; : : :.Hene, for all t > 0, ÆMz = ÆMz (�) = E(Xz;t(2)j�)E(Zz;t(2)j�) = limk!1Pki=1Xz;t(i)Pki=1Zz;t(i) :We are now going to show that for eah �, t, z, the �rst en0:2 observations of Xz;t;i areenough to estimate ÆMz (�) very preisely, i.e. Æ̂Mz;t is lose to ÆMz .Fix z; t;  and de�ne:Zk := Zz;t(k); Xk := Xz;t(k); Xi := Xk;t;i; EX = E(X2j ); EZ = E(Z2j ); P (�) = P (�j ):



6.4. Events depending on random walk 271Thus: ÆMz = ÆMz ( ) = EXEZ :Let a = pe3n0:1q and de�ne:Zak = Zk ^ a; X ak = Xk ^ a; EX a := E(X a2 j ); EZa := E(Za2 j ):Finally, de�ne: � := e�n0:24 :We onsider the events:E7;a = nZk � a; k = 1; 2; : : : ; en0:2o;E7;b = n��X a1 + � � �+ X akk � EX a�� � �3 ; 8k 2 [en0:2a ; en0:2 ℄o andE7; = n��Za1 + � � �+ Zakk � EZa�� � �3 ; 8k 2 [en0:2a ; en0:2 ℄o:First stepFirst we show that: E7;a \ E7;b \ E7; � En7S(z; t): (6.4.21)Let �{ be (random) number de�ned by the inequalities:Z1 + � � �+ Z�{ � en0:2 < Z1 + � � �+ Z�{+1: (6.4.22)Sine Zk � 1, we have �{ � en0:1 . Let �k := Z1 + � � �+ Z�{. Now,Æ̂Mz;t = Pen0:2i=1 Xien0:2 = P�{k=1Xk +Pen0:2i=�k+1Xi�k + en0:2 � �k = 1�{ P�{k=1Xk + 1�{ Pen0:2i=�k+1Xi�k�{ + en0:2��k�{ :Denote �I := E(X a �X ) + 1�{ �{Xi=1 (Xi � EX a) + 1�{ en0:2Xi=�k+1Xi;�II := E(Za � Z) + 1�{ �{Xi=1 (Zi � EZa) + 1�{ en0:2Xi=�k+1Zi:Thus, Æ̂Mz;t = EX +�IEZ +�II :Suppose now, that E7a holds. Then, for eah i = 1; : : : ; en0:2 , we have Zi = Zai , Xi = X ai .From (6.4.22) then follows that en0:2 � �{a, i.e.en0:2 � �{ � en0:2a : (6.4.23)



272 Chapter 6. Information Reovery from a randomly mixed up message-textWhen �{ = en0:2 , then en0:2 � �k = 0, otherwise en0:2 � �k � Zi+1 � a. Sine Pen0:2i=�{+1Xi �en0:2 � �k, we get1�{ en0:2Xi=�k+1Xi � en0:2 � �k�{ � a�{ � a2e�n0:2 = exp(6n0:1 � n0:2) < �6 ; (6.4.24)provided n is big enough.Hene, by (6.4.23) we have (reall that we assumed E7;a)n���1�{ �{Xk=1(Xk � EX a)��� � �3 o = n���1�{ �{Xk=1(X ak � EX a)��� � �3 o = en0:2[l= en0:2a n��1l lXk=1(X ak � EX a)��� � �3 ;�{ = lo� n���1l lXk=1(X ak � EX a)��� � �3 ; l = en0:2a ; : : : ; en0:2o= E7;b:Similarly, n���1�{ �{Xk=1(Xk � EX a)��� � �3 o � E7;:Thus, by (6.4.24) on E7a \ E7b \ E7 we havej�Ij � jEX a � EX j+ 2�3 = E(X � X a) + 2�3j�IIj � jEZa � EZj � 2�3 = E(Z � Za) + 2�3 :Fix k = 1; 2; : : :. Denote by n0; n1; n2; : : : integers that satisfy n0 = 0, e2n0:1 + 1 �ni � ni�1 � e2n0:1 , 8i. Let Yj, j = 0; 1; : : : denote a Bernoulli random variable whih isequal to 1 if and only if between time �(#(k)+1+nj) and �(#(k)+1+nj+1) the randomwalk does not visit the point z� := z�2Len0:1 . The random variables Yj are independent.By de�nition, �(i+1)��(i) � en0:1 . Hene, �(#(k)+1+nj+1)��(#(k)+1+nj) � e3n0:1 .At time �(#(k)+ 1), the random walk is loated on Iz and, therefore, no more than 3en0:1from z�. By (6.4.10), the probability to visit the point z� within time e3n0:1 starting fromthe 3en0:1-neighborhood of z� goes to 1 as n!1. Hene, supj P (Yj = 1)! 0. Let n beso big, that P (Yj = 1) � e�1, for all j. This means, for eahP (Zk � te2n0:1) � P (Yj = 1; j = 0; : : : ; ptq� 1) � exp(�ptq) � exp(�t); k = 1; 2; : : :(6.4.25)Now,E(Z�Za) = ZfZ�agZdP�aP (Z � a) = aP (Z � a)+Z(a;1)P (Z > x)dx�aP (Z � a) = Z(a;1) P (Z > x)dx:By (6.4.25):Z(a;1) P (Z > x)dx � Z 1a exp(�xe�2n0:1)dx � e2n0:1 exp(�ae�2n0:1)) � e2n0:1 exp(�en0:1):



6.4. Events depending on random walk 273Thus, for n big enough: E(Z � Za) � e2n0:1 exp(�en0:1) � �3 :Sine, X � Z, we get:E(X � X a) = Z(a;1) P (X > x)dx � Z(a;1) P (Z > x)dx � �3 :Thus, on E7a \ E7b \ E7 we have: j�I j; j�IIj � �: (6.4.26)Reall that we have Æ̂Mz;t = EX +�IEZ +�II :Hene, by (6.4.26): EX ��EZ +� � Æ̂Mz;t � EX +�EZ �� :By Taylor's formula, EX ��EZ +� = EXEZ � �EX + EZ(EZ)2 ��+ o(�):Sine 1 � EX � EZ, the latter means (for � small enough)���EX ��EZ +� � EXEZ ��� � �EX + EZ(EZ)2 ��+ o(�) � 2� + o(�) < 3�:Similarly ���EX +�EZ �� � EXEZ ��� < 3�:Now, ÆMz;t = EXEZ implying that jÆMz � Æ̂Mz;tj < 3� < e�n0:12 :Thus, (6.4.21) holds.Seond stepWe now show that P (E7;a), P (E7;b) and P (E7;) are of order o(exp(�n1000)).Taking t = en0:1 (6.4.25) yields:P (Zk > a) � exp(�en0:1); k = 1; 2; : : : :Thus: P (E7;a) � exp(n0:2) exp(�en0:1) = exp(n0:2 � en0:1) < exp(�n1000): (6.4.27)



274 Chapter 6. Information Reovery from a randomly mixed up message-textTo estimate P (E7;b) and P (E7;) we use the Hoe�ding inequality. Fix l 2 [ en0:2a ; en0:2 ℄. By(6.4.8) we have: P����1l lXk=1(X ak � EX ak )��� � �6 � � exp��2l��a6�2�:On the other hand, sine X ak , k � 2 are i.i.d., we have:���1l lXk=1 EX ak � EX a��� = 1l jEX a � EX a1 j � 2al � 2a2e�n0:2 = 2 exp(6n0:1 � n0:2) < �6 :Thus,P����1l lXk=1 X ak�EX a��� � �3 � � P����1l lXk=1(X ak�EX a)��� � �6 � � exp��2l��a6�2� � exp(�Ken0:2�2a3 );where K = 236 : Now,en0:2�2a3 = exp(n0:2 � 12n0:2 � 9n0:1) = exp(12n0:2 � 9n0:1) > exp(n0:24 )and P����1l lXk=1 X ak � EX a��� � �3 � � exp(�Ken0:24 ):FinallyP (E7;b) � en0:2Xl= en0:2a P����1l lXk=1 X ak�EX a��� � �3 � < en0:2 exp(�Ken0:24 ) < exp(�en0:1) < exp(�n1000):(6.4.28)The same bound holds for P (E7;).Beause of (6.4.21), (7.4.3) and (6.4.28) we get:P (En7S(; t)) � 3 exp(�n1000): (6.4.29)The bound in (6.4.29) do not depend on the hoie of z; t and  . Note that on [�m; m℄�[0; m2℄, there are no more than (m)3 values of (z; t). HeneP �En7;S� � �z2[�m;m℄;t2[0;m2℄P �En7;S(z; t)� :>From (6.4.29) it follows P �En7;S� � (m)33 exp(�n1000): (6.4.30)Reall that by (6.3.10): (m)3 � 3e6n: Hene, the right side of (6.4.30) is less than33 exp(6n� n1000): This is of order o(exp(�3n)). By (6.4.6), we therefore have:P (En7S)! 0:



6.4. Events depending on random walk 275Outline of the proof that P (En8;S)! 1Note that in the previous proof the exat nature of Xz;i, Xz(k) as well as Xz;t;i, Xz;t(k)was not used. Hene, the proof holds, if they were replaed by Uz;i, Uz(k), �(�z;t(i)+en0:1)and �(k)X�(k�1)+1�(�z;t(i) + en0:1);respetively. By (6.2.12) this proves that P (En8;S)! 1.Proof that P (En5;S)! 1.Fix  n 2 Enell OK.For eah k = 0; 1; 2; : : :, let �k(0) := �(k) and for eah j = 1; 2; : : :, let �k(j) be the smallesttime t > �k(j � 1) + 2en0:1 for whih S(t) 2 I(�(k)):Let Xk(j) be the Bernoulli random variable whih is equal to one if and only if duringtime [�k(j); �k(j)+(n3000+n2)℄ we observe n2+1 onseutive 0's or 1's. That is Xk(j) = 1if and only if 9t 2 [�k(j); �k(j) + n3000℄ suh that �(t) = �(t+ 1) = � � � = �(t + n2).Clearly, for eah k, the random variables Xk(j), j = 0; 1; 2; : : : are independentAt �rst we show that there exists a onstant a > 0, not depending on n, suh that foreah k and j, P (Xk(j) = 1) � n�a lnn = e�a ln2 n: (6.4.31)Fix k = 0; 1; : : : and let I := I(�(k)). Let �z be the signal arrier point suh that I�z = I.Sine �z is a signal arrier point, then, by Corollary 6.2.2 and ) of Proposition 12.4.9,I ontains at least one big blok of  n. Let T = [a; b℄ � I be that blok. Now, leta < a� < b� < b be suh that a� � a; b� � a�; b� b� � jT j3 � lnn3n . Let T � = [a�; b�℄. Now,P (Xk(j) = 1) � P (S(�k(j) + n3000) 2 T �)P (�(t) = �(t+ 1) = � � � = �(t+ n2)jS(t) 2 T �):Now, by LCLT: P (S(�k(j) + n3000) 2 T �) � 1n1500 � O( 1n3000 ) � n�1501;provided that n is big enough.Let N = ( nlnn)2 (w.l.o.g we assume that this is an integer) and estimate:P (�(t) = �(t+ 1) = � � � = �(t+ n2)jS(t) = j 2 T �) � P (Sj(i) 2 T; 8i = 1; 2; : : : ; n2) �P� maxi=1;:::;N jSj(i)j � jT j3 ; Sj(N) 2 T ��ln2 n = P� maxi=1;:::;N jSj(i)jpN � 13 ; Sj(N)pN 2 T �pN �ln2 n:(6.4.32)Note: jT �j � pN . By (6.4.10):P� maxi=1;:::;N jSj(i)jpN � 13 ; Sj(N)pN 2 T �pN �! P ( sup0�t�1 jWtj � 13� ;W1 2 I) >  > 0:



276 Chapter 6. Information Reovery from a randomly mixed up message-textThus, for n big enough there exists a < 1 suh that the right side of (6.4.32) is biggerthan ( 1a)ln2 n = n� lnn; with  > 0. Hene, (6.4.31) holds with a = + 1.De�ne the following events:Ea(k) = 8<: if �(k) � m2then during the time [�(k); �(k) + en0:3 � en0:1 ℄S visits I(�(k)) more than en0:22 times 9=; k = 0; 1; : : :and Ea := \25000k=1 Ea(k):Also de�ne Eb(k) := nen0:21Xj=0 Xk(j) � en0:2o; Eb := \n25000k=0 Eb(k):Now, learly, on Ea(k) we have �k(en0:21) � �(k) + en0:3 � 2en0:1 . Thus En5;S holds, ifen0:21Xj=0 Xk(j) � en0:2 :Hene E5;S � Ea \ Eb and P (E5;S) � P (Ea) + P (Eb):We are now proving that P (Ea)! 0 and P (Eb)! 0.Proof that P (Eb)! 0By (6.4.6) it is enough to show that:P (Eb j n) = o(e�3n): (6.4.33)Note that for big n, exp(n0:2 � n0:21) < EXk(j), 8j. Thus,exp(n0:2 � n0:21) < 1en0:21 exp(�n0:21) en0:21Xj=0 E(Xk(j)) =: �m:By the Hoe�ding inequality we obtain that for a onstant K > 0:P (Eb(k)j n) = P� 1en0:21 en0:21Xj=0 Xk(j) < exp(n0:2 � n0:21)� � P� 1en0:21 en0:21Xj=0 Xk(j) < �m2 � =P� 1en0:21 en0:21Xj=0 �Xk(j)� EXk(j)� < � �m2 � � exp(�K �m2en0:21) � exp(�Ken0:21�2a ln2 n):Hene, P (Eb j n) � n25000 exp(�Ken0:21�2a ln2 n) = o(e�3n):Proof that P (Ea)! 0This proof is a little triky beause unlike the other proofs we have that P (Eaj n) is muhbigger than P (S(m2) = m).



6.4. Events depending on random walk 277Let L = n100000 and onsider the event:C = nS �m2(1� n�3L)� 2 �m(1� n�L); m(1 + n�L)� = [m� mnL ; m+ mnL ℄o:Here and in the rest of the proof we assume (w.l.o.g.) that all ratios and exponents areintegers. Also de�neE(k) = ��(k) =2 [m2(1� n�3L); m2℄	 ; k = 0; 1; : : : ; E := [25000k=1 E(k):The event E means that no stopping time �(k) ours in the time-interval [m2(1 �n�3L); m2℄, the event Ea \ E satis�esEa \ E = E�a := \25000k=1 E�a(k);where E�a(k) = 8<: if �(k) � m2(1� n�L)then during the time [�(k); �(k) + en0:3 � en0:1 ℄S visits I(�(k)) more than en0:22 times 9=; :We show that the probability P (EajEn1;S;  n); an be very well approximated by theprobability P (E�ajC;  n) and the latter goes to 0 when n ! 1. We proeed in threesteps.1) At �rst note: sineC \ En1;S = fS(m2(1� n�3L)) 62 [m(1� nL); m(1 + nL)℄; S(m2) = mg;we get, by the Hoe�dig inequalityP (C \ En1;Sj n) =P (C \ En1;S) = P (En1;SjC)P (C) � P (En1;SjC)=P����S�m2n3L���� � mnL� � exp(�dnL) = o(n�3n):The latter implies P (C) = o(1): (6.4.34)2) Seond, use the inequalities:P (E�a \En1;S \Cj n) � P (Ea \En1;S \Cj n) � P (E�a \En1;S \Cj n) + P (E \En1;Sj n):Sine  2 En7 , it has no signal arrier points in [m � EZn�11001℄. Hene, E \ En1;S anhold only, if during time interval [m2(1�n�3L); m2℄ the random walk overs a distane ofat least EZn�11001 � Ln1000. Thus,P (E\En1;Sj n) � P� maxl=1;:::; m2n3L jS(l)j � EZn�11001�Ln1000� � P� maxl=1;:::; m2n3L jS(l)j � mn11003�Ln1000�:Now use the maximal inequality (6.4.17) together with the Hoe�ding inequality to esti-mate P� maxl=1;:::; m2n3L jS(l)j � mn11003 � Ln1000� � maxl=1;:::; m2n3L 3P�jS(l)j � 13 mn12000�� 3 exp(�dn3L�12000) = o(e�3n):



278 Chapter 6. Information Reovery from a randomly mixed up message-textThis implies:P (Ea \ C \ En1;Sj n)� P (E�a \ C \ En1;S; j n)P (En1;Sj n) = P (Ea \ C)� P (E�a \ C) = o(1):(6.4.35)3) Finally, note that:P (E�a \En1;S \Cj n) = P (E�a \Cj n)P (En1;SjE�a \C;  n) = P (E�a \Cj n)P (En1;SjC;  n):On the other hand,P (En1;Sj n) � P (En1;S \ Cj n) = P (En1;SjC;  n)P (Cj n):Hene,P (E�a \ C) = P (E�a \ En1;S \ Cj n)P (En1;Sj n) � P (E�a \ Cj n)P (En1;SjC;  n)P (En1;SjC;  )P (Cj n) = P (E�a jC;  n):(6.4.36)By CLT, P (Cj n) = P (S �m2(1� n�3L� 2 [m� mnL ; m+ mnL ℄) is of order 1nK for some bigK > 0. We estimate the probability P (E�a j n).To do this, �x k and let T1; T2; : : : denote the waiting times of S between visits of thepoint S(�(k)) (when we start at the time �(k)). Although ETi = 1, it is known thatET 13i =: K 0 <1 (see, e.g. [LMM01℄). The number K 0, does not depend on n. Thus, bythe Markov inequality we haveP (E�a ) � P�en0:22Xi=1 Ti > en0:3 � en0:1� = P �en0:22Xi=1 Ti� 13> �en0:3 � en0:1� 13!� P�en0:22Xi=1 T 13i > �en0:3 � en0:1� 13� � en0:22K 0�en0:3 � en0:1� 13 � e�n0:25 :Thus, P (Ea�) � n25000e�n0:25 = o(n�K) implying thatP (Ea�jC;  ) � P (Ea�j n)P (Cj n) = o(1): (6.4.37)To omplete the proof, use (6.4.34), (6.4.35), (6.4.37), (6.4.37) to getP (Ea) � P (Ea \ C) + P (C) = P (E�a \ C) + P (Ea \ C)� P (E�a \ C) + o(1)� P (E�a jC;  n) + o(1) = o(1):6.5 Combinatoris of g and ĝIn this setion we show: if all senery dependent events and random walk dependentevents hold, then our estimates Æ̂MT and ĥt are preise. This means, we an observe oursignals and, just like in our 3-olor example, we an estimate the g-funtion.Let us �rst give the de�nition of the g-funtion in the 2-olors ase.



6.5. Combinatoris of g and ĝ 2796.5.1 De�nition of gIn this subsetion we give a formal de�nition of the funtiong : f0; 1gm+1 7! f0; 1gn2+1:The funtion g depends on n. When n is �xed, we hoose m = pn2:5EZq, where therandom variable Z is the loation of the �rst Markov signal point after 2Ln1000 in �.We onsider the signal arrier points �z1; �z2; : : : ; in [0; m℄. De�ne the following subset off0; 1gm+1:E� := f 2 f0; 1gm+1 : �z1( ) � L(en0:1 + n1000); �zn2+1 � m� L(en0:1 + n1000)g:Here, �zi( ) =1, if the piee of senery  has less than i signal arrier points.Clearly Enell OK � E�. If  2 E�, then for eah �zi( ) we de�ne the vetor of the frequenyof ones h(i), i = 1; : : : ; n2 + 1. Reall from (6.2.13) that:h(i) = h(�zi( )) = P ( (U + S(en0:1)) = 1);where U is a random variable with distribution �(�zi).Now, if  2 E�, let: gi( ) = 8><>:1 , if h(i) > 0:50 , if h(i) < 0:5�zi( ) otherwise: (6.5.1)When  62 E�, de�ne gi( ) =  (i); i = 2; 3; : : : ; n2 + 2: (6.5.2)De�nition 6.5.1. g( ) = (g1( ); : : : ; gn2+1( )); where gi( ) is (6.5.1), if  2 E� andgi( ) is (6.5.2), if  62 E�.De�nition 6.5.1 ensures that g( ) depends only on �m0 , and that (g1(�); : : : ; gn2+1(�))is an i.i.d. random vetor, with the omponents being Bernoulli random variables withparameter 12 .6.5.2 De�nition of ĝNext, we formalize the onstrution of the ĝ-funtion. The funtion ĝ : f0; 1gm2+1 7!f0; 1gn2 aims to estimate the (non-observable) funtion g. The argument of ĝ is thevetor of observations �m20 := (�(0); : : : ; �(m2)), and the estimate is given up to the �rstor last bit. In other words, ĝ aims to ahieve ĝ(�m2) v g(�j[0; m℄).The algorithm for omputing ĝ has 5 phases and it di�ers from the ĝ-reonstrutionalgorithm for the 3-olor ase (Subsetion 6.1.6) by the �rst step, only. The rest of theonstrution is the same.1. For all T = [t; t+en0:3℄ � [0; m2℄ ompute the estimate of the Markov signal probabilityÆ̂MT . Selet all intervals T1 = [t1; t1+en0:3 ℄; T2 = [t2; t2+en0:3 ℄; : : : ; TK = [tK; tK+en0:3 ℄,t1 < t2 < � � � < tK ; where the estimated Markov signal probability are higher thanr: Here K stands for the number of suh intervals.



280 Chapter 6. Information Reovery from a randomly mixed up message-text2. For all seleted intervals, estimate the frequeny of ones. Obtain the estimates ĥT1 ; : : : ; ĥTK ,i = 1; : : : ; K.3. De�ne lusters:Ci := fĥTj : jĥTj � ĥTi j � 2 exp(�n0:12)g; f̂i := 1jCijXj2Ci ĥTj ; i = 1; : : : ; K:4. Apply the real senery onstrution algorithm ARn (see Subsetion 6.1.6) to the vetor(f̂1; : : : ; f̂K). Denote the output, ARn(f̂1; : : : ; f̂K), by(f1; : : : ; fn2): (6.5.3)If the number of di�erent reals in (f̂1; : : : ; f̂K) is less than n2 (e.g. K � n2), thenomplete the vetor (6.5.3) arbitrarily.5. De�ne the �nal output of ĝ as followsĝ(�m2) := (I[0:5;1℄(f1); : : : ; I[0:5;1℄(fn2)):6.5.3 Main proofNext, we prove the main result: when all previously stated events hold, then the ĝ-algorithm works, i.e. ĝ(�m20 ) v g(�m0 ):Reall Enell OK = \9i=1Eni . Similarly de�ne the intersetion of the random walk dependentevents: EnS := \8i=1Eni;S: Finally, let Eg�works be the event that ĝ works, i.e.:Eg�works := nĝ(�m20 ) v g(�m0 )o: (6.5.4)At �rst we show that step 1 in the de�nition of ĝ works properly, i.e. a time interval Tis seleted (i.e. Æ̂MT > r) only if during the time T the random walk is lose to a uniquesignal arrier point �z. The loseness is de�ned in the following sense: we say that duringtime period T , the random walk S is lose to z, if there exists s 2 T suh that S(s) 2 Iz.Proposition 6.5.1. Suppose Enell OK \EnS holds. Let T = [t; t+ en0:3 ℄ � [0; m℄. If duringT , the random walk is lose to a signal point z, and �̂t(en0:2) � t + en0:3 � en0:1 , thenÆ̂MT = Æ̂Mz;t and ĥT = ĥz;t.Proof. Sine � and S are independent, we �x � =  2 Enell OK and show that the laim ofthe proposition holds.Let S be lose to the signal point z. By En2 \En8 \En9 , the point z has empty neighborhoodand empty borders. Hene, in the area([z � L(n1000 + en0:3); z + L(n1000 + en0:3)℄� [z � L ~M; z + L ~M ℄) \ [�m; m℄there are no bloks that are bigger than n0:35. Reall that ~M = n1000 � 2n2. Sine2n0:35 < n0:4 < n2, this means: all bloks with length at least n0:4 must lay inside theinterval [z � L(n1000 � n2); z + L(n1000 � n2)℄. In partiular, this implies - if, during the



6.5. Combinatoris of g and ĝ 281time T the random walk S visits a blok bigger than n0:4, then during the n2 step beforeand after that visit, it must stay in the interval Iz. Formally: if 9s 2 T : S(s) 2 B, thenS(s� n2); S(s� n2 + 1); : : : ; S(s+ n2 � 1); S(s+ n2) 2 Iz: (6.5.5)Here B stands for a blok of  with length at least n0:4.We now take advantage of the event En6;S: the random walk annot generate n2 + 1times the same olor, if it does not visit a blok bigger than n0:4. By (6.5.5) this meansthat all n2 + 1 same olors must be generated on Iz. Hene, inside the time interval T ,the stopping times �̂t(i) are equal to the stopping times �z;t(i). Similarly, Xt;i = Xz;t;i,provided �̂t(i) + n1000 � t+ en0:3 .By assumption, there are at least en0:2 stopping times �̂t(i) in [t; t + en0:3 � en0:1 ℄ Thesestopping times are then equal to �z;t(i). Similarly,Xt;i = Xz;t;i; i = 1; : : : ; en0:2 . The lattermeans that the observable estimates Æ̂MT and ĥT equals the non-observable estimates Æ̂Mz;tand ĥz;t, respetively.Corollary 6.5.1. Suppose Enell OK \ EnS holds. Let T = [t; t + en0:3 ℄ � [0; m℄. If duringT the random walk is lose to a signal point z, then Æ̂MT > 0 implies that ĥT = ĥz;t andÆ̂MT = Æ̂Mz;t .Proof. By de�nition, Æ̂MT > 0 if in the time interval [t; t + en0:3 � en0:1 ℄ there are at leasten0:2 stopping times �̂t(i): Now Proposition 6.5.1 applies.Lemma 6.5.1. Suppose Enell OK \ EnS holds. Let T = [t; t + en0:3 ℄ � [0; m℄ be suh thatÆ̂MT > r. Then there exists an unique signal arrier point �z 2 [�m; m℄ suh that S islose to �z during T and Æ̂MT = Æ̂M�z;t.Proof. Fix � =  2 Enell OK. Note that, sine En2 holds, all signal points in [�m; m℄have empty neighborhood. Together with d) of Proposition 12.4.9 this means that allsignal points in [�m; m℄ are in lusters with diameter less than 2Ln1000. The distanebetween any two lusters, i.e. the distane between losest signal points in these lusters,is bigger than en0:3 . Moreover, by En8 \ En9 , all signal points have empty borders.If En2;S holds, then during time [0; m2℄, our random walk stays in [�m; m℄. Togetherwith the lustering struture of the signal points, this means: if during the time intervalT � [0; m2℄ of length en0:3 the random walk S is lose to some signal points, then theyall belong to the same luster. Hene, during T , S an be lose to at most one signalarrier point (reall, every luster has one representant, the signal arrier point). We haveto show that if Æ̂MT > r, then there exists at least one signal arrier point �z suh that,(during T ) S is lose to �z.During T , the random walk S has 3 options :� S is not lose to any signal point� S is lose to the signal points that are not Markov signal points� S is lose to a Markov signal point.If S is not lose to any signal point, then by En3;S, Æ̂MT � r. This exludes the �rstpossibility. Hene, Æ̂MT > r annot happen, if during T , S is not lose to any signal point.



282 Chapter 6. Information Reovery from a randomly mixed up message-textSuppose now that there exists a signal point z suh that (during T ) S is lose to z. Byassumption we have Æ̂MT > r > 0. By Corollary 6.5.1 we have that Æ̂MT = Æ̂Mz;t: Now wereap bene�t from the events En5 and En7;S. The event En5 ensures that z is regular, i.e.jÆMz � rj � � > e�n0:12 (reall, � is polynomially small). On the other hand, the eventEn7;S ensures jÆ̂MT � ÆMz j = jÆ̂Mz;t � ÆMz j � exp(�n0:12). Thus on En5 \ En7;S we have:Æ̂MT > r if and only if ÆMz > r ��: (6.5.6)Suppose that we have the seond possibility { S is lose to some signal points, but notlose to any Markov signal points. Then z is not a Markov signal point. Hene, (7.2.7)ensures that Æ̂MT � r. This ontradits our assumption that Æ̂MT > r. Hene, z must bea Markov signal point and our third option holds.Thus Æ̂MT > r implies that during T , the random walk S is lose to a Markov signal point.By lustering struture we know that S is lose to a luster of signal points with at leastone Markov signal points. In Subsetion 6.3.4 we argued that suh a luster serves as thesignal arrier. However, to omplete the proof we must show that, during T , S is alsolose to the orresponding signal arrier point, say �z.The points �z and z belong to the same luster, i.e. j�z�zj < 2Ln1000. Consider the intervalJz := [z � L(exp(n0:3); z + L(exp(n0:3)℄ \ [�m; m℄:This is the region, where the random walk S stays during time T . We know that theintervals Iz and I�z both have empty neighborhood and empty borders. Thus all bloks of jJz that are longer than n0:4 must lie in Iz \ I�z (by  of Proposition 12.4.9, in Iz \ I�zthere is at least one big blok of  ). Argue as in the proof of Proposition 6.5.1: beauseof En6;S, to generate n2+1 onseutive 0's or 1's, S must visit a blok with length at leastn0:4. To have Æ̂MT > 0, during T , S must have at least en0:2 suh visits. All those bloksare in Iz \ I�z � I�z: Thus, when Æ̂MT > 0, then during T , S visits �z at least en0:2 times.This means that during T , S is lose to �z. By Corollary 6.5.1, we get Æ̂MT = Æ̂Mz;t.Theorem 6.5.1. If Enell OK and EnS both hold, then, for n big enough, ĝ works. In otherwords, Enell OK \ ES � Eg�works: (6.5.7)Proof. Suppose Enell OK \ EnS hold. Fix � =  2 Enell OK and letg( ) = (g1( ); : : : ; gn2+1( )):We have to show: if EnS holds, then given the observations �m20 , the funtionĝ(�m20 ) := (I[0:5;1℄(f1); : : : ; I[0:5;1℄(fn2))is equal to ĝ( ) up to the �rst or last bit.Let �m20 be the observations. Apply the ĝ-onstrution algorithm.1) At the �rst step we pik the intervals T1 = [t1; t1+en0:1 ℄; : : : ; [tK; tK+en0:1 ℄ suh that foreah j, Æ̂MT > r, j = 1; : : : ; K. By Lemma 6.5.1 we know that eah interval Tj orrespondsto exatly one signal arrier point, say �z�(j).Let us investigate the mapping � : f1; : : : ; Kg 7! Z, where �(j) is the index of the signalarrier orresponding to the interval Tj. We now show that � posses the properties A1),A2), A3) that are familiar from the Subsetion 6.1.6



6.5. Combinatoris of g and ĝ 283A1) �(1) 2 f0; 1gA2) �(K) � n2 + 1A3) � is skip-free, i.e. 8j; j�(j)� �(j)j � 1.All these properties hold beause of En4;S \ En5;S: Indeed, during the time interval [0; m2℄the random walk starts at 0 and, aording to the event En1;S, ends at m. Let �z1 : : : ; �zudenote all signal arrier points of  in [0; m℄. By En1 , u > n2. The maximal length of ajump of S is L and, therefore, on its way, S visits all intervals I�z1; : : : I�zu. Reall that thestopping times �(k) denote the �rst visits of the new interval (the �rst visit of the nextinterval, not neessarily new for the past). By En4;S \En5;S , for eah k suh that �(k) < m2we have: there is at least en0:2 stopping times �̂�(k)(i) in T := [�(k); �(k)+en0:3�en0:1 ℄. Let�z be the signal arrier point suh that S(�(k)) 2 I�z. Thus the assumptions of Proposition6.5.1 hold and Æ̂MT = Æ̂M�z;t. Moreover, by (7.2.7) we have that Æ̂MT > r, i.e. the interval Twill be seleted in the �rst step of the ĝ-reonstrution.To summarize: the random walk starts at 0, by onvention the �rst signal arrier point in[0;1) is �z1, the biggest signal arrier point in (�1; 0℄ is �z0. From Lemma 6.5.1 we know- during T1, S must be lose to a signal arrier point. On the other hand [�(0); �(0)+en0:3℄is the �rst time interval, during whih S is lose to a signal arrier point. We know thatthis interval will be seleted. Hene �(1) 2 f0; 1g.On its way S visits all signal arrier interval I�z1; : : : I�zu. Right after the �rst visit of a newsignal arrier, �(k), the random walk produes an interval T = [�(k); �(k) + en0:3 ℄ thatwill be seleted. Together with Lemma 6.5.1 the latter yields that � is skip-free.Reall that �zu is the last signal arrier point in [0; m℄. Thus, the last signal arrier intervalS visits during [0; m2℄ is �zu or �zu+1. By En7 we know that �zu lays in [0; m�Len0:3 ℄. Hene,if S(�(k)) 2 I�zu, then [�(k); �(k) + en0:3 ℄ will be seleted. We get that the last seletedinterval orresponds to the signal arrier that is at least �zn2+1. Thus �(K) � n2 + 1.Let �� := minf�(j) : j = 1; : : : ; Kg, �� := maxf�(j) : j = 1; : : : ; Kg: We just saw that�� � 1, �� � n2 + 1 and � is a skip-free random walk on f��; �� + 1; : : : ; ��g.The rest of the algorithm was already explained in Subsetion 6.1.6. However, in thefollowing we give a bit more formal explanation.2) At the seond step we alulate ĥT1 ; : : : ; ĥTK . By Lemma 6.5.1, we know that, for eahj = 1; : : : ; K ĥTj = ĥ�z�(j);tj :3) Sine En8;S holds, we know that, for eah j = 1; : : : ; K,jĥTj � h(�z�(j))j = jĥ�z�(j);tj � h(�z�(j))j < exp(�n0:12):This means: if �(i) = �(j) then jĥTi � ĥTj j � 2 exp(�n0:12):On the other hand, by En3 we know that �(i) 6= �(j) impliesjh(�z�(j))� h(�z�(i))j � exp(�n0:11): (6.5.8)We assume n to be big enough to satisfy exp(�n0:12) < 5 exp(�n0:11). Hene �(i) 6= �(j)implies that jĥTi � ĥTj j > 2 exp(�n0:12): Thus, if En8;S \ En3 , then for eah i; j = 1; : : : ; kwe have ĥj 2 Ci if and only if �(i) = �(j): (6.5.9)



284 Chapter 6. Information Reovery from a randomly mixed up message-textHene the lusters Ci and Cj are either idential or disjoint; Ci = Cj if and only if�(j) = �(i). The same, obviously, holds for the averages:f̂j = f̂i if and only if �(i) = �(j):Let for eah i = f��; �� + 1; : : : ; ��g, f̂(�zi) = f̂j, if �(j) = i. Hene, f̂(�zi) is the estimateof h(�zi) and f̂j = f̂(�z�(j)); j = 1; : : : ; K:Hene, j 7! f̂j an be onsidered as the observations of the skip-free random walk � onthe di�erent reals ff̂(�z��); f̂(�z��+1); : : : f̂(�z��)g:4) The real senery onstrution algorithm ARn is now able to reonstrut the numbersf̂(z1); : : : ; f̂(zn2+1) up to the �rst or last number. Thus(f1; : : : ; fn2) = AR(f̂1; : : : ; f̂K) v (f̂(�z1); : : : ; f̂(�zn2+1)):5) By En4 , we have that jh(�zi)� 0:5j � exp(�n0:11): >From (6.5.8) and (6.5.9), it follows:jf̂i � h(�z�(i))j � exp(�n0:12):The latter implies: f̂(�zi) � 0:5 if and only if h(�zi) � 0:5:Hene , for eah i = 1; : : : ; n2 + 1, we have that I[0:5;1℄(f̂(�zi)) = I[0:5;1℄(h(�zi)): Thus:ĝ(�m20 ) = �I[0:5;1℄(f1); : : : I[0:5;1℄(f 2n)� v �I[0:5;1℄(h(�z1)); : : : I[0:5;1℄(h(zn2+1))� = g( ):Proof of Theorem 6.1.1 Fix  > 0 suh that Proposition 6.4.1 holds for � = 18 . Use thispartiular  to de�ne all senery dependent events as well as all random walk-dependentvents.The intersetion of all senery-dependent events is Enell OK. In Setion 6.3.2, we provedthat P (Enell OK)! 1. Hene 1) holds.Now onsider the event EnS . Use Theorem 6.5.1 to �nd the integer N1 <1 suh that foreah n > N1, (6.5.4) hold. Then, for eah n > N1,  n 2 Enell OK we haveP (g(�m20 ) v g(�m0 )jS(m2) = m; � =  n) � P (EnS jS(m2) = m; � =  n) = P (EnS):In Setion 6.4.3, we proved that lim infn P (EnS) � 1� 18 . Let N2 be so big that P (En) > 348n > N1. Take N := N1 _N2. With suh N , 2) holds.Finally, the statement 3) follows from the de�nition of g in Setion 5.1.Referenes[BK96℄ I. Benjamini and H. Kesten. Distinguishing seneries by observing the seneryalong a random walk path. J. Anal. Math., 69:97{135, 1996.[dH88℄ W. Th. F. den Hollander. Mixing properties for random walk in random senery.Ann. Probab., 16(4):1788{1802, 1988.
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Chapter 7Retrieving the exat sequene(submitted)By J�uri Lember and Heinrih Matzinger,We onsider a sequene of observations obtained along a random walk from an in�nitebinary ode (senery). The senery reonstrution problem is onerned with trying toretrieve the senery, given only the observations. For a senery with suÆiently manyolors the problem was solved in [20℄. This proof does not apply in two olor ase, andthe question of reonstruting the two-olor senery, observed along a random walk withbounded jumps, has not been answered. In this paper we use the main result of [15℄ toshow that, given some preliminary information, a long piee of two-olor senery an bereonstruted with high probability. This is the main ingredient (so-alled zag-step) forthe whole algorithm for two-olor senery reonstrution.7.1 Introdution and Result7.1.1 IntrodutionA (one dimensional) senery � is a oloring of the integers Z with C0 olors f1; : : : ; C0g.Two seneries �, �0 are alled equivalent, � � �0, if one of them is obtained from the otherby a translation or reetion. Let (S(t))t�0 be a reurrent random walk on the integers.Observing the senery � along the path of this random walk, one sees the olor �(S(t))at time t. The senery reonstrution problem is onerned with trying to retrieve thesenery �, given only the sequene of observations � := (�(S(t)))t�0. Quite obviouslyretrieving a senery an only work up to equivalene. For an overview about seneryreonstrution we refer the reader to an exellent survey in [13℄.The researh in senery reonstrution was �rst motivated by the work on the prop-erties of the olor reord � by Keane and den Hollander [11℄, [3℄. They investigated theergodi properties of �, this study was motivated (among others) by the work of Kalikow[10℄ and den Hollander, Steif [4℄ in ergodi theory.In partiular, the researh on senery reonstrution started with the senery distinguish-ing problem. The question was raised independently by Benjamini and Kesten in [1℄ and[12℄ as well as by den Hollander and Keane in [11℄. These questions motivated many re-searhers to work in the areas onerning randomly observed senery, let us just mention287



288 Chapter 7. Retrieving the exat sequeneHarris [5℄, Heiklen [6℄, Burdzy [2℄, Ho�man [6℄, Howard [9℄, [8℄, [7℄, Kesten and Spitzer[14℄, Levin [17℄, Lindenstauss [18℄, Rudolph [6℄, Pemantle [17℄, Peres [17℄.In [12℄, Kesten asked whether one an reognize a single defet in a random senery.In order to provide an answer to this question, Matzinger in his Ph.D. thesis [21℄ proveda somewhat stronger result: typial seneries an be reonstruted a.s. up to equivalene.The seneries in Matzinger's setup are independent uniformly distributed random vari-ables. He showed that almost every senery an be almost surely reonstruted. In [13℄,Kesten notied that Matzinger's proof in [21℄ heavily relies on the skip-free property ofthe random walk. He asked whether the result might still hold in the ase of a randomwalk with jumps. Merkl, Matzinger and Loewe in [20℄ gave a positive answer to Kesten'squestion under a partiular assumption: there are stritly more olors than possible singlesteps for the random walk.In the present paper we onsider the following problem: an a two-olor senery be reon-struted, if it is observed along a random walk with jumps. Among others, this questionwas asked by H. Kesten in [13℄. It turns out that the two olor ase (C0 = 2) is morediÆult than the ase investigated by Merkl, Matzinger and Loewe in [20℄. Althoughseveral arguments in [20℄ do not use the fat that there are more than two olors, theentral idea hopelessly fails in the two-olor ase. To overome the problem, the existeneof ertain test beomes ruial. The aim of the tests is to provide some information aboutthe loalization of random walk. As explained later, this kind of information makes thesenery reonstrution possible.The existene of suh kind of test was proved in [15℄. This was the �rst important steptowards the whole two-olor senery reonstrution. The present paper provides the se-ond step of two-olor senery reonstrution. We onstrut an algorithm that, given somegeneral information about the origin (stopping times) as well as a small piee of originalsenery, retrieves a (long) piee of senery with exponentially small error. With this resultin hand, one an use the method desribed in [20℄ to reonstrut the whole senery. Inthe terminology of [20℄, the onstruted algorithm provides the "zag"-proedure of overallsenery reonstrution; in fat, "zag"-proedure is the ore of senery reonstrution. Thewhole senery reonstrution shall be given in a follow-up paper.7.1.2 Main notations and assumptionsWe de�ne the main onepts of the paper: senery, random senery random walk andobservations. Also, some general notations will be introdued.* Senery is an element of f0; 1gZ.For every I � Z, the elements of f0; 1gI are alled piees of senery. Given a piee ofsenery ' 2 f0; 1gI; and a subset I 0 � I, the piee of senery ('(i))i2I0 is denoted by 'jI 0.Two piees of senery ' 2 f0; 1gI and '0 2 f0; 1gI0 are equivalent, ' � '0, if ' is obtainedby some translation and reetion of '0, i.e. I 0 = aI + b, for some a 2 f�1;+1g, b 2 Zand '(i) = '0(ai+ b), 8i 2 I. If ' is obtained from '0 by translation, i.e. '(i) = '0(b+ i),then ' and '0 are alled strongly equivalent, we denote this ' � '0. If ' is obtainedfrom '0 by reetion i.e. '(i) = '0(�i), 8i 2 I, we write ' = '0�. By de�nition, ' v '0means that ' � '0jJ for some J � I 0. In this ase ' is equal to '0jJ up to the translation,



7.1. Introdution and Result 289only.For a piee of senery 'j[x; y℄, where [x; y℄ = (x; : : : ; y) � Z is an integer interval, weoften write 'yx. If x = 0, then it is skipped, i.e. 'j[x; y℄ is written as 'y.* Random senery � = f�(z)gz2Z is a family of i.i.d. Bernoulli random variableswith parameter 1=2: We use  for a realization of �.The notations de�ned above is valid for random seneries. For example, �yx stands forrandom piee of senery �j[x; y℄, �y means �j[0; y℄ et. et.* In this paper, S = fS(t)gt2N is a reurrent random walk that visits every integerz with positive probability. We assume S starts at origin, i.e. S(0) = 0. For a z 2 Z wedenote Sz = S + z. An important assumption is that S has only a �nite number of steps("bounded jumps"). More preisely, we assume that the set fz : P (S(1)�S(0) = z) > 0gis �nite. Throughout this paper we denoteL := maxfz : P (S(1)� S(0) = z) > 0g:Thus L stands for length of the maximum jump.We also de�nepL := P (S(L)� S(0)); pmin := mini fP (S(1)� S(0) = i) > 0g:To simplify some proofs we also assume that S is symmetri (however, we do not believethat the symmetriity is neessary).* We realize (�; S) as anonial projetions of 
 = f0; 1gZ� 
 endowed with produt�-algebra and probability measure B(1; 12)Z�Qo, where 
2 � ZN is the set of all possiblepaths S, Q denotes the law of S and B(1; 12) is the Bernoulli 12 -distribution. Hene, therandom walk S and senery � are independent.For a �xed senery  2 f0; 1gZ (a realization of �), we write P = Æ �Q = P (�j� =  ).We de�ne the �ltrations F := (Fn)n2N, where Fn := �(�; S(k) : k = 0; : : : ; n) andG := (Gn)n2N, where Gn = �(�(1); : : : �(n)).* We denote by � the observations :� := � (S (0)) ; � (S (1)) ; � (S (2)) ; : : :and we interpret � as a random piee of senery f0; 1gN, so that �(k) := � (S (k)) for allk 2 N .For any z 2 Z, we denote �z(k) = �(Sz(k)). The notation introdued in onnetion withseneries are used with observations; in partiular, for time interval [x; y℄ � N we denote�zj[x; y℄ :=: �yz;x := (�z(x); �z(x + 1); : : : ; �z(y)); �yz := �yz;0; �y := �y0;0:* Words are the binary vetors (w(1); : : : ; w(n)); w(i) 2 f0; 1g; n 2 N . Formally, wordsare just the piees of seneries 'N1 . Therefore, all de�nitions introdued in onnetionwith seneries hold for words as well. In partiular, two words w and w0 an be equivalent(requires the same length) or they an satisfy the relation w v w0. Similarly, a word w



290 Chapter 7. Retrieving the exat sequenean be equivalent to a piee of senery ' 2 f0; 1gI, w � ' or w and ' an satisfy w v ':If I = [a; a + n℄ for some n and ' 2 f0; 1gI, then the equivalene ' � w means that'(a) = w(1); : : : ; '(a+ n) = w(n+ 1) or '(a) = w(n+ 1); : : : ; '(a+ n) = w(1):We shall also use the reeted words w�. Hene, for a word w = (w(1); : : : ; w(N)),w� = (w(N); : : : ; w(1)).Let I = [x; y℄. The piee of senery 'jI ( where ' is usually � or �) as a mapping onsistsof domain I as well as from the image. The term "word" is usually used in onnetion withimages only. So, we onsider a piee of senery as a word, if the domain is not importantor needs not to be spei�ed (although, formally every word has a domain (1; : : : ; N)).Hene, we an state that "the piee 'yx is the word w", meaning that the image of 'jIis w or, equivalently,  yx � w. Depending on ', we shall all w as the observation- orsenery-word.7.1.3 The theoremThe aim of the paper is to show that that, for every natural number l1 that is big enough,there exists an algorithm A1 whih is apable with high probability to reonstrut a�nite piee of � of length 4el1 around the origin. For that, the algorithm A1 uses �rstexp12�l1 +1 observations, �12�l1 , only. Throughout the paper � > 0 is a �xed onstantthat does not depend on l1. We need � to be big enough and we speify it in Subsetion7.3.6. Sine A1 is supposed to reonstrut the senery around the origin, it beomesneessary to get some additional information about the loation of S around the origin.In other words, besides the observations, the algorithm A1 should reeive some signalstelling him that a partiular observation was generated when S was suÆiently loseto the origin. To get suh information, A1 is given exp(�l1) G-adapted stopping times� = (�(1); : : : ; �(exp(�l1))) as an additional input. The stopping times are assumed tosatisfy the onditions:�(k)��(k�1) � 2 exp(2l1); k = 2; 3; : : : ; exp(�l1)+1; where �(exp(�l1)+1) := exp[12�l1℄:(7.1.1)The aim of � is to show when S is at most exp(l1) from origin. Thus, they do well, if thefollowing event holdsE1stop(�) := fjS(�(k))j � exp(l1); k = 1; : : : ; exp(�l1)g:The ondition (7.1.1) states that all stopping times are suÆiently far from eah otherand they depend on �rst exp(12�l1) observation �exp[12�l1℄, only. In partiular, for eah�(k), the algorithm A1 an use 2 exp(2l1) observations starting from �(k). On E1stop(�),all these observations are generated by S being at most exp(l1) + 2 exp(2l1) from origin.These are the observations that are atually used by A1. The information provided by �is essential for the algorithm A1, whih is supposed to work on E1stop(�), only.We shall not de�ne the stopping times in this paper. The onstrution of � suh thatthe probability of E1stop(�) is suÆiently big is the so-alled zig-step of overall seneryreonstrution (see Chapter 3 in [20℄).Besides the observations and the stopping times, A1 is given the third input: a (small)piee  o of original senery. Formally,  o =  jIo, where Io is an integer interval and  isthe underlying senery (the realization of �.) The length of  o (i.e. the length of Io) is



7.1. Introdution and Result 291at least l11L, moreover, we assume Io � [� exp(l1); exp(l1)℄. Here 1 is a �xed onstantnot depending on l1 (see Setion 7.3.6).The output of A1 is a word of length 4 exp(l1). Hene, formally A1 is the mappingA1 : f0; 1g[0;exp(12�l1)℄�[0; exp(12�l1)℄[1;exp(�l1)℄�� 2 exp(l1)+1[k=21l1L+1f0; 1gk� 7! f0; 1g[�2 exp(l1);2 exp(l1)℄;where the �rst input stands for observations �12�1l1 , the seond for stopping times � andthe third for  o.The aim ofA1 is to produe a piee of original senery that lies between  j[� exp(l1); exp(l1)℄and  j[�3 exp(l1); 3 exp(l1)℄: Reall that  is the realization of �. Thus, A1 does well, ifthe following event holdsE1alg works(�; Io) := n�j[� exp(l1); exp(l1)℄ v A1��exp(12�l1); �; �jIo� v �j[�3 exp(l1); 3 exp(l1)℄o:(7.1.2)Obviously the event (7.1.2) depends on � as well as on the hosen interval Io. In thefollowing we do not know exatly the interval Io. Hene, we want that A1 works with anygiven interval Io. The orresponding event isE1alg works(�) := \Io�[� exp(l1);exp(l1)℄E1alg works(�; Io):The desription and formal de�nition of A1 is given in Subsetion 7.3.3. The main resultof the paper, Theorem 7.1.1 states that the de�nition of A1 is suessful: given E1stop(�)holds, the onditional probability of E1alg works(�) is big.Theorem 7.1.1. There exists a onstant k > 0 not depending on l1 suh that, for l1 bigenough P�E1stop(�) \ �E1alg works(�)��� e�kl1: (7.1.3)The use of � and  o might seem unrealisti - one would like to reonstrut (a piee of)senery without any additional help. In Chapter 3 of [20℄, a general desription of suha senery reonstrution proedure is given. This proedure is based on repeated use ofalgorithms A1, where in every stage a longer and longer piee of senery around originis onstruted (l1 is inreasing). In this proedure, the output of A1 in a lower level (forsmall l1) is used to de�ne stopping times � in higher level (for big l1) suh that with highprobability the event E1stop(�) holds. Also the output in lower level is used as an input o for A1 in higher level. In the perspetive of suh a feedbak, the result of the presentpaper beomes neessary; in fat, this is the ore of the overall senery reonstrution.7.1.4 PreviewLet us briey introdue some main ideas behind the onstrution ofA1. We begin with thedesription of a ladder word. Let x; y 2 Z be two loation points suh that y = x+ 1l1L,where 1 is a �xed onstant, spei�ed in Setion 7.3.6. A ladder word w is the piee



292 Chapter 7. Retrieving the exat sequeneof observations that S generates by moving from x to y as quikly as possible. Sinethe length of the maximum step of S is L, then for � =  the desribed ladder word isobviously the vetor� (x);  (x + L); : : : ;  (x+ (1l1 � 1)L));  (y)�: (7.1.4)The importane of the ladder words in senery reonstrution omes form the fat thatthey an be sometimes reognized (with high probability). Indeed, suppose we "see x andy in �", i.e. looking at the observations, we know exatly when S is in loation x and inloation y. In this ase, we an almost surely identify (7.1.4): just look at all ourrenesof x and y in � with minimal distanes. The words ourring in � between x any y are(a.s.) always the same and equal to (7.1.4). The formal de�nition of ladder words is givenin Setion 7.3.1.The algorithm A1 onsists of two phases. In the �rst phase, A1 builds a olletion ofladder words, W1. For this, we introdue a seletion rule: an observation-word w passesthe seletion and will be olleted as a ladder word, if it satis�es ertain riterions. Inthe seond phase, A1 assembles the words of W1 to produe a word of length 4 exp(2l1)as the output. The assembling-rule of the seond phase is straightforward: we start withthe given piee  o, and we attah a ladder word w 2 W1 with it only if w has an overlapwith  o at least 1l14 . Thus, the seond phase looks like a puzzle playing. The role of o beomes now obvious {  o is the starting piee (the "seed") for our puzzle. For theseond phase to works, it is learly neessary that every ladder word of length 1l14 oursonly one in �j[�e3l1 ; e3l1 ℄. It turns out that for 1 big enough, the latter holds with highprobability (Proposition 7.3.1). Clearly, it is neessary that W1 ontains enough ladderwords. On the other hand, for A1 to work, it is also neessary that W1 ontains onlyladder words. This means that the seletion rule for W1 must be balaned { it annotbe neither too strit nor to weak. To onstrut suh a seletion rule is the most diÆultpart of the senery reonstrution.Simpli�ed seletion ruleThe seletion rule is based on the fat that (with high probability) some loation pairs(x; y) suh that y = 1l1L+x an be seen from observations. This is done by the loationtests. Roughly speaking, a loation test for y is the proedure that allows us to takedeision, whether a partiular observation �(t) was generated on y (i.e. S(t) = y) or not.As explained before, with suh information in hand, one an easily "ollet" the ladderword (7.1.4).Let us briey introdue the main ideas behind the loation test for y. For tutorial reason,we start with a very unrealisti and oversimpli�ed version of the tests and then, step bystep, we approah to the real tests.Let � =  . We onsider a long piee of senery  j[y; y + lm℄, where l; m are suÆientlybig onstants; and we aim to de�ne a (name) funtion g( j[y; y + lm℄) =: gy( ) as wellas a (name reading) funtion ĝ(w); w 2 f0; 1glm2+1 suh that the following holds1 If S(t) � y, then ĝ(�j[t; t + lm2℄) is able to reprodue gy(�) with ertain positiveprobability;2 If S(t) < y, then the probability that ĝ(�j[t; t+ lm2℄) reprodues gy(�) is negligible.



7.1. Introdution and Result 293In other words, we try to de�ne the name funtion g and the name-reader ĝ suh thatĝ(�j[t; t+ lm2℄) reads gy( ) only if the piee of observation �j[t; t+ lm2℄ satis�es S(t) � y.Similarly, to get a loation test for x, we de�ne the name funtion g�( j[x�lm; x℄) =: g�x( )and the (name reading) funtion ĝ�(w); w 2 f0; 1glm2+1 suh that the following holds1* If S(t) � x, then ĝ�(�j[t � lm2; t℄) is able to reprodue g�x(�) with ertain positiveprobability;2* If S(t) > x, then the probability that ĝ�(�j[t� lm2; t℄) reprodues g�x(�) is negligible.It is easy to see that g� and ĝ� an be dedued from g and ĝ { just de�ne g�(w) := g(w�)and ĝ�(w) := ĝ(w�).Suppose, for a moment, that we have a working loation tests for a pair (x; y), withy = x+ 1l1L: Moreover, suppose that "being able to reprodue" above just means equal-ities ĝ(�j[t; t + lm2℄) = gy( ), ĝ�(�j[t; t + lm2℄) = g�x( ) and "is negligible" means beingzero. In this ase, the reonstrution (or olleting) of the word (7.1.4) is rather straight-forward. Indeed, for eah t � 0 de�ne the observation wordsw1(t) := �j[t� lm; t℄; w2(t) := �j[t; t+1l1℄; w3(t) := �j[t+1l1; t+1l1+ lm2℄ (7.1.5)and apply the name-reading funtions ĝ�(w1(t)) and ĝ(w3(t)). Beause S is reursive, a.s.there exists a t suh that ĝ�(w1(t)) = g�x( ) and ĝ(w3(t)) = gy( ). In partiular, thisimplies that S(t) � x and S(t + 1l1) � y: (7.1.6)On the other hand, during 1l1 steps, the random walk S annot move more than 1l1L.But this is exatly the distane between x and y. Hene, the only possibility for (7.1.6)to hold is that both inequalities are equalities. In this ase, w2(t) equals the ladder word(7.1.4).The example above is unrealisti in many respet. It is obvious that a neessary onditionfor the loation test to work is that there is no z < y suh that  j[z; z+lm℄ =  j[y; y+lm℄.But from the de�nition of � it follows that for almost all realizations suh a z exists (any�nite pattern ours in�nitely many times in �). Therefore, it is more realisti to assumethat the word  j[y; y+lm℄ is unique in a ertain piee of  jI1, only. Sine we are interestedin reonstruting the senery around the origin, from now on, we de�neI1 := [� exp(3l1); exp(3l1)℄and we onsider the pairs (x; y) in I1, only. Thus the onditions 2 and 2* are replaed byP�ĝ(�j[t; t+ lm2℄) = gy( ); S(t) 2 [� exp(3l1); y℄� = 0 (7.1.7)P�ĝ�(�j[t� lm2; t℄) = g�x( ); S(t) 2 [x; exp(3l1)℄� = 0: (7.1.8)Sine the above-desribed seletion rule now works only on I1, we have to modify theonstrution of (7.2.1) suh that S(t); S(t+ 1l1) 2 I1. For this we use the stopping times�(j). De�ne timesT 1(j) := �(j) + exp(2l1) + lm2; T 3(j) := T 1(k) + 1l1; j = 1; : : : ; exp(�l1): (7.1.9)



294 Chapter 7. Retrieving the exat sequeneNote that on Estop(�) it holds S(T 1(j)); S(T 3(j)) 2 I1, provided l1 is big enough. Nowthe words de�ned by T 1(j) and T 3(j) an be used. More preisely, we de�new1(j) := �j[T 1(j)� lm2; T 1(j)℄w2(j) := �j[T 1(j); T 3(j)℄w3(j) := �j[T 3(j); T 3(j) + lm2℄and we use the same seletion rule as previously, with w1(j); w2(j); w3(j) instead ofw1(t); w2(t); w3(t). Note that a neessary ondition for this rule is that the probabil-ity in 1 and 1* is so big that among exp(�l1) stopping times most likely there is at leastone j suh that ĝ�(w1(j)) = g�x( ) and ĝ(w3(j)) = gy( ): Also note that the T 1(j) is notde�ned right after �(j), but after �(j)+exp(2l1), instead. The reason for this is following:we are interested in reonstruting the a piee of senery with length 4 exp(l1) aroundorigin (reall the de�nition of E1alg works). This means that we have to ollet also theseladder words that are about 2 exp(l1) from origin. The stopping times �(j) stop S at mostexp(l1) from origin (on Estop(�)). Hene, for S to reah to the ladder words that are areabout 2 exp(l1) from origin, some additional time is needed.The rule in the previous example requires that we know the names g�x := g�x( ) andgy := gy( ). They depend on  that is unknown. However, by onditions 1 and 1*,the names g�x and gy an be red with positive probability. We now modify the sele-tion rule to take into onsideration that g�x and gy are not known. The modi�ation isbased on the fat that the probability to read g�x and gy is so big that among exp(�l1)pairs ĝ�(w1(j)); g(w3(j)) there is at least exp(l1) pairs suh that ĝ�(w1(j) = g�x andg(w3(j)) = gy (with high probability, of ourse). Here 0 <  < � is a properly hosen pro-portion. If the latter holds, then there exists a pair of names g�1; g3 suh that the numberof stopping times satisfying ĝ�(w1(j) = g�1 and g(w3(j)) = g3 is more than exp(l1). Un-fortunately, there an be many pairs having the same property. To hoose the right pair,we riep bene�t from the onditions (7.1.7) and (7.1.8). Due to these ondition, the rightpair of names g�x; gy has an important harateristi { for every j suh that ĝ�(w1(j)) = g�xand ĝ(w3(j)) = gy, the word w2(j) must be (7.1.4) and, therefore, the same. Our modi�edrule is the following:Simpli�ed seletion: The word w is taken as (7.1.4), if there exists a pair of namesg�1; g3 suh that the following holds:a) there exists more than exp(l1) stopping times suh thatĝ�(w1(j)) = g�1; ĝ(w3(j)) = g3; (7.1.10)b) for every j satisfying (7.1.10), it holds w2(j) = w.Avoiding non-ladder wordsIn the seletion rule above, the right hoie of  is ruial: if  is too big, then theprobability that the true ladder word passes the riterion a) beomes too small. On theother hand, if  is too small, then the probability that a non-ladder word passes theseletion rule beomes too big. Let us briey introdue the basi argument used to �nd



7.1. Introdution and Result 295a suitable lower bound for .Suppose z; z0 2 I1 suh that jz�z0j < L1l1. Consider the possible observation-words thatS generates by going from z to z0 in 1l1 steps. If 1 is big enough, then the probabilitythat all these words are the same, is small (Proposition 7.3.1). In Setion 7.3.1 we de�nethe event B1reon straight whih states that for every z; z0 2 I1 there are at least two possibleobservation-words that S an generate during its way from z to z0 with 1l1 steps. Anypath of S that onsists of 1l1 steps has the probability at least (pmin)1l1.Suppose w passes the seletion rule. Hene, there exists a set J � f1; : : : ; exp(�l1)g suhthat at least jJ j � exp(l1) and for eah j 2 J the following holds : jS(T 3(j))�S(T 1(j))j <Ll11 and w2(j) = w. Let Yk := 1 � Iw2(j1)(w2(jk)); where j1; j2; : : : are the elements ofJ . This means that Pexp(l1)k=2 Yk = 0. Suppose now that w is a non-ladder word. If theevent E1stop \B1reon straight holds, then, for eah k � 2, the probability that Yk = 1 annotbe smaller than (pmin)1l1 . Given S(T 1(jk)) and S(T 3(jk)) the random variables Yk areindependent. Now the H�o�ding's inequality an be used to estimate (see (7.3.21))P�exp(l1)Xk=2 Yk = 0���E1stop \ B1reon straight�� exp[�2 exp(( + 21 ln pmin)l1)℄:The right side of the previous display is exponentially small in exponentially small quantityof l1, if  > �21 ln pmin (see 7.3.31). Using the obtained bound, it is not hard to see thatthe probability that a non-ladder word passes the seletion rule is exponentially small inl1 (Proposition 7.3.2)..Note that in the foregoing argument we did not use any properties of g and ĝ. Hene, theargument applies also for the �nal seletion rule given in Subsetion 7.1.4.The namesIn this subsetion, we explain the nature of the funtions g and ĝ (reall that ĝ� and g�are pratially the same). The onstrution of these funtion is based on the followingtheorem proved in [15℄Theorem 7.1.2. There exists onstants  > 0 (not depending on n), N <1, m(n) > n,the maps g : f0; 1gm+1 7! f0; 1gn2+1ĝ : f0; 1gm2+1 7! f0; 1gn2and the sequene of events Bell OK(n) 2 �(�(z)jz 2 [�m; m℄) suh that:1) P (Bell OK(n))! 12) For all n > N and  n 2 Bell OK(n):P n�ĝ(�m20 ) v g( m0 )���S(m2) = m� = P � ĝ(�m20 ) v g( m0 )���S(m2) = m; � =  n� > 3=4:3) g(�m0 ) is an i.i.d. binary vetor where the omponents are Bernoulli with parameter1=2.



296 Chapter 7. Retrieving the exat sequene(Note the abuse of notation: in [15℄ the sign "4" was used instead of "v".)From now on we assume that n > N and m(n) are �xed onstant. We speify them inSetion 7.3.6. Theorem 7.1.2 provides a test that uses m2 observations �t+m2t to test thehypotheses: Ho : S(t) = y;H1 : S(t) < y � Lm2given S(t +m2) = S(t) +m and � 2 Bell OK(n). Indeed, it S(t) < y � Lm2, then �t+m2tis independent of g(�y+my ): By the properties of �,P�ĝ(�t+m2t ) v g(�y+my )� = �ĝ(�t+m2t ) v g(�m0 )� � �12�n2�1:On the other hand, if  2 EOK, then onditional on A := f� 2 Bell OK(n); S(t +m2) =m;S(t) = yg it holds P�ĝ(�t+m2t ) v g(�y+my )���A� > 34 :The funtions g and ĝ look like the desired name and name-reading proedures. Indeed,there is ertainly a positive probability that ĝ(w3(j)) "reprodues" g( j[y; y+m℄), where"reproduing" now means the relation ĝ(w3(j)) v gy (note that in this ase "v" atuallymeans the equality to the �rst or last bit). On the other hand, the following modi�ationof the (7.1.7) holdsP�ĝ(�j[t; t+m2℄) v g( j[y; y+m℄); S(t) 2 [� exp(3l1); y�Lm2)� =�12�n2�1: (7.1.11)So, taking n big enough, we an make the right side of (7.1.11) as small as we want.Unfortunately, for several reasons, the funtions from Theorem 7.1.2 is not good enough.Reall that we want the mistake (7.1.3) to be exponentially small in l1. The right side of(7.1.11) does not depend on l1. To handle this, we apply Theorem 7.1.2 repeatedly. Thisproedure is alled iteration and it is the subjet of Setion 7.2. Let us briey introduethe main ideas behind the iteration.From now on, we de�nel := l1 � l2; where l2 is �xed positive integer, spei�ed in Setion 7.3.6:We shall apply the funtions g and ĝ from Theorem 7.1.2 l times onseutively. Letw = (w(0); : : : ; w(lm)) 2 f0; 1glm+1. We de�ne l sub-words, alled ellswi = �w((i� 1)m); � � � ; w(im)�; i = 1; : : : ; l:Note that wi and wi+1 are not disjoint. Using the sub-words wi, we naturally extend thede�nition of g to the words in f0; 1glm+1: We de�neg : f0; 1glm+1 7! f0; 1gl(n2+1); g(w) = (g(w1); : : : ; g(wl)):Note that we denote by g the funtion in Theorem 7.1.2 as well as its extension (theyoinide if l = 1).



7.1. Introdution and Result 297Similarly, let v = (v(0); : : : ; v(lm2)) 2 f0; 1glm2+1. We de�ne ellsvi = �v((i� 1)m2); : : : ; v(im2)�; i = 1; : : : ; l:Using the sub-words vi, we extend the de�nition of ĝ to the words in f0; 1glm2+1: Wede�ne ĝ : f0; 1glm2+1 7! f0; 1gln2; ĝ(v) = (ĝ(v1); : : : ; ĝ(vl)):We now give a more aurate interpretation to the phrase "to reprodue" in the desription1. Sine the "name-reading" or "reproduing" proedure is based on Theorem 7.1.2, it isnatural to expet that ĝ(�j[t; t+m2l℄) reprodues g( j[y; y+ml℄), if the relation v holdsell-wise, i.e. ĝ(�j[t+(i�1)m2; t+ im2℄) v g( j[y+(i�1)m; y+ im℄) for eah i = 1; : : : ; l.Note that Theorem 7.1.2 gives lower bound to the probabilityP �ĝ(�j[t + (i� 1)m2; t+ im2℄) v g( j[y + (i� 1)m; y + im℄)�;only if the piee of senery  j[y + (i � 1)m � m; y + (i � 1)m + m℄ belongs to the setEnell OK. If this is the ase, we say that the ell  j[y + (i� 1)m; y + im℄ is OK.For eah (long) piee of senery  j[y; y+ lm℄ we now orrespond the index set I( j[y; y+lm℄) =: Iy( ) � f1; : : : ; lg of OK-ells. Similarly, we de�ne I�( j[x� lm; x℄) := I(( j[x�lm; x℄)�) (the reader should be warned that now we only give a simpli�ed de�nition of Iand I�; the �nal de�nition is given in Setion 7.2.1).Although Enell OK has the probability lose to one, sine l is big, we expet a proportion ofells not to be OK, i.e Iy 6= f1; : : : ; lg. We say that  j[y; y+ lm℄ is OK, if at least l(1�3�)ells are OK, i.e jIy( )j � l(1�3�). We say that  j[x� lm; x℄ is OK*, if ( j[x� lm; x℄)� isOK. Equivalently,  �j[�x;�x+ lm℄ is OK. We denote by B1intervals OK the set of seneriesthat satisfy:  j[y; y + lm℄ is OK and  j[x � lm; x℄ is OK* for every pair (x; y) 2 I1. Inpartiular, if  2 B1intervals OK, then jIy( )j; jI�x( )j � (1� �)l. The proportion � is hosensuh that P (B1intervals OK) is suÆiently big (Theorem 7.2.1 and the estimation (7.3.10)).For not OK ells, the statement 2) of Theorem 7.1.2 needs not hold, and the ell-wisereproduing might fail. Hene, we relax the requirement of the full ell-wise reproduingto the requirement that the OK ells are reprodued. More formally, for any subsetI � f1; : : : ; lg, we de�ne ĝ(w) vI g(v), if ĝ(wi) v g(vi), 8i 2 I: Now we say thatg(�j[t; t+m2l℄) reprodues gy( ), ifg(�j[t; t+m2l℄) vI( ) gy( ):If  2 B1intervals OK, then the latter means that ell-wise reprodution holds for at leastl(1� 3�) ells.Getting seletedLet us now give some insight, how do we show that the probability for a ladder word(7.1.4) to pass the seletion is suÆiently high. What follows, is a simpli�ed version ofProposition 7.3.2. In the present subsetion we assume thatjxj; jyj � 4 exp(l1):



298 Chapter 7. Retrieving the exat sequeneDe�neEj(x; y) := 8>><>>: S(T 1(j)� lm2) = x� lmS(T 1(j)) = x; S(T 3(j)) = y;ĝ�(w1(j)) vI�x(�) g�x(�);ĝ(w3(j)) vIy(�) gy(�) 9>>=>>; ; Yj := IEj ; j = 1; : : : ; e�l1 :Clearly (7.1.4) passes the seletion ifne�l1Xj=1 Yj > el1o:Now, by the Markov property of S, for eah  P �Yj = 1jEstop(�)�=P �S(T 1(j)� lm2) = x� lm���Estop(�)��P �S(T 1(j)) = x; ĝ�(w1(j)) vI�x( ) g�x( )���S(T 1(j)� lm2) = x� lm��P �S(T 3(j)) = y���S(T 1(j)) = x��P �ĝ(w3(j)) vIy( ) gy( )���S(T 3(j)) = y�:Reall that T 1(j)� lm2 = �(j) + exp(2l1). By Estop(�), jS(�(j))j � exp(l1). We use theloal entral limit theorem (LCLT) to estimateP �S(�(j) + e2l1) = x� lm��Estop(�)� � infz:jzj�4 exp(l1)P �S(�(j) + e2l1) = z��Estop(�)�� infz:jzj�5 exp(l1)P �S(e2l1) = z) � exp(�1:5l1);provided l1 is big enough. By the de�nitions of w1(j), ĝ� and I�, we haveP �S(T 1(j)) = x; ĝ�(w1(j)) vI�x( ) g�x( )���S(T 1(j)� lm2) = x� lm� =P �S(T 1(j)) = x; ĝ�(�j[T 1(j)� lm2; T 1(j)℄) vI( j[x�lm;x℄)� g�( j[x� lm; x℄)�����S(T 1(j)� lm2) = x� lm� =P �S(lm2) = x; ĝ�(�x�lmj[0; lm2℄) vI( �j[�x;�x+lm℄) g( �j[�x;�x + lm℄)� =P �S(lm2) = x; ĝ�(�x�lmj[0; lm2℄)�� vI�x( �) g�x( �)�By symmetry of S, for eah set V � f0; 1gln2, we haveP �S(lm2) = x; ĝ�(�x�lmj[0; lm2℄)�� 2 V� = P �S(lm2) = x� lm; ĝ��xj[0; lm2℄� 2 V�:The right side of the previous display equalsP ��S(lm2) = �x + lm; ĝ���xj[0; lm2℄� 2 V�:



7.1. Introdution and Result 299Hene,P �S(T 1(j)) = x; ĝ�(w1(j)) vI�x( ) g�x( )���S(T 1(j)� lm2) = x� lm� =P ��S(lm2) = �x + lm; ĝ���xj[0; lm2℄� vI�x( �) g�x( �)� =P ��S(T 3(j) + lm2) = �x + lm; ĝ��j[T 3(j); T 3(j) + lm2℄� vI�x( �) g�x( �)���S(T 3(j) = �x)� =P ��S(T 3(j) + lm2) = �x + lm; ĝ�w3(j)� vI�x( �) g�x( �)���S(T 3(j) = �x)�:Suppose  2 B1intervals OK. Then the probability in the previous display has the lowerbound inf : j[y;y+lm℄ is OKP �S(T 3(j) + lm2) = y + lm; ĝ(w3(j)) vIy( ) gy( )���S(T 3(j)) = y�:(7.1.12)Indeed, (7.1.12) does not depend on y any more. It is not very hard to see now that by2) of Theorem 7.1.2, (7.1.12) an be bounded below byinf : j[y;y+lm℄ is OK Yi2I( )P �ĝ(�im2(i�1)m2) v g( im(i�1)m)���S(im2) = S((i� 1)m2) +m� � �34�l:Finally, for every  , P �S(T 3(j)) = y���S(T 1(j)) = x� = (pL)1l1 :Hene, if  2 B1intervals OK, we haveP �Yj = 1jEstop(�)�� exp(�1:5l1)�34�l(pL)1l1�34�l = exp[�(1:5�2 ln(34)l2�1 ln(pL))l1℄:(7.1.13)Conditional on Estop and  , the random variables Yj are independent. Using H�o�ding'sinequality, it is now not diÆult to show that � and  an be hosen suh thatP�e�l1Xj=1 Yj � el1 ; B1intervals OK \ Estop(�)�is exponentially small in l1: Sine P (B1intervals OK) is big (7.3.10), we obtain that the theprobability of seleting (7.1.4) is suÆiently big.Avoiding mistakesIn the previous subsetions we saw how the seletion rule works if "being negligible"in 2 means "equal to zero". The latter is unrealisti and annot be guaranteed. Wenow modify the seletion rule suh that the the probability in 2 is onsiderably small inomparison with the (modi�ed version of the) right side of (7.1.13) (whih also goes tozero as l1 grows). To explain the meaning of the additional modi�ation, we onsider theeventsEz;I := �8i 2 I we have that Sz(m(i� 1)) < m(i� 1)� Lm2	 ; I � f1; : : : ; lg:(7.1.14)



300 Chapter 7. Retrieving the exat sequeneSuppose Ez;I holds. Then, for eah ell i 2 I, the random variables �zj[(i � 1)m; im℄and �j[(i � 1)m; im℄ are independent. By 3 of Theorem 7.1.2, we then have P (�zj[(i �1)m; im℄ v �j[(i� 1)m; im℄) = (0:5)n2�1: This implies P (ĝ(�lm2z ) vI gy(�)) � (0:5)(n2�1)jIjand, for l big enough the latter yieldsP �B1intervals OK \ fĝ(�lm2z ) vIy(�) gy(�)g \ Ez;I(�)� � exp[�(0:3n)l℄: (7.1.15)(Corollary 7.2.1). Reall that on B1intervals OK. Sine n an be hosen very big, the rightside of (7.1.13) an be as many times bigger than exp[�(0:3n)l℄ as we want. This propertytogether with the fat that P (B1intervals OK) is big makes the seletion rule work.We now de�ne an additional harateristi of  j[y; y+ lm℄, denoted by q( j[y; y+ lm℄) =:qy( ), and orresponding "reading funtion" q̂(w), w 2 f0; 1glm2+1 suh that for eah j,we have3 If S(T 3(j)) � y, then q̂(w3(j)) reprodues qy(�) with ertain probability,4 If S(T 3(j)) < y, then q̂(w3(j)) reprodues qy(�) only if Ez;I(�) holds.Denote z = T 3(j). Note the di�erene with 1 and 2: if z � y, then q̂ and q must ful�llthe requirement like 1. Of ourse, the meaning of "reprodution" is now di�erent, weshall all it q-reprodution. For z < y, the requirements for q and q̂ are di�erent fromthat one in 2 { we do not require that the probability for q-reprodution is small. We re-quire instead that the q-reproduing always implies Ez;I(�). And then, as we just saw, theprobability that ĝ(w3(j)) vI(�) gy(�) (the g-reprodution, in the sequel) is exponentiallysmall (at least for y = 0, but the ase for general y is not di�erent). Hene, we onsider gand q together. For a ladder word to be seleted, both q-and g-reprodution must simul-taneously hold (for exp(l1) stopping times, as usually). In the ase z � y, the additionalrequirement obviously redues the probability (7.1.13); however, if the q-reprodution hasa relatively big probability, then the lower bound like (7.1.13) might still hold. In the asez < y, the q-reprodution of qy(�) (whih might hold with rather big probability) impliesEz;I(�), and then the probability of g-reprodution is very small.The idea of q-reprodution is partially based on the fat that we do not need everyladder word (7.1.4) with x; y 2 I1 do be olleted. So far, we have not restrited ourhoie of x (y is obviously uniquely determined by x). Now we onsider pairs (x; y) thatsatisfy pair (x; y) that (y � L) = � � � =  (y � 1) 6=  (y) = � � � =  (y +m3L) 6=  (y +m3L+ 1) = � � � =  (y +m3L+ L)(7.1.16) (x + L) = � � � =  (x + 1) 6=  (x) = � � � =  (x�m3L) 6=  (x�m3L� 1) = � � � =  (x�m3L� L):(7.1.17)Suh pairs are alled a barriers. The barriers are random, they depend on �. The eventB1enough barriers, formally de�ned in Setion 7.3.1 states that we have suÆiently many bar-riers. In Proposition 7.3.1 we show that this event has high probability if l1 is big enough.To the end of this setion we assume y = 0 and we skip y from the notation.



7.1. Introdution and Result 301Let  j[(2Lm2 � 1)m; (2Lm2)m℄ be the �rst OK ell of  . In terms of ell indexes,2Lm2 = i1 := minI( ).Let z < y. We onsider now the random walk Sz, and we want to be able to see fromthe observations �zj[0; (i1 � 1)m2℄ whether Sz((i1 � 1)m2) < (i1 � 1)m� Lm2, i.e. Ez;i1holds. The number m(n) is ertainly so big that (2Lm2�1)m�Lm2 > Lm3. Hene Ez;i1holds, if Sz((i1 � 1)m2) � m3L. The latter obviously holds Sz(t) � m3L 8t � (i1 � 1)m2,whih, in turn, holds if the observation-word �zj[0; (i1� 1)m2℄ has the following property:�zj[0; (i1 � 1)m2℄ does not ontain at least m3 onseutive same olors followed by thedi�erent olor. Indeed, in order to reah a point z0 > m3L, the random walk Sz mustgenerate at leastm3 onseutive same-olor observations and then at least one observationof the other olor.Hene, when �zj[0; (i1 � 1)m2℄ satis�es the mentioned ondition, we an be sure thatSz(t) � m3L 8t � (i1 � 1)m2, i.e. Ez;i1 holds. If the ondition is not met, then the word�zj[0; (i1 � 1)m2℄ is not onsidered for g-reprodution, it will be �ltered out.Suppose now z = 0. In this ase we want that �zj[0; (i1 � 1)m2℄ = (i1 � 1)m. Thisgives a big hane for g-reprodution of the i1-th ell ĝ(�j[(i1 � 1)m2; i1m2℄) v g( j[(i1�1)m; i1m℄). But in this ase the observation-word �j[0; (i1 � 1)m2℄ de�nitely ontains m3onseutive same olors followed by the di�erent olor and suh a word will be �lteredout. Therefore, we must adjust the desribed ondition to make sure that (with ertainprobability) the word �j[0; (i1 � 1)m2℄ will be not �ltered out. For this note: in order toreah from z < 0 to z0 > m3L, the random walk must generate (in the observations) atleast m3 onseutive same olors, having the di�erent olor at the beginning and at theend. On the other hand, to reah from 0 to z0 > m3L, the random walk an follow thepath that begins with m3 same olors, hene the word �j[0; (i1 � 1)m2℄ will not nees-sarily ontain least m3 onseutive same olors with the di�erent olor in the beginning(although this event has probability bigger than 12).A word (w(0); w(1); : : : ; w(u � 1); w(u)) is alled blok with length u, if w(0) 6= w(1) =� � � = w(u � 1) 6= w(u). Hene the �ltering rule is: the word �j[0; (i1 � 1)m2℄ will be�ltered out, if it ontains a blok with length at least m3. Suh bloks are alled big.For eah blok B in  , we de�ne the reading length of B as the length of the smallest blokthat the random walk generates in observations by rossing it. If the length of B is Lm3,then the reading length of B is roughly m3 (see Setion 7.2.3 for the formal de�nitionand examples). Suppose now that i1 > 2Lm2 and there is one blok with B the readinglength at least m3 between m3L+L and (i1� 1)m�Lm2. Then, to reah (i1� 1)m fromy, the random walk neessarily generates at least one big blok in observation. To reah(i1 � 1)m from z < 0, the random walk neessarily generates at least two big blok inobservations. Hene, the �ltering rule in this ase is: �j[0; (i1� 1)m2℄ will be �ltered out,if it ontains more than one big blok.Generally, we proeed as follows: we de�ne I( ) to be indexes if ells that are not onlyOK, but have the additional property: if i 2 I( ) then  j[(i� 1)m�Lm2; im+ lm2℄ an-not be a part of any blok with reading length at least m3 (see Setion 7.2.1). This meansthat any blok B with the reading length at least m3 must end before (i � 1)m � Lm2.This makes our q-reprodution proedure to work. We all a group of bloks with readinglength at least m3 a big luster if the random walk an ross the group by generating onlyone big blok in observations. Note that all big lusters of  j[0; lm℄ are loated in thepiees of  orresponding to the ells f1; : : : ; lgnI( ) =: I( ).



302 Chapter 7. Retrieving the exat sequeneFor eah i we ount all big lusters in  j[0; im℄, for eah i = 1; 2; : : : ; l and we omparethem with the big lusters in �zj[0; im2℄ for eah i. Formally, e de�ne the funtionsq : f0; 1glm+1 7! N l ; and q̂ : f0; 1glm2+1 7! N las follows: q(w) = (q1(w); : : : ; ql(w)); q̂(v) = (q̂1(v); : : : ; q̂l(v)) whereqi(w) := number of big lusters ontained in sub-vetor (w(0); : : : ; w(im))q̂i(v) := number of big bloks ontained in sub-vetor (v(0); : : : ; v(im2)):As usually we de�ne q�(w) := q(w�) and q̂�(v) = q̂�(v�).We denoteq̂(v) � q(w) �q̂�(v) � q�(w)� if and only if q̂i(v) � qi(w) �q̂�i (v) � q�i (w)� for all i:Hene, if q̂(�zj[0; lm2℄) � q( j[0; ml℄) =: q( ), then for eah i, the number of big bloksin �zj[0; im2℄) is not bigger than the number of big lusters in  j[0; mi℄. The foregoingargument shows that in ase z < y, this implies that Sz is always "one luster-end behind"implying Ez;I( ).If z = 0, then the observation word �j[0; lm2℄ will be not �ltered out if, for eah i 2 I( ),the S moves from 0 to (i� 1)m generating as few big bloks in observations as possible.In Proposition 7.2.1 we show that this event has the probability bigger than(pmin)jI( )jm2 :This follows from the observation that this partiular event restrits the behavior if Syduring its stay on the ells in I( ), only. The bound on the previous display is bigenough to still have the bound like (7.1.13) (Theorem 7.2.3).Final seletionWe are now ready to de�ne the �nal version of the seletion rule.* Note, for every u 2 f0; 1glm+1, q(u) = (q1; : : : ; ql) is vetor, suh that qi = f0; 1; : : : ; lg,q1 = 0 and qi � qi+1 � qi + 1. Any suh vetor is alled a q-vetor. Hene, for every u,q(u) and q�(u) are q-vetors.Reall that, for any u 2 f0; 1glm+1, g(u) = (g1; : : : ; ql); where gi 2 f0; 1gn2+1. Anysuh word is alled a g-word. Hene, for eah u, g(u) and g�(u) are g-words.In setion 7.2.1 we shall give the formal de�nition of Iy(�) and I�x(�). When B1intervals OKholds, then jIy(�)j; jI�x(�)j � (1� 3�)l for eah pair x; y 2 I1.* We all (I�; I; q�; q; g�; g) a set of attributes, if I�; I � f1; : : : ; lg, jI�j; jIj � l(1 �3�(n)); q; q� are q-vetors and g�; g are g-words.Reall the de�nition if observation words w1(j); w2(j); w3(j), j = 1; : : : ; exp(�l1). Foreah set of attributes (I�; I; q�; q; g�; g) we de�ne the set J(I�; I; q�; q; g�; g) � [1; exp(�l1)℄as follows:



7.2. Iteration 303j 2 J(I�; I; q�; q; g�; g) if and only if j satis�esq̂�(w1(j)) � q�; ĝ�(w1(j)) vI� g�; q̂(w3(j)) � q; ĝ(w3(j)) vI g: (7.1.18)As desribed, the seletion rule is based on g- and q-reprodution, and it onsists of twoparts { getting seleted and avoiding non-ladder words. The priniple of the �nal seletionis exatly the same as the one of simpli�ed seletion desribed in Subsetion 7.1.4.With g- and q-reprodution, the getting seleted part (a)) means that (with high probabil-ity) for eah x; y 2 I1, y�x = L1l1 there exists a set of attributes (I�; I; q�; q; g�; g) and atleast exp(l1) stopping times �(j) with orresponding index set J(x; y) suh that for eahj 2 J(x; y), (7.1.18) hold and the word w2(j) is the same, say w. Hene the �rst require-ment of seletion rule is to hek whether there exists a set of attributes (I�; I; q�; q; g�; g)suh that 9J 0 � J(I�; I; q�; q; g�; g) suh that jJ 0j � exp(l1) and j 7! w2(j) is onstanton J 0. The existene of suh set of attributes and index-set J 0 an be easily heked.The seond requirement of the seletion rule (b)) is avoiding the non-ladder words. Wealready know that if (x; y) form a barrier then (with high probability) the vetors q�x(�),qy(�) and words g�x(�) and gy(�) annot be read somewhere else. Hene, if I�; I; q�; q; g�; gfound in the �rst step are indeed I�x(�); Iy(�) q�x(�), qy(�), g�x(�), gy(�) as we want them tobe, and if w is the word to be seleted, then the following must hold: whenever there is astopping time index j satisfying (7.1.18), then w2(j) = w. Thus, the set J 0 must atuallybe J(I�; I; q�; q; g�; g).We now give the formal de�nition of the seletion rule.De�nition 7.1.1. We de�ne the setW =W(�12�l1 ; �) as follows. A word w 2 f0; 1g1l1+1belongs to W if and only if there exists a omplet of attributes (I�; I; q�; q; g�; g) suh thatthe following onditions are satis�ed:a) jJ(I�; I; q�; q; g�; g)j > exp(l1)b) if j 2 J(I�; I; q�; q; g�; g), then w2(j) = w.7.2 IterationIn this Setion, we formalize g- and q-reprodution, desribed in Subsetion 7.1.4. Webegin with the de�nition of the OK-piees of senery, and we prove that a long pieeof random senery is typially OK (Theorem 7.2.1). In Subsetion 7.2.2, we prove theinequality (7.1.15) (Theorem 7.2.2). In Subsetion 7.2.3, we formalize q-reprodution andwe found a suitable lower bound for (7.1.12) (Theorem 7.2.3). This is the main ingredientfor obtaining the lower bound (7.1.13). Finally, in Subsetion 7.2.4 we show how thebarriers make the whole name-reading proedure to work.Throughout the setion, n, m(n) and l > 2Lm2 are �xed integer.



304 Chapter 7. Retrieving the exat sequene7.2.1 OK ellsIn Theorem 7.1.2 we de�ned the set Bell OK(n) 2 �(�(z)jz 2 [�m; m℄) that ontains alltypial piees of seneries in interval [�m; m℄. In this de�nition,  > 1 is a �xed integernot depending on m. Thus, any word w 2 f0; 1g2m+1, regarded as a piee of seneryrestrited to [�m; m℄ either belongs to Bell OK(n) or not. We say that suh a word wis ompletely OK, if w 2 Bell OK(n).* Let w := (w(1); : : : ; w(N)); w(j) 2 f0; 1g be a word. Consider a sub-word wa+ma of w.We say that wa+ma is weak-OK, if a � m � 1, a + m � N and the extension of w,wa+ma�m is ompletely OK.Thus, any word of length m is weak-OK, if it is a ertain sub-word of a larger word oflength 2m that is ompletely OK.Let ' 2 f0; 1gI be a piee of senery. Consider a subinterval [a; a + m℄ � I suh that[a � m; a + m℄ � I We say that 'j[a; a + m℄ is weak-OK, if 'j[a � m; a + m℄ isompletely OK. If ' is �xed we skip it from notation and we express the properties interms of supports: we say that [a; a+m℄ is weak-OK, if [a�m; a+m℄ is ompletely OK.* De�ne integer intervalsDi :=: [di�1; di℄ := (di�1; : : : ; di); where di := im; i = 1; 2 : : : :Clearly Di-s are not disjoint, Di\Di+1 = fdig . It is also lear that D1[� � �[Dl = [0; lm℄.* Consider the words w 2 f0; 1glm+1. For eah suh a word we de�ne l sub-words, alledells w1; : : : ; wl as follows:wi 2 f0; 1gm+1; wi := wdidi�1 = (w(di�1); : : : ; w(di)); i = 1; : : : ; l: (7.2.1)Hene, when speaking about a ell wi, we always onsider it as a sub-word of a longerword w with the length lm. Regarding w as a mapping, we equivalently de�ne wi = wjDi.* Using the representation (7.2.1) we de�ne the sets of indexesII(w) := fi 2 [2Lm2; l℄ : wi is weak-OKg:Hene II(w) is a set of all indexes bigger than 2Lm2 suh that wi is weak-OK.* We say that binary word w = (w(1); : : : ; w(N)) of length at least N � m0:9 isempty, if there is no index j suh that w(j) = w(j + 1) = � � � = w(j + m0:9). Wesay that a ell wi has empty neighborhood if di + Lm2 � lm, di�1 � Lm2 � 0 and(w(di�1 � Lm2); : : : ; w(di + Lm2)) is empty.* We say that a word (w(1); : : : ; w(N)) ontains a fene if 91 � i � N � 2L + 1suh that w(i) = � � � = w(i+ L� 1) 6= w(i+ L) = � � � = w(i+ 2L� 1):We say that a ell wi in representation (7.2.1) is isolated, if Lm + 2 � i � l � Lm � 1and both (sub-)words, wi+Lm+1 = (w(di + Lm2); : : : ; w(di + Lm2 +m)) and wi�(Lm+1) =(w(di�1 � Lm2 �m); : : : ; w(di�1 � Lm2)) ontain a fene.



7.2. Iteration 305In terms of piees of seneries.Let ' 2 f0; 1gI be a piee of senery. Consider a subinterval [a; a +m℄ � I. We say that'j[a; a +m℄ has empty neighborhood, if 'j[a� Lm2; a +m + Lm2℄ is empty. When ' is�xed, we also say that [a; a+m℄ has empty neighborhood (for ').We say that 'j[a; a + m℄ is isolated, if 'j[a � Lm2 � m; a � Lm2℄ and 'j[a � Lm2 +m; a + 2m + Lm2℄ both ontain a fene. For �xed ', we say [a; a + m℄ is isolated, if[a� Lm2 �m; a� Lm2℄ and [a� Lm2 +m; a+ 2m+ Lm2℄ both ontain a fene (for ').* Let w be as in (7.2.1). De�neI1II(w) := fi 2 [2Lm2; l℄ : wi is isolatedgI2II(w) := fi 2 [2Lm2; l℄ : wi has empty neighborhoodgIII(w) := I1II(w) \ I2II(w); I(w) := II(w) \ III(w):* Let �(n) := P (Bell OK(n)) _ exp(�m0:7). We know, that �(n) ! 0. Consider a wordw 2 f0; 1glm+1. We say that w is OK ifjII(w)j � l(1� 2�(n)) and jIII(w)j � l(1� exp(�m0:7));Reall the de�nition �ml := �j[0; lm℄ and let us de�ne the eventsEOK := f�ml is OKgEOKa := ���II(�ml)�� � l(1� 2�(n))	EOKb := ���III(�ml)�� � l(1� exp(�m0:7))	 :Clearly, EOK = EOKa \ EOKb (7.2.2)and on EOK jI(�ml)j � l(1� 3�(n)): (7.2.3)The following theorem states that for n big enough, the probability of EOK is exponentiallydereasing in l. Hene, EOK represents the typial behavior of �ml. The proof is based onH�o�ding's inequalities and we leave it to Appendix.Theorem 7.2.1. There exists N <1 suh that for eah n > N there exists a(n) > 0 notdepending on l suh that for all l big enough the event EOK is independent on �Lm3 andP (EOK) � 1� e�al:7.2.2 Iterated g-funtionsReall the funtion g : f0; 1gm+1 7! f0; 1gn2+1 and ĝ : f0; 1gm2+1 7! f0; 1gn2 from Theorem7.1.2. In the present setion we extend these de�nitions to the sets f0; 1glm and f0; 1glm2+1.* Let w 2 f0; 1glm+1. Using the ell-representation (7.2.1) we extend the de�nition of gas followsg : f0; 1glm+1 7! f0; 1gl(n2+1); g(w) := (g(w1); g(w2); : : : ; g(wl)): (7.2.4)



306 Chapter 7. Retrieving the exat sequeneNote: by de�nition wi and wi+1 are not disjoint - they have a ommon bit. However, bythe de�nition, g does not depend on the �rst bit. Hene, applied on the senery �ml, theomponents gi(�ml) and gj(�ml) are independent.* De�ne intervalsTi :=: [ti�1; ti℄ := (ti�1; : : : ; ti); where ti := im2; ; i = 1; 2 : : : :So, Ti-s are de�ned as Di-s with m2 instead of m.Clearly Ti-s are not disjoint, Ti \ Ti+1 = ftig . It is also lear that T1 [ � � � [ Tl = [0; lm2℄.* Consider words v = (v(1); : : : ; v(lm)) 2 f0; 1glm2+1. For eah suh a word we de�ne lsub-words, v1; : : : ; vl as follows:vi 2 f0; 1gm+1; vi := vtiti�1 = (v(ti�1); : : : ; v(ti)); i = 1; : : : ; l: (7.2.5)Regarding v as a mapping, we equivalently de�ne vi = vjTi.Using the sub-words (7.2.5) we de�neĝ : f0; 1glm+1 7! f0; 1gln2; ĝ(v) := (ĝ(v1); ĝ(v2); : : : ; ĝ(vl)):* Let A = (a01; : : : ; a0l), B = (b01; : : : ; b0l) with ai 2 f0; 1gp and bi 2 f0; 1gr (p � r) be lpand lr dimensional words, respetively. Let I � f1; 2; : : : ; lg. We de�ne the followingnotation: A vI B i� for eah i 2 I it holds a0i v b0i:Reall the de�nition of Ez;I in (7.1.14). The event Ez;I states that for eah i 2 I, at timeti�1 the random walk Sz is further away than L(m2) from the point di�1. In that ase,during the time interval Ti the random walk Sz an not visit the (loation) set Di. This,in turn, implies that the observation �zjTi are independent of �jDi. Then, obviously,ĝ(�zjTi) is independent of g(�jDi):The following theorem yields the bound (7.1.15).Theorem 7.2.2. There exists �I(n) > 0 not depending on l, suh that for all z < 0 thefollowing holds:P � 9I � f1; 2; :::; lg with jIj = l(1� 3" (n)) suh thatEz;I holds and ĝ(�lm2z ) vI g ��ml� � � e��I l; (7.2.6)provided l and n are both big enough.Proof. Let z < 0. Denote �i = �jDi, �z;i := �zjTi. Let Yi; Xi i = 1; : : : ; l be Bernoullirandom variables, where Xi = 1 i� ĝ(�z;i) v g(�i)Yi = 1 i� Sz(ti�1) < di � Lm2:By de�nition, g(�i) is a n2 +1 dimensional random vetor, with elements being Bernoulliiid with parameter 12 . For eah �xed n2-dimensional binary vetor w we, therefore, get:P (w v g(�i)) = (0:5)n2�1 (7.2.7)



7.2. Iteration 307Note, if fYi = 1g holds, then g(�i) is independent of ĝ(�z;i). By (7.2.7) thenP (Xi = 1jYi = 1) = P (ĝ(�z;i) v g(�i)jYi = 1) = (0:5)n2�1:Let I � f1; : : : ; lg. Consider the probability P (Xi = 1; i 2 IjYi = 1; i 2 I): If fYi = 1; i 2Ig holds, then, fXi; i 2 Ig are iid random variables, with parameter (0:5)n2�1. HeneP (Xi = 1; i 2 IjYi = 1; i 2 I) = (0:5)(n2�1)jIj:Thus, for eah I � f1; : : : ; lg we haveP�Ez;I \ fĝ(�lm2z ) vI g(�ml)g� = E(Yi2I XiYi) = P (Yi2I XiYi = 1) =P (Xi = 1; i 2 IjYi = 1; i 2 I)P (Yi = 1; i 2 I) � (0:5)(n2�1)jIj (7.2.8)Using (7.2.8), the probability in (7.2.6) an bound byXI�f1;2;:::;lg;jIj=l(1�3�(n))P�Ez;I \ �ĝ(�lm2z ) vI g(�ml)	� � � l3l" (n) ��12�(n2�1)l(1�3�(n)) : (7.2.9)Using Stirling's approximation, one an show that for l big enough� l3l" (n) � � exp[�l�(3" (n) ln (3" (n)) + (1� 3" (n)) ln (1� 3" (n))�℄ = exp(�l�2(n));where �2(n) := 3"(n) ln(3�(n)) + (1� 3�(n)) ! 0; as n grows. Hene, if n is big enough,then the sum in (7.2.9) an bounded byexp(�l�2(n))�(0:5)(n2�1)l(1�3�(n))� � exp(�ln2 ln 22 ) = exp(�l�I(n));where �I(n) = n2 ln 22 :7.2.3 Counting bloksWe now give formal de�nition of blok.* Let w = (w(u); : : : ; w(v)) be a binary word. We say that w is a blok, ifw(u) 6= w(u+ 1) = w(u+ 2) = � � � = w(v � 1) 6= w(v):The length of blok is de�ned as v � u. We all a blok big if its length is � m3.The w(u) and w(v) (or u and v) are the beginning of the blok and the end of the blok,respetively. The olor w(u+ 1) is alled the olor of blok.Let ' 2 f0; 1gI be a piee of senery. Let T = [t1; t2℄ � I be an integer interval oflength at least 3. Sine 'jT an be onsidered as a binary word, the de�nition of blokapplies to 'jT as well.For given ', we also all a loation interval T = [t1; t2℄ a blok of ', if 'jT is a blok (asword). So, in the following, a blok an be a ertain pattern (word) or a ertain loation



308 Chapter 7. Retrieving the exat sequene(T ), where a string ' has a blok.For two bloks, A = [a1; a2℄; B = [b1; b2℄ we denote A < B if a1 < b1.Note: although the blok basially means many onseutive bits of the same olor, byde�nition the �rst and last bit of a blok must be di�erent. For example, 01110 is a blokwith length 4, but 00001 is not a blok.* Let [t1; t2℄ 2 N be a (time) interval. We all R 2 Z[t1;t2℄ an admissible path of lengtht2 � t1, if for all t 2 [t1; t2 � 1℄P (S(1)� S(0) = R(t+ 1)� R(t)) > 0:So, an admissible path is just a possible trajetory of S in time interval [t1; t2℄, startingat R(t1) and ending at R(t2). The word "possible" means that the probability of suh atrajetory is positive.Let R(n) be the set of all admissible paths of length n. ThusR(n) := nR 2 Z[0;n℄ :; P (S(1)� S(0) = R(i + 1)�R(i)) > 0; i = 0; : : : ; n� 1o:Let B = [b1; b2℄ � Z be a blok of senery '. De�nel(B) := min�n > 1��� 9R 2 R(n) suh that ' ÆR = '(R(0)); : : : ; '(R(n))is a blok; R(0) � b1; R(n) � b2 � :(7.2.10)The number l(B) will be alled as the reading-length of B.Suppose l(B) = n and R(0); : : : ; R(n) is the admissible path that attains the minimumin 7.2.10. Then the points R(0) and R(n) are alled the reading-beginning and thereading-end of B, respetively.The reading length of a blok is, the length of the smallest blok in observations, generatedunder onditions that S rosses B. Clearly, l(B) is approximately b2�b1L , but it dependsalso on the ' outside the blok B. Let us onsider some examples.Examples: 1. If S is a simple random walk (i.e. L = 1), then l(B) = b2� b1 and readingbeginning (reading end) and the beginning (the end) of the blok oinide.2. Let L = 3. Consider the word (w(1); w(2); : : : ; w(11)) = 00111111000: This wordontains a blok with the length 7. The reading length of this blok is, obviously, 3. Thebeginning of the blok is w(2), the end of the blok is w(9). The reading beginning isw(2) or w(1) with the reading ends w(11) or w(10), respetively.3. Let L = 3. Consider the word (w(1); w(2); : : : ; w(11)) = 0011111111000: It ontains ablok of length 9, the reading length of the blok is 3, the reading beginning of the blokis w(2), the reading end of the blok is w(11).4. Suppose L = 4 and P (S(1) � S(0) = 2) = P (S(1) � S(0) = 3) = 0. Consider theword w(1); : : : ; w(18) = 011101111111110111. This word ontains a blok of length 10B = (w(5); : : : ; w(15)). The reading length of this blok is 5.5. Change the word without hanging the blok and onsider the word 1110111111111000:The reading length of B is now 3, the reading-beginning is w(4), the reading-end is w(16).



7.2. Iteration 3096. Consider now the words as in the last 2 examples. Suppose P (S(1)� S(0) = i) > 0,i = �4;�3; : : : ; 3; 4: Then the blok has reading length 3 no matter what the neighbor-hood of the blok is.* Let A = [a1; a2℄, B = [b1; b2℄ be two bloks of  , A < B. We say that A and B areonneted if they are of same olor, say 1, and there is an admissible path from A toB suh that moving along this path, only the olor 1 is observed. Formally, A and B isonneted, if there exists an n and R 2 R(n) suh that R(0) 2 (a1; a2); R(n) 2 (b1; b2)and  ÆR(0) =  ÆR(1) = � � � =  ÆR(n).In other words, the bloks of the same olor are onneted, if it is possible to read themas one blok.Let B1 < B2 < : : : < Bh be bloks of  . We say that B1 [ : : : [ Bh is a big lus-ter, if� Bi has the reading length at least m3, i = 1; : : : ; h;� B1; : : : ; Bh are onneted;� there is no more bloks with the reading length at least m3 onneted to B1.We de�ne the reading-path of a big luster in the same way as the reading path of ablok (whih an be a big luster onsisting of one blok) { this is the shortest admissiblepath to ross the big bluster and produing exatly one blok. Formally, for a big lusterC := B1 [ : : : [ Bh we de�ne the reading length of the big luster asl(C) := minfn > 1 : 9R 2 R(n) suh that  (R(0)); : : : ;  (R(n)) is a blok; R(0) � ; R(n) � dg;where  is the beginning of B1 and d is the end of Bh. These points are referred to as thebeginning and the end of C, respetively. Clearly, l(C) � m3. The reading-path of C isany path that attains the minimum above.* Let us �x  2 EOK. Denote I = I( ml), II = II( ml); III = III( ml):Consider the set III := [1; l℄� III . Clearly III is an union of disjoint intervals, i.e.III = [l1; l2℄ [ [l3; l4℄ [ � � � [ [l2k�1; l2k℄; (7.2.11)where l1 = 1; l2; l3; : : : 2 [2Lm2; l℄, lj � lj+1.The set of ell-indexes [l2j�1; l2j℄ orresponds to the loation-interval (ells) [(l2j�1 �1)m; l2jm℄ or [dl2j�1�1; dl2j ℄. Let us denoterj := (l2j�1 � 1)m; sj = l2jm; j = 1; : : : ; k: (7.2.12)By de�nition, S visits every point in Z i.o.. This means, there exists an integer k � 1suh that P (S(k)� S(0) = 1). Let �v := inffk : P (S(k)� S(0) = 1) > 0g. Thus there isan admissible path R(0); : : : ; R(�v) suh that R(0) = 0 and R(�v) = 1. Similarly, betweenpoints a < b there exists an admissible path R(0); : : : ; R((b � a)�v) suh that R(0) = a,R(�v) = a + 1, R(2�v) = a + 2; : : : R((b � a)�v) = b. We say that S moves stepwise from ato b, if it moves along the path just desribed. Obviously, �v � m.



310 Chapter 7. Retrieving the exat sequeneIn Subsetion 7.1.4, we de�ned big luster ounter q : f0; 1glm+1 7! N l and blok ounterq̂ : f0; 1glm2+1 7! N l .De�ne the eventsFmin(1) := �q̂(�j[0; s1m℄) � q( j[0; s1℄); �j[s1 �m�v; s1℄ ontains both olors; S(s1m) = s1	:Fmin(j) := �q̂(�rj j[0; (sj � rj)m℄) � q( j[rj; sj℄); �rj j[0; m�v℄ and �rj j[(sj � rj)m�m�v; (sj � rj)m℄ontain both olors Srj((sj � rj)m) = sj	; j = 2; : : : ; k � 1:For the last interval in (7.2.12) we de�ne F (k) as F (j), j > 1, if sk < l. If rk = l, wede�neFmin(k) := �q̂(�rk j[0; (l�rk)m℄) � q( j[rk; l℄); �rk j[0; m�v℄ ontains both olors; Srk((l�rk)m) = l	:Obviously, the events Fmin(j) depend on the random walk, S, only. Moreover, by de�-nition, the event Fmin(j) depends on the behavior of the random walk during the timeinterval [0; (sj � rj)m℄. This means, if for a j, there exists at least one admissible pathRj � R((sj � rj)m) suh thatR1 Rj(0) = rj; Rj((sj � rj)m) = sj,R2 q̂( ÆRj) � q( [sj; rj℄)R3 if rj 6= 0 and sj 6= l then ( ÆRj)j[0; m�v℄ and ( ÆRj)j[(sj � rj)�m�v; (sj � rj)℄ haveboth olors,then Fmin(j) 6= ? and P �Fmin(j)� � (pmin)(sj�rj)m: The following proposition, proved inAppendix, shows that for eah j, at least one suh admissible path exists.Proposition 7.2.1. For eah j = 1; : : : k the following holds:P �Fmin(j)� � (pmin)(sj�rj)m = (pmin)(l2j�l2j�1+1)m2 : (7.2.13)The next theorem is the main ingredient of the "getting seleted" part of the reon-strution. It gives a lower bound for the probability that g- and q-reprodution to work.Theorem 7.2.3. There exist onstant �II(n) > 0 not depending on l, suh that for all 2 EOK the following holds:P �ĝ(�lm2) vI g( ml); q̂(�m2l) � q( ml); S(m2l) = ml� � e�l�II : (7.2.14)Proof. For eah i 2 [1; l℄ and subset I � [1; l℄; we de�ne the eventsES(i) := fS(ti�1)� S(ti) = mg; ES(I) := \i2IES(i)Ev(i) := fĝ(�jTi) v g( jDi)g; Ev(I) := \i2IEv(i);Eno�blok(i) := f the sequene �jTi ontains both olors g; Eno�blok(I) := \i2IEno�blok(i):



7.2. Iteration 311Use [rj; sj℄, j = 1; : : : ; k as in (7.2.12) to de�neEmin(1) := fq̂(�j[0; s1m℄) � q( j[0; s1℄); S(s1m) = s1;�j[s1 �m�v; s1℄ ontain both olorsgEmin(j) := fq̂(�j[rjm; sjm℄) � q( j[rj; sj℄); S(sjm) = sj;�j[rj; rj +m�v℄ ontain both olors; �j[sj �m�v; sj℄ ontain both olorsg;j = 2; : : : ; k andEmin := \kj=1 Emin(j):If sk = l, then the requirement f�j[sk � m�v; sk℄ ontain both olorsg is dropped for thede�nition of Emin(k).Consider the event Emin \ ES(III). Use Proposition 7.2.1 to getP (Emin \ ES(III)) = P (Emin(1) \ ES(III)) kYj=2P (Emin(j)jEmin(j � 1) \ � � � \ Emin(1) \ ES(III))= P (ES(III))P (Emin(1)) kYj=2P (Emin(j)jS(mrj) = rj)= kYj=1 P (Fmin(j))P (ES(III)) � (pmin)jIII jm2P (ES(III)): (7.2.15)Note: if Emin \ ES(III) holds, then, for eah i 2 III we haveS(ti�1) = di�1; S(ti) = di:Hene, given Emin \ ES(III), the behavior of S during Ti is independent of the behaviorof S outside Ti: In partiular, for eah i 2 IIIP �Eno�blok(i)jEmin \ ES(III)� = (7.2.16)P �Eno�blok(i)jS(ti�1) = di�1; S(ti) = di� = P �Eno�blok(i)jES([1; l℄)�:Let us estimate (7.2.16). If S(ti�1) = di�1 and S(ti) = di, then during Ti, the random walkstays in the Lm2-neighborhood of Di. But  jDi is isolated and has empty neighborhood.Thus, during Ti, the random walk stays on the area where is no m0:9 onseutive olors.In this ase, the probability of generating a blok of length at least m2 is, for big m,bounded above by exp(� am2m1:8 ) = exp(�am0:2); where a > 0 is a onstant that does notdepend on m (see, e.g. Lemma 2.1 in [15℄).Denote pm := P (S(m2) = m):Then P (ES([1; l℄)) = (pm)l: (7.2.17)So, for eah i 2 III ; it holdsP �Eno�blok(i)���Emin \ ES(III)�= P �Eno�blok(i)���ES([1; l℄)�� exp(�am0:2)(pm)l :



312 Chapter 7. Retrieving the exat sequeneNow, by loal entral limit theorem, pm is of order 1m . Thus, when m is big enoughP (Eno�blok(i)jEmin\ES(III)) > 0:75; P (Eno�blok(IIInI)jEmin\ES(III)) > (0:75)jIII j�jIj:(7.2.18)The seond inequality holds beause given Emin \ ES(III), the events Eno�blok(i) andEno�blok(j) are onditionally independent, provided j; i 2 III .Suppose now i 2 I � III . Then  jDi is weak-OK. By 2) of Theorem 7.1.2 we nowget thatP (Ev(i)jEmin\ES(III)) = P (Ev(i)jS(ti�1) = di�1; S(ti) = di) = P (ĝ(�j[0; m2℄) v g( m0 )) � 0:25:This also means that, with i 2 IP ��Eno�blok(i) \ Ev(i)����Emin \ ES(III)� �P �Eno�blok(i)���Emin \ ES(III)�+ P �Ev(i)���Emin \ ES(III)� < 0:5:And, by independene, againP �Eno�blok(I) \ Ev(I)���Emin \ ES(III)� > (0:5)jIj: (7.2.19)Finally, by the same independene-argument, (7.2.19) and (7.2.18),P �Eno�blok(III) \ Ev(I)���Emin \ ES(III)� =P �(Eno�blok(I) \ Ev(I)) \ Eno�blok(IIInI)���Emin \ ES(III)� > (0:5)l (7.2.20)Consider [rj; sj℄, j = 1; : : : ; k as in (7.2.12). By the de�nition of III , [sj�Lm2; rj+1+Lm2℄is empty, for eah j = 1; : : : ; k � 1 as well as for [sk � Lm2; l℄, if sk < l. This impliesthat these intervals do not ontain any small blok (and, therefore, no big lusters). Also[sj � Lm2 �m; sj � Lm2℄ as well as [rj+1 + Lm2; rj+1 + Lm2 +m℄ (j = 1; : : : ; k� 1) and[sk � Lm2 � m; sj � Lm2 � m℄, if sk < l, ontain a fene. This means that a interval[sj � Lm2; rj+1 + Lm2℄ (j = 1; : : : ; k � 1) as well as [sk � Lm2 � m; sj � Lm2 � m℄ (ifsk < l) is not inside a big luster (without fenes this ould be a ase even if the interval isempty). The emptiness and the isolation of [sj; rj℄ imply that the luster-ounting vetorq( ml) is onstant on III .The event Eno�blok(III)\Emin ensures that the word �j[sj�m�v; rj+1+m�v℄; j = 1; : : : ; k�1does not ontain more than m�v +m2 onseutive olors. The same is true for the word�j[sk � m�v; l℄. The event Emin also guarantees that all big bloks in observations endbefore time interval Ti, i 2 III . Hene, the blok-ounting vetor q̂(�m2l) is onstant onIII . Thus, q̂(�tl) � q( tl) if q̂i(�tl) � qi( tl) for eah i 2 III . The latter holds if and onlyif q̂(�j[rjm; sjm℄) � q( j[rj; sj℄) for eah j = 1; : : : ; k. HeneEmin \ Eno�blok(III) � fq̂(�m2l) � q( ml)g:This meansEmin\Eno�blok(III)\Ev(I)\ES(III) � nĝ(�lm2) vI g( ml); q̂(�m2l) � q( ml); S(m2l) = mlo:(7.2.21)



7.2. Iteration 313From (7.2.20), (7.2.17) and (7.2.15) it followsP �Emin \ Eno�blok(III) \ Ev(I) \ ES(III)� =P �Ev(I) \ Eno�blok(III) \ ���Emin \ ES(III)�P �Emin \ ES(III)� >(0:5)lP �Emin \ ES(III)� � (0:5)l(pmin)jIII jm2P (ES(III)) �(0:5)l(pmin)jIII jm2(pm)l: (7.2.22)Hene (7.2.21), (7.2.22) and the inequality jIIIj � l exp(�m0:7) implyP �ĝ(�lm2) vI g( ml); q̂(�m2l) � q( ml); S(m2l) = ml� � (0:5)l(pmin)jIII jm2(pm)l �[0:5pm(pmin)m2 exp(�m0:7)℄l = exp[l(ln(0:5pm) +m2 exp(�m0:7) ln(pmin))℄ = exp[�l�II(m)℄:Let us show that, for n big enough,8�II(n) = �8 ln(0:5pm)�m(n)2 exp(�m(n)0:7) ln(pmin) < n2 ln 22 = �I(n) (7.2.23)By the LCLT, pm is of order 1m , meaning that � ln(0:5pm) is of order ln 2m. On theother hand, m(n) < exp(2n) ([15℄, (3.10)), implying that � ln(0:5pm) is of order n. Theexpression �m(n)2 exp(�m(n)0:7) ln(pmin)is negligible in omparison with � ln(0:5pm). So, if n is big enough, it holds �II(n) < Kn,for someK <1. Sine �II(n) is of order n2, for big n, the inequality (7.2.23) learly holds.7.2.4 Blok at originDe�ne the eventEorigin := f�(�L) = � � � = �(�1) 6= �(0) = � � � = �(m3L) 6= �(m3L+1) = � � � = �(m3L+L)g:The reason of blok-ounting is the following observation. Reall the de�nition of Ez;Igiven in (7.1.14). The next theorem formalizes the argument explained in Subsetion7.1.4.Theorem 7.2.4. If z < 0 thenEorigin \ fq̂(�tlz ) � q(�ml)g � Ez;I(�ml): (7.2.24)Proof. Let � =  , I = I( ). Let i 2 I. The interval Di is isolated and, hene, Di isnot inluded into any big luster of  , i.e. qi( dl) = qi( di): The interval Di has emptyneighborhood, whih together with the isolation implies that the number of big lustersin [0; di℄ is the same as the number of big lusters in [0; di � Lm2 �m) = [0; di�1�Lm) or,equivalently, qi( ml) = qi�1�Lm( ml): (7.2.25)



314 Chapter 7. Retrieving the exat sequeneLet z < 0. By rossing an interval, the random walk annot produe less big bloks thanthe number of big lusters in this interval. Hene, the number of big bloks in observationsgenerated by Sz by rossing the interval [z; di�1�Lm℄ is at least the number of big lustersin [z; di�1�Lm℄. Suppose now that Eorigin holds. Then the interval [z; di�1�Lm℄ ontainsstritly more big lusters than the interval [0; di�1�Lm℄. Therefore, the number of bigbloks in observations generated by Sz by rossing the interval [z; di�1�Lm℄ is stritly biggerthan the number of big lusters in  j[0; di�1�Lm℄. By (7.2.25), this number equals qi( ml):Hene, if Sz(ti) � di�1�Lm, then q̂i(�m2lz ) > qi( ml): Consequently, Eorigin \ Ez;I �Eorigin \ fq̂(�tlz ) � q(�ml)g. This proves the statement.De�neEmistake(z) := nq̂(�m2lz ) � q(�ml)o \ nĝ(�m2lz ) vI(�ml) g(�ml)o \ Eorigin:Corollary 7.2.1. If z < 0, then for n and l big enoughP �Emistake(z) \ EOK� � exp(��I l): (7.2.26)Proof. By (12.3.8) we haveEmistake(z) � Ez;I(�ml) \ nĝ(�m2lz ) vI(�ml) g(�ml)o:Thus Emistake(z) \ EOK � Ez;I(�ml) \ nĝ(�m2lz ) vI(�ml) g(�ml)o \ EOK: (7.2.27)Consider the right side of (7.2.27). By EOK and (7.2.3), jI(�ml)j � l(1 � 3�(n))j: Thus,if the right side of (7.2.27) holds, then there exists a subset I � I(�ml) suh that jIj =jl(1 � 3�(n))j, fĝ(�m2lz ) vI g(�ml)o and Ez;I holds. By Theorem 7.2.2, this event hasprobability not bigger than exp(�l�I).7.3 Reonstrution at level l1In this hapter we prove the main result, Theorem 7.1.1. We start with the formal def-initions of many events and notions that were already introdued in Subsetion 7.1.4.Using the de�ned events, the proof of Theorem 7.1.1 an be splitten into two parts: theevent-ombinatorial part (Subsetion 12.3) and the probability estimation part (Subse-tion 7.3.5). These two parts together establish the proof of Theorem 7.1.1 (Subsetion12.4).From now on l := l1 � l2, where l2 as well as m(n), 1, � and  are de�ned in Sub-setion 7.3.6. The only variable is l1. Hene, the statement "l big enough" in the previoushapter must be interpreted as "l1 big enough".



7.3. Reonstrution at level l1 3157.3.1 Some de�nitions* A vetor I 2 Z[0;n℄ is ladder interval of length n, if I = (a; a+ L; a+ 2L; : : : ; a+ nL)for some a 2 Z. Let L(n) be the set of all ladder intervals of length n.Let I be a ladder interval. A piee of senery ' 2 f0; 1gI is alled a ladder piee.If ' 2 f0; 1gD, I � D is a ladder interval, we sometimes say that 'jI is a ladder piee of' (or 'jD).Hene, a ladder piee of a non-random senery  is any vetor ( (a);  (a+L); : : : ;  (a+nL)), a 2 Z, n 2 N .Let I = (a; a+L; : : : ; a+nL) be a ladder-interval and let ' 2 f0; 1gI be a ladder piee. Wewrite ' tl w, if '(a) = w(1); : : : ; '(a+Ln) = w(n+1) or '(a) = w(n+1); : : : ; '(a+Ln) =w(1): Hene, if L = 1, then the relation " �l " is the same as the equivalene " t ":Given a ladder piee ' 2 f0; 1gI, I 2 L(n), we say that w 2 f0; 1gn+1 is a ladderword of ', if ' �l w. Hene, any ladder piee has at most two ladder words that areequivalent. Also note that two ladder piees are equivalent, if and only if their ladderwords oinide. (In the notation of [20℄), w is a ladder word of ', if w 2 f(')!; (') g.)* Reall that I1 := [� exp(3l1); exp(3l1)℄. The following event, B1unique �t, states thatany ladder piee of �jI1 of length l114 has unique ladder word up to equivalene. Formally,B1unique �t := nif I; J 2 L(l11=4); I; J � I1 and I 6= J then �jI 6t �jJo:* Suppose x; y 2 Z, y = x + (l11)L. In this ase there is only one admissible path oflength 1l1 from x to y, i.e. there exist unique R 2 R(l11) suh that R(1l1) � R(0) =(l11)L. Obviously, this path onsists of maximum jumps, only, i.e. R(i+ 1)�R(i) = L,i = 0; 1; : : : ; l11 � 1.Suppose now that x; y 2 Z, x < y are suh that y < x + (l11)L. In this ase, thismight happen that there is no admissible path going from x to y with exatly l11 steps.However, if there is one suh admissible path, then it is learly not unique. The followingevent, B1reon straight; states that if x; y 2 I1, then among these admissible paths, there areat least two that generate di�erent words in the observations. More preisely,B1reon straight := � if R 2 R(l11) suh that R(0); R(l11) 2 I1 and R(l11)� R(0) < (l11)L; then9R0 2 R(l11) suh that R(0) = R0(0); R(1l1) = R0(1l1) and � ÆR 6= � ÆR0 � :* Let  be a senery. We say that x 2 Z is a left-barrier point of  , if x satis�es (7.1.17).We say that y 2 Z is a right-barrier point of  , if y satis�es (7.1.16). The pair (x; y) isalled a barrier of  , if x is a left- and y is a right-barrier point. Reall the event Eorigin.The point y is a right-barrier point of  , if the translated senery ( (i+ y))i2Z belongs tothe event Eorigin. Similarly, x is a left-barrier point, if the translated and reeted senery( (x� i))i2Z belongs to the event Eorigin.We onsider the barriers of �, (x; y) suh that y � x = (1l1)L. In order to arry on thereonstrution in level l1, every interval [z; z + (1l1=4)L℄, z 2 I1 should ontain enough



316 Chapter 7. Retrieving the exat sequeneleft-barrier points of suh barriers. This is the meaning of the event B1enough barriers. Morepreisely,B1enough barriers := 8<: for any j = 0; : : : ; L� 1 and for any z 2 I1;there exists x 2 [z; z + (1l1=4)L℄ suh that:xmodL = j and (x; x + (1l1)L) is a barrier of � 9=; :* We now de�ne the left-side ounterparts of g; ĝ, q and q̂. For a word u = (u1; : : : ; un)denote by u� its reetion, i.e. u� := (un; : : : ; u1). Now letq� : f0; 1glm+1 7! N l ; q̂� : f0; 1glm2+1 7! N l ; g� : f0; 1glm+1 7! f0; 1gln2+1:and ĝ� : f0; 1glm2+1 7! f0; 1gln2be as follows q�(w) = q(w�); g�(w) = g(w�); w 2 f0; 1glm+1 (7.3.1)q̂�(v) = q̂(v�); ĝ�(v) = ĝ(v�); v 2 f0; 1glm2+1: (7.3.2)In Setion 7.1.4, we already introdued the following notation:qy(�) := q(�j[y; y +ml℄); gy(�) := g(�j[y; y+ml℄)q�x(�) := q�(�j[x�ml; x℄); g�x(�) := g�(�j[x�ml; x℄)I�x(�) := I(�j[x�ml; x℄)�); Iy(�) := I(�j[y; y +ml℄):Reall the de�nition of a piee of senery  j[y; y + lm℄ being OK. We say that a piee ofsenery  j[x� lm; x℄ is OK*, if ( j[x� lm; x℄)� is OK. Finally, letB1intervals OK := f�j[z; z +ml℄ is OK 8z 2 I1g \ f�j[z �ml; z℄ is OK� 8z 2 I1g:7.3.2 Stopping-time eventsReall the de�nition of T 1(j) and T 3(j) in (7.1.9). Also reall the de�nition of w1(j),w2(j); w3(j):* Let H1 := [�4 exp(l1); 4 exp(l1)℄:We de�ne the event E1enough times that states that all pairs (x; y) in H1 suh that y � x =(1l1)L pass the riterion a) of the seletion rule.At �rst an auxiliary eventE1enough times(x; y) := 8>>>><>>>>: there exists a set J(x; y) � [1; exp(�l1)℄ suh thatjJ(x; y)j > exp(l1) and for every j 2 jJ(x; y)jS(T 1(j)) = x; S(T 3(j)) = y;q̂�(w1(j)) � q�x(�); ĝ�(w1(j)) vI�x( ) g�x(�);q̂(w3(j)) � qy(�); ĝ(w3(j)) vIy( ) gy(�)
9>>>>=>>>>; :and now E1enough times := \x;y2H1; x�y=L1l1E1enough times(x; y):



7.3. Reonstrution at level l1 317* Reall the attributes de�ned in Subsetion 7.1.4. For a set of attributes (I�; I; q�; q; g�; g),we de�ne the indexesj1 := min�j � 0 : q̂�(w1(j)) � q�; ĝ(w1(j)) vI� g�; q̂(w3(j)) � q; ĝ(w3(j)) vI g;jS(T 3(j))� S(T 1(j))j < L1l1 �jk := min�j > jk�1 : q̂�(w1(j)) � q�; ĝ(w1(j)) vI� g�; q̂(w3(j)) � q; ĝ(w3(j)) vI g;jS(T 3(j))� S(T 1(j))j < L1l1 � :(7.3.3)Here the minimum over empty set is de�ned to be 1. Let � := maxfk : jk <1g.Clearly the subindexes j1; j2; : : : depend on hosen attributes (I�; I; q�; q; g�; g).Reall B1reon straight. The following events are of similar nature. LetE1reon straight(I�; I; q�; q; g�; g) :=n� > exp(l1); 9k � � suh that w2(j1) 6= w2(jk)o [ n� � exp(l1)o;E1reon straight := \I�;I;q�;q;g�;gE1reon straight(I�; I; q�; q; g�; g);where the intersetion is taken over all sets of attributes.* We now de�ne the more re�ned ounterparts of T i(j) and wi(j); i = 1; 3. Thesestopping times are used for tehnial reasons, only.Let �i(z; 1) := minfj : T 1(j) = zg; i = 1; 3and, indutively, �i(z; k) := minfj > �i(z; k � 1) : T i(j) = zg i = 1; 3:Thus, �1(z; k) (�3(z; k)) is the index of k-th stopping time �(j), for whih S(T 1(j)) = z(S(T 3(j)) = z).De�ne T iz(k) := T i(�i(z; k)); wiz(k) = wi(�1(z; k)) i = 1; 3:and letE1mistake-l(z; x; k) := nq̂�(w1z(k)) � q�x(�)o \ nĝ�(w1z(k)) vI�x(�) g�x(�)o \ nx is a left-barrier pointoE1mistake-l :=[E1mistake-l(z; x; k);where the union is taken over all z; x; k suh that x < z; z; x 2 I1 and k � exp(�l1):Similarly, the right sideE1mistake-r(z; y; k) := nq̂(w3z(k)) � qy(�)o \ nĝ(w3z(k)) vIy(�) gy(�)o \ ny is a right-barrier pointoE1mistake-r :=[E1mistake-r(z; y; k);



318 Chapter 7. Retrieving the exat sequenewhere the union is taken over all z; y; k suh that z < y; z; y 2 I1 and k � exp(�l1):Finally, let E1no mistake := �E1mistake-l \ E1mistake-r�:7.3.3 AlgorithmWe are ready to give the preise de�nition of the algorithm A1. Reall that the input ofA1 onsists of a piee of observations �12�l1 , stopping times � and a little piee of truesenery  o. The output of A1 is a word of length 4 exp(l1).As desribed in Subsetion 7.1.4, the onstrution of A1 onsists of two phases.Phase I Collet the ladder words of �jI1. For this, the observation-words triples (w1(j); w2(j); w3(j))are used. The word w2(j) will be olleted as a ladder word, if it passes seletionproedure given in De�nition 7.1.1. The set of olleted works is denoted by W1.Phase II We assemble the words from W1 to get a big word of length 4 exp(l1) as theoutput. This means the onstrution of a big word (of length 4 exp(l1)) by attah-ing, one by one, suitable words from W1. We start from  o, and we attah to it aword from W1, whih has an overlap with  o at least 1l14 . We then attah a wordfrom W1 to the enlarged  o using the same overlapping-riterion. We proeed so,until the desired length has been ahieved.The desription and the formal de�nition of Phase I was given in Subsetion 7.1.4. Asmentioned, the seletion rule is the most ruial part of the whole senery reonstrution;it must be restritive enough to ensure that only ladder words of ladder piees of originalsenery � an pass it (with high probability). Formally, the following event should holdE1only ladders := f8w 2 W1 there exists I 2 L(1l1) suh that I � I1 and �jI tl wg:On the other hand, the seletion rule must be exible enough to ensure that enoughladder words pass it (otherwise the set W1 is too small). More preisely, the followingevent should holdE1enough ladders :=8<: for any j = 0; : : : ; L� 1 and for any z 2 [�3 exp(l1); 3 exp(l1)℄; there exists�x 2 [z � (1l1=4)L; z℄; �y 2 [z; z + (1l1=4)L℄ suh that: �xmodL = j; �ymodL = jand (�(�x); �(�x+ L); : : : ; �(�x+ (1l1)L)); (�(�y); �(�y � L); : : : ; �(�y � (1l1)L)) 2 W1 9=; :We now give the preise de�nition of assembling rule for Phase II. This de�nition om-pletes the de�nition of A1.For a ladder interval I and a set D � Z we write jI\Dj � r if there exists a ladder intervalJ 2 L(r) suh that J � D \ I. Reall that two piees of senery ' and '0 are stronglyequivalent, ' � '0, if ' is obtained by some translation of '0. Let  o 2 f0; 1gk+1 be thegiven piee of original senery. Thus,  o � �jIo for some interval Io � [� exp(l1); exp(l1)℄.



7.3. Reonstrution at level l1 319De�nition 7.3.1. We say that the piee of senery ' 2 f0; 1g[�2 exp(l1);2 exp(l1)℄ is a solu-tion, formally ' 2 S(�12�l1 ; �;  o), if and only if there exist 'i 2 f0; 1gDi; i = 1; 2; : : : ; nsuh that Di � [�3 exp(l1); 3 exp(l1)℄ and the following onditions are satis�ed:1. D1 = [0; k℄, '1 �  o;2. for eah i = 2; : : : ; n it holds 'ijDi�1 = 'i�1;3. for eah i = 2; : : : ; n there exists Ii 2 L(1l1) suh that3a) Di = Di�1 [ Vi;3b) jDi�1 \ Vij � 1l14 ;3) 9wi 2 W1(�12�l1 ; �) suh that 'ijVi tl wi;4. [�2 exp(l1); 2 exp(l1)℄ � Dn; ' = 'nj[�2 exp(l1); 2 exp(l1)℄.Finally, the formal de�nition of A1. The output is any element of S; we hoose one ofthem, if S is not empty.De�nition 7.3.2. We de�ne A1(�12�l1 ; �;  o) as follows:� If S(�12�l1 ; �;  o) is nonempty, then we de�ne A1(�12�l1 ; �;  o) to be its lexiograph-ially smallest element;� otherwise, A1(�12�l1 ; �;  o) := (1)[�2 exp(l1);2 exp(l1)℄.7.3.4 Combinatoris for main theoremThe rest of the paper is the proof of Theorem 7.1.1. In this subsetion, we prove someuseful inlusions.Lemma 7.3.1. The following inlusions holdE1reon straight \ E1stop(�) � E1only ladders; (7.3.4)B1intervals OK \ E1stop(�) \ E1no mistake \ E1enough times \ E1enough barriers � E1enough ladders;(7.3.5)E1only ladders \ E1enough ladders \B1unique �t � E1alg works(�); (7.3.6)provided l1 is big enough.Proof. At �rst note: if E1stop(�) holds, then, for eah j = 1; 2; : : : ; exp(�l1), it holdsjS(T 3(j))j � jS(�(j)) + L(exp(2l1) + lm2 + 1l1)j � exp(3l1); (7.3.7)provided l1 is big enough. Thus, in this ase, during the time interval [T 1(j); T 3(j)℄, Sstays on I1, j = 1; 2; : : : ; exp(�l1). In partiular, all words w2(j) will be olleted, whenS stays on I1.Proof of (12.4.12):We prove �E1only ladders�\E1stop(�) � �E1reon straight�: (7.3.8)



320 Chapter 7. Retrieving the exat sequeneSuppose (E1only ladders�\E1stop(�) holds. Then there exists a w 2 W1 that is not a ladderword of any ladder piee �jI of length l11 suh that I � I1. However, the word w haspassed the seletion rule. This means that for a omplet of attributes (I�; I; q�; q; g�; g)the onditions 1. and 2. of De�nition 7.1.1 hold. This means, thatjS(T 3(j))� S(T 1(j))j < 1l1; 8j 2 J(I�; I; q�; q; g�; g): (7.3.9)Indeed, if there were an index j� 2 J(I�; I; q�; q; g�; g) suh that (7.3.9) fails, then therewould be a ladder interval I of length 1l1 suh that �jI tl w. Clearly, during the timeinterval [T 1(j�); T 3(j�)℄, the random walk S is on I. Sine then S is also on I1, we getI � I1. This ontradits our assumption on w.Reall the de�nition of �. Sine jJ(I�; I; q�; q; g�; g)j > exp[l1℄, we have � > exp[l1℄.On the other hand, by b) of De�nition 7.1.1, for eah jk, k = 1; 2; : : : ; �, it holdsw(jk) = w(j1) = w. Thus, E1reon straight(I�; I; q�; q; g�; g) fails. This ompletes the proof of(7.3.8).Proof of (12.4.13):Let x; y 2 H1 and y � x = (1l1)L. Sine B1intervals OK holds then, by (7.2.3), I� =I(�j[x�lm℄) and I = I(�j[y; y+lm℄) satisfy jI�j; jIj � l(1�3�(n)): Sine E1enough times(x; y)holds, there exists q-vetors q� = q�x(�), q = qy(�) and g-words g� = gx(�); g = gy(�)suh that for eah j 2 J(x; y), (7.1.18) holds. Moreover, jJ(x; y)j > exp(l1) and foreah j 2 J(x; y) it holds S(T 1(j)) = x and S(T 3(j)) = y. Then, obviously, w2(j) =(�(x); �(x+ L); : : : ; �(y)). Hene, we have a set of attributes (I�; I; q�; q; g�; g) and an in-dex set J 0 = J(x; y) � J(I�; I; q�; q; g�; g) suh that jJ 0j > exp(l1) and w2(j) is onstanton J 0.Assume, in addition, that (x; y) is a barrier. Then J 0 = J(I�; I; q�; q; g�; g). Supposenot. Then there exists j� 2 J(I�; I; q�; q; g�; g)nJ 0. This means that j� satis�es (7.1.18),but w2(j�) 6= (�(x); �(x + L); : : : ; �(y)). The latter is possible only, if S(T 1(j�)) > x orS(T 3(j�)) < y. Let S(T 1(j�)) = z > x. The event E1stop(�) implies (7.3.7) and then z 2 I1.Hene, there is z 2 I1 and k� � j� suh that E1mistake-l(z; x; k�) holds. This is a ontradi-tion with E1no mistake. Hene J 0 = J(I�; I; q�; q; g�; g) and (�(x); �(x+ L); : : : ; �(y)) 2 W1.Now, let z 2 [�3 exp(l1); 3 exp(l1)℄. Then z� 1l14 L 2 I1 and by B1enough barriers there exists abarrier (x0; y0) suh that x0 2 [z� 1l14 L; z℄. Clearly, (x0; y0) 2 H1 (provided l1 is big enough)and by the foregoing argument, (�(x0); �(x0+L); : : : ; �(y0)) 2 W1. Similarly, z� (1l1)L 2I1 and there exists another barrier (x00; y00) suh that x00 2 [z � 1l1L; z � 31l14 L℄ and,therefore, y00 2 [z; z + 1l14 L℄. Again (x0; y0) 2 H1 and (�(x00); �(x00 + L); : : : ; �(y00)) 2 W1.Finally, take �x = x00 and �y = y00.Proof of (7.3.6):It suÆes to show that E1only ladders \ E1enough ladders \ B1unique �t ensures that for eah Io �[�el1 ; el1℄, it holds S(�12�l1 ; �; �jIo) onsists of one element that satis�es (7.1.2).Consider the "puzzle-playing" algorithm formalized in De�nition 7.3.1. We show thatthere is an unique way to ombine the words from W1, i.e. the solution set S is unique.Let ' 2 S and let D1 � D2 � � � � � Dn be the sequene of sets ensured by the de�nitionof '. By 1, 'jD1 is translated from a piee of �jI1 by some b satisfying jbj � exp(l1),i.e. �jIo = T ['jD1℄, where Tz = z + b is the translation and Io � [�el1 ; el1℄ � I1. Weshow: if 'jDi is translated from a piee of �jI1 by b, i.e. �jJi = T ['jDi℄, for some Ji � I1,then the same applies for 'jDi+1: Reall that 'jDi+1 and 'jDi di�er on Vi+1, only. By



7.3. Reonstrution at level l1 3213) and E1only ladders, 'jVi+1 � �jJ(w) for some J(w) � I1. Thus, there is an aÆne T 0suh that �jJ(w) = T 0['jVi+1℄ and, hene, there is a ladder interval J 0 � J(w) suh that�jJ 0 = T 0['j(Vi+1 \Di)℄. So, 'j(Vi+1 \Di) is equivalent with some ladder word of �jI1 byT 0. On the other hand, 'j(Vi+1 \Di) is translated by b, hene it is equivalent with someladder word of �jI1 by T . Let this word be �jJ . Clearly �jJ � �jJ 0. By 3b), the length ofthe ladder interval Vi+1 \Di as well as J 0 and J is at least 1l14 . If T 6= T 0, then J 6= J 0,whih ontradits B1unique �t. Hene, T 0 = T and 'jVi+1 is translated from a piee of �jI1by b and 'jDi+1 is translated from a piee of �jI1 by b as well. The same holds for ',i.e. ' � �jI(') for some interval I('). By 4, I(') = [ao � 2 exp(l1); ao +2 exp(l1)℄, whereIo := [ao; bo℄: So, ' is obtained from a �xed piee of senery �jI(') by a �xed translation,T . Clearly suh a ' is unique.Let us show that ' satis�es (7.1.2). Sine jaoj � exp(l1), we have that[� exp(l1); exp(l1)℄ � I(') � [�3 exp(l1); 3 exp(l1)℄:This means �j[� exp(l1); exp(l1)℄ v ' v �j[�3 exp(l1); 3 exp(l1)℄;i.e. (7.1.2) holds.Let us show that S is not empty. Fix an i � 1 and let D = Di, be the domain of 'i. Notethat D = [L�1j=0 I(j), where I(j) is a ladder interval with length at least 1l1. Hene, D isan union of disjoint ladder intervals. Let aj < bj be the endpoints of I(j). If, for eah j,aj � �2 exp(l1) and bj � 2 exp(l1), then [�2 exp(l1); 2 exp(l1)℄ � Di and there is nothingto prove. Therefore, without loss of generality assume j to be suh that bj < 2 exp(l1).Obviously, bj > 0. It suÆes to show that there exists V = (v; v + L; : : : ; v + L(1l1)) 2L(1l1) and a piee 'i+1 2 f0; 1gI(j)[V suh that:� 'i+1jI(j) = 'ijI(j)� 9w 2 W1 suh that 'i+1jV �l w� bj = v + kL, where 1l14 � k � 1l12 . This means that jI(j) \ V j � 1l14 but jV nDj �1l12 .We know that 'i is a translation of �jJi for some Ji 2 I1. This means that I(j) is atranslation of a ladder interval J(j). Let dj be the endpoint of J(j). We also know thatthis translation is not more than el1 . Hene dj 2 [� exp(l1); 3 exp(l1)℄. Consider the ladderinterval �J(j) := �dj � 2(1l1=4)L; : : : ; dj � 1(1l1=4)L�:By E1enough ladders there exists �x 2 �I(j) suh that a ladder word of �jV (�x), with V (�x) =��x; �x + L; : : : ; �x + (1l1)L� 2 L(1l1) belongs to W1. Let this word be �w. Clearly, dj =�x + kL, where 1l14 � k � 1l12 . By B1unique �t, �w is not a ladder word of any ladder piee'ijVj, j = 1; : : : ; i. This means that the word w 2 W1 has not been used before. Hene�w and the translation of V (�x) an be taken as w and V: The same argument applies ifaj > �2 exp(l1), implying that Di an be eÆiently enlarged in other diretion as well.



322 Chapter 7. Retrieving the exat sequene7.3.5 Probabilities for main theoremSenery-dependent eventsAt �rst, estimate the probabilities of B-events. These events depend on �, only. Notethat all exponential bounds are valid for l1 being big enough.Estimate P �(B1intervals OK)�Let E := f�j[z; z +ml℄ is OK 8z 2 I1g; E� := f�j[z �ml; z℄ is OK� 8z 2 I1g:Now, by translation invariany of � and Theorem 7.2.1, it holds that for l1 big enoughP (E) �Xz2I1 P (�j[z; z +ml℄ is not OK) � 2e3l1P (EOK) � 2 exp[3l1 � al℄:Similarly,P (E�) �Xz2I1 P (�j[z; z �ml℄ is not OK�) � 2e3l1P (EOK) � 2 exp[3l1 � al℄:Hene, if l1 is suÆiently big, thenP��B1intervals OK�� � 4 exp[(3� al2)l1℄: (7.3.10)The following proposition also spei�es the hoie of 1.Proposition 7.3.1. There exists onstants C1(n) and k1; k2; k3 > 0 not depending on l1suh that for 1 > C1(n) it holds:P��B1unique �t�� � exp[�k1l1℄ (7.3.11)P��B1reon straight�� � exp[�k2l1℄ (7.3.12)P��B1enough barriers�� � exp[�k3l1℄; (7.3.13)provided l1 is big enough.Proof. It follows from Lemma 6.33 in [20℄ that for some onstants a1; a2 depending on L,only, the bound P �(B1unique �t)� � a1 exp[�a2l1℄ is valid. Also, there is a �xed onstantCr suh that a2 > 0 if 1 > Cr. This implies (7.3.11) for l1 suÆiently big.Estimate P �(B1reon straight)�Let R(l11)(x; y) := fR(l11)(x; y) : R(0) = x;R(l11L) = yg. Thus R(l11)(x; y)is (possibly empty) the set of admissible path from x to y with l11 steps. Fix x; ysuh that jy � xj < (l11)L. At �rst note: if l1 is big enough, then (for any value of1 � 1) R(l11)(x; y) is either empty or has ardinality at least 2. Any admissible path



7.3. Reonstrution at level l1 323R 2 R(l11)(x; y) is a sequene R = (t1; : : : ; t1l1) of steps, where jtij � L. Hene, thereexists a R = (t1; : : : ; t1l1) 2 R(l11)(x; y) suh that ti 6= t1 for a i = 2; : : : 1l1 (if no,then R(l11)(x; y) would onsists of one path, only). Let R be one of suh paths. Let1 � p 1002L+1q. The number of possible steps is bounded by 2L+1. Hene, there is a step t0that ours inR at least 2k := 100l1 times. If t0 = 0, then there exists a t 6= 0 that ours atleast k times Formally, 9t 2 f�L; : : : ; Lg; t 6= 0 suh that jfi = 1; : : : ; 1l1 : ti = tgj � 50l1.Any rearrangement of the order of steps in R orresponds to another path inR(l11)(x; y).We onsider two rearrangements of R. The �rst, R1, starts with k steps of size t. ThusR1 = ft11; : : : ; t11l1g 2 R(l11)(x; y) is suh that t11 = � � � = t1k = t. Let u be anotherstep if R suh that u 6= t. The seond path, R2, starts with u, and then is followedby k-steps of size t. Formally, R2 = ft21; : : : ; t21l1g 2 R(l11)(x; y) is suh that t21 = u,t22 = � � � = t2k+1 = t. We now estimate the probability that the paths R1 and R2 generatethe same word in observation; we estimateP (� ÆR1 = � ÆR2)� P���(x+ t); : : : ; �(x+ kt)� = ��(x+ u); �(x+ u+ t); : : : ; �(x+ u+ (k � 1)t)��� P ��(x+ t) = �(x+ u))P ��(x+ 2t) = �(x+ u+ t)j�(x+ t) = �(x+ u)��� P ��(x+ 3t) = �(x+ u+ 2t)j�(x+ t) = �(x+ u)); �(x+ 2t) = �(x+ u+ t)�� � � �� � � � P ��(x+ kt) = �(x+ u+ (k � 1)t)j�(x+ t)= �(x+ u); � � � ; �(x+ (k � 1)t) = �(x+ u+ (k � 2)t)�� 2�k = exp[�50 ln 2l1℄:Now,Ereon straight = [x;y2I1;jx�yj<l11Ereon straight(x; y);P ((Ereon straight)) � Xx;y2I1 P (Ereon straight(x; y)) � 4 exp(6l1) exp[�50 ln 2l1℄ � exp[�25l1℄:
Estimate P �(B1enough barriers)�For eah z; j de�neB1enough barriers(z; j) := � there exists x 2 [z; z + ( 1l14 )L℄ suh that x mod L = jand (x; x+ (1l1))Lg is a barrier of � � :De�ne B(x) := n(x; x + (1l1)L) is a barrier of �o; Yx := IB(x):Note, if 1l1L � 3m2L � 1l14 � x0 � x � 3m3L =: r, then, by the de�nition, the eventsB(x) and B(x0) are independent. Clearly the probability of B(x) does not depend on x,let us denote p = P (B(x)). By de�nition, p > 2�3m3L. Denote w = x 1l14r � Lr y > 1�4L4r l1.



324 Chapter 7. Retrieving the exat sequeneWithout loss of generality assume z mod L = 0. By H�o�ding's inequality,P��B1enough barriers(z; j)�� = P�K(j)Xk=1 Yz+(k�1)L+j = 0� � P� 1l14rXk=1 Yr(k�1)+z+j = 0�� P� wXk=1(Yr(k�1)+z+j � p) � wp� � 2 exp[�2wp2℄� 2 exp[�21 � 4L4r 2�6m3Ll1℄ = 2 exp[�k02l1℄;for k02 := 1�4L4r 2�(6m3L+1). Here K(j) = 1l14 , if j 6= 0 and K(0) = 1l14 + 1:Obviously, k02 > 0, if 1 > 4L. ThusP��B1enough barriers�� � Xz2I1;j=f0;:::;L�1gP��B1enough barriers(z; j)�� � 8 exp[(6�k02)l1℄ � exp[�l1℄;if k02 � 8. The latter implies 1�4L � r4�26m3+6 or 1 � r26m3+8+4L = 3m3L26m3+8+4L.Hene, Proposition 7.3.1 holds with C1(n) := maxfCr; p 1002L+1q; 3m3L26m3+8 + 4Lg.Random-walk depending eventsIn the present subsetion, we estimate the events that also depend on the random walk.Estimate P (E1mistake-r \ B1intervals OK).Fix y; z 2 I1, z < y and noteE1mistake-r(z; y; k) \B1intervals OK � E1mistake-r(z; y; k) \ f�j[y; y + lm℄ is OKg; k = 1; 2; : : : :(7.3.14)We now estimate the right side of (7.3.14). Reall the de�nitions of T 3z (k); w3z(k) andgy(�). Consider the eventsE1mistake-r(y; z; k) \ f�j[y; y + lm℄is OKg =nq̂(w3z(k)) � qy(�); ĝ(w3z(k)) vIy(�) gy(�); y is a right barrier point; �j[y; y + lm℄ is OKg;(7.3.15)Beause of (7.1.1), onditionally on � the events (7.3.15) are independent and identiallydistributed. Hene, the events (7.3.15) all have the probability equal toP�q̂(�m2lz ) � qy(�); ĝ(�m2lz ) vIy(�) gy(�); y is a right barrier point; �j[y; y+lm℄ is OK�:(7.3.16)The event in (7.3.16) depends on �, only. The distribution of � is obviously translationinvariant. Therefore, by Corollary 7.2.1, (7.3.16) an be estimatedP�q̂(�m2lz�y) � q0(�)); ĝ(�m2lz�y) vI(�ml) g0(�); 0 is a right barrier point ; �ml is OK�=P�nq̂(�m2lz�y) � q0(�); ĝ(�m2lz�y) vI(�ml) g0(�)o \ Eorigin \ EOK� =P�Emistake(z � y) \ EOK� � exp(�l�I);



7.3. Reonstrution at level l1 325provided l1 is big enough. Therefore,P (E1mistake-r \B1intervals OK) �Xy;z;kP (E1mistake-r(y; z; k) \B1intervals OK)�Xy;z;k exp(�l�I) < 4 exp[(6 + �)l1 � �I l℄: (7.3.17)The sum here is taken over all z; y 2 I1, z < y and k = 1; : : : ; exp(�l1).Estimate P (E1mistake-l \ B1intervals OK).We need some additional notations. Reall T 1z (k). Now �x x0 2 I1 and de�ne T 1z (ki),i = 1; 2; : : : ; N(x0). as the i-th stopping time T 1z (k), for whih S(T 1z (k) + exp(2l1)) = x0.The indexes ki depend on hosen x0. De�ne nowE1mistake-l(z; x; i; x0) := nq̂�(w1z(ki)) � q�x(�)o\nĝ�(w1z(ki)) vI�x(�) g�x(�)o\nx is a left barrier pointo;i = 1; 2; : : : ; N(x0):Clearly, for eah k there exist i; x0 suh that E1mistake-l(z; x; k) = E1mistake-l(z; x; i; x0). Theounterpart of (7.3.14) isE1mistake-l(z; x; i; x0)\B1intervals OK � E1mistake-r(z; x; i; x0)\f�j[x� lm; x℄ is OK*g =: E(i; x0);i = 1; 2; : : : ; N(x0):As previously, we observe that P (E(i; x0)) is equal toP�q̂�(�m2lx0 ) � q�x(�); ĝ�(�m2lx0 ) vI�x(�) g�x(�); Sx0(m2l) = z; x is a left b. p. ; �j[x�lm; x℄ is OK*�:(7.3.18)To alulate (7.3.18), at �rst note the following. Let R(i), i = 0; 1; : : : ; k be an admissiblepath suh that R(0) = x0, R(k) = z. Thus, for any senery  , the observation �j[0; k℄equals  (R(i)), i = 0; : : : ; k. This means, ��j[0; k℄��=  (R�(i)), where R�(i) = �R(k �i), i = 0; : : : ; k. By symmetry of S, any admissible path R[0; k℄ has the same probabilityas its reverse R�[0; k℄. This means that for any u 2 f0; 1gk+1 and for any �xed senery  we have P ���j[0; k℄�� = u; Sx0(k) = z� = P ��j[0; k℄ = u; Sz(k) = x0;�or P ���kx0�� = u; Sx0(k) = z� = P ��kz = u; Sz(k) = x0�:By symmetry, again, the right side of last equality equalsP ���k�z = u; S�z(k) = �x0�:In partiular, sine ( j[x� lm; x℄)� =  �j[�x;�x + lm℄P �q̂�(�kx0)�� � q�( j[x� lm; x℄)��; ĝ�(�kx0)�� vI(( j[x�lm;x℄)�) g�( j[x� lm; x℄)��; Sx0(k) = z� =P ��q̂��k�z) � q( �j[�x;�x + lm℄); ĝ�(�k�z)� vI( �j[�x;�x+lm℄) g( �j[�x + lm;�x℄); S�z(k) = �x0�:



326 Chapter 7. Retrieving the exat sequeneReall the de�nitions of q̂�; q�; ĝ�; g�. Clearly x is a left barrier point for  if and onlyif �x is a right barrier point for  � and, by de�nition,  j[x � lm; x℄ is OK* if and only( j[x� lm; x℄)� =  �j[�x;�x + lm℄ is OK. LetA�(x) := fx is a left barrier point of  ;  j[x� lm; x℄ is OK*g;A(x) := fx is a right barrier point of  ;  j[x; x+ lm℄ is OK g:Thus, for eah  ,P �q̂�(�kx0) � q�x( ); ĝ�(�kx0) vI�x( ) g�x( ); Sx0(k) = z�IA�(x)( ) =P ��q̂��k�z) � q�x( �); ĝ(�k�z) vI�x( �) g�x( �); S�z(k) = �x0�IA(�x)( �):Finally, integrate over � and use the fat that � and �� have the same distribution to getP�q̂�(�kx0) � q�x(�); ĝ�(�kx0) vI�x(�) g�x(�); Sx0(k) = z; � 2 A�(x)�=P�q̂��k�z) � q�x(�); ĝ(�k�z) vI�x(�) g�x(�); S�z(k) = �x0; � 2 A(�x)�: (7.3.19)Now take k = m2l, de�ne y := �x, z := �z and sum over x0 to obtain that P (E(i; x0))equalsP�q̂��m2lz ) � qy(�); ĝ(�m2lz ) vIy(�) gy(�); y is a right barrier point; �j[y; y+ lm℄ is OK�:Hene, P (E(i; x0)) equals (7.3.16) and, therefore, it is bounded by exp(�l�I). This meansP (E1mistake-l \ B1intervals OK) � Xy;z;i;x0 P (E1mistake-r(y; z; i; x0) \B1intervals OK)� Xy;z;i;x0 exp(�l�I) < 8 exp[(9 + �)l1 � �I l℄; (7.3.20)where the sum is taken over all z; y; x0 2 I1, z < y and i = 1; : : : ; exp(�l1).Estimate P �E1stop(�) \ B1reon straight \ (E1reon straight)�Fix a set of attributes (I�; I; q�; q; g�; g) and onsider random indexes j1; : : : ; j� as in(7.3.3). They depend on hosen attributes. We onsider the set E, whereE := E1reon straight(I�; I; q�; q; g�; g):On E, the following hold: � > exp(l1) and for every k = 1; : : : ; exp(l1) + 1, it holdsw2(jk) = w2(j1). De�ne Yk := 1� Iw2(j1)(w2(jk)); k = 2; : : : ; �:Hene Yk = 1 if and only if w2(jk) 6= w2(j1). Therefore, E � fPexp(l1)+1k=1 Yk = 0g. Wenow onsider the following �-algebraA := ���(z); S(�(j)); S(T 1(jk)); S(T 3(jk)); z 2 Z; j = 1; : : : ; exp(�l1); k = 1; : : : ; ��:



7.3. Reonstrution at level l1 327Given A, the values of � as well as S(T 1(jk)) = xk and S(T 3(jk)) = yk, k = 1; : : : ; �are known. This means that the random variables Y1; : : : ; Y� depend on the behavior ofS from xk to yk during 1l1 steps. Hene, given A the random variables Y1; : : : ; Y� areindependent.Consider now the events E1stop(�) and B1reon straight. Obviously they both belong to A. By(7.3.7), on E1stop(�) we have that xk; yk 2 I1, for every k = 1; : : : ; �. Hene, if in additionalso B1reon straight holds, then for eah k = 2; : : : ; � there exists at least one admissible pathfrom xk to yk that generates di�erent words in observations. Reall the de�nition of pminand dedue that on E1stop(�)\B1reon straight it holds P (Yk = 1jA) � (pmin)1l1 , k = 2; : : : ; �.Hene, by H�o�ding's inequality on E1stop(�) \ B1reon straight;P (EjA) � P�exp(l1)+1Xk=2 Yk = 0���A� � exp[�2 exp(( + 21 ln pmin)l1)℄: (7.3.21)Indeed, for Y1; : : : ; Yeb independent Bernoulli random variables with E(Xi) � ea, theH�o�ding's inequality statesP� ebXi=1 Yi = 0� = P� ebXi=1 (Yi�EYi) � � ebXi=1 EYi� � exp��2e�b� ebXi=1 EYi�2� � exp[�2eb+2a℄Now take b = l1, a = 1l1 ln(pmin) to obtain (7.3.21).Integrate (7.3.21) over E1stop(�) \ B1reon straight to obtainP�E \ E1stop(�) \ B1reon straight� � exp[�2 exp(( + 21 ln pmin)l1)℄: (7.3.22)Finally, estimateP��E1reon straight� \ E1stop(�) \ B1reon straight�� X(I�;I;q�;q;g�;g)P�E \ E1stop(�) \ B1reon straight(I�; I; q�; q; g�; g)�;where the sum is taken over all attributes (I�; I; q�; q; g�; g). There are less than 22(n2l+l)l4lattributes. Thus, the right side of the previous display is bounded by22(n2l+l)l4l exp[�d exp(( + 21 ln pmin)l1)℄ =exp[2(n2l + l) ln 2 + (4l) ln l � d exp(( + 21 ln pmin)l1)℄ =exp[l1(2(n2l2 + l2) ln 2 + (4l2)(ln l1 + ln l2))� d exp(( + 21 ln pmin)l1)℄:So, �E1stop(�) \B1reon straight \ (E1reon straight)� �� exp[l1(2(n2l2 + l2) ln 2 + (4l2)(ln l1 + ln l2))� d exp(( + 21 ln pmin)l1)℄: (7.3.23)Estimate P�E1stop(�) \ (E1enough times) \ B1intervals OK�Reall pL := P (S(1)� S(0) = L) and de�nep� := exp[�(1:5 + 2�IIl2 + 1 ln pL)l1℄:



328 Chapter 7. Retrieving the exat sequeneProposition 7.3.2. If exp(�l1)p� � 2 exp(l1); (7.3.24)thenP�E1stop(�) \ (E1enough times) \ B1intervals OK� � 64 exp[(2l1 � 2 exp((2 � �)l1)℄; (7.3.25)provided l1 is big enough.Proof. Reall the de�nitions of T 1(j), T 3(j), j = 1; : : : exp(�l1). Let x; y 2 H1 be suhthat y = x+ 1l1L and de�neEj(x; y) := 8>><>>: S(T 1(j)� lm2) = x� lmS(T 1(j)) = x; S(T 3(j)) = y;q̂�(w1(j)) � q�x(�); ĝ�(w1(j)) vI�x(�) g�x(�);q̂(w3(j)) � qy(�); ĝ(w3(j)) vIy(�) gy(�) 9>>=>>; ; Yj := IEj ; j = 1; : : : ; e�l1 :Obviously, ne�l1Xj=1 Yj > el1o � E1enough times(x; y): (7.3.26)For eah j and for every senery  , it holdsP (Yj = 1) = P (S(T 1(j)� lm2) = x� lm)�P (S(T 1(j)) = x; q̂�(w1(j)) � q�x(�); ĝ�(w1(j)) vI� g�x(�)jS(T 1(j)� lm2) = x� lm)�P (S(T 3(j)) = yjS(T 1(j)� lm2) = x� lm; S(T 1(j)) = x; q̂�(w1(j)) � q�x(�); ĝ�(w1(j)) vI� g�x(�))�P (q̂(w3(j)) � qy(�); ĝ(w3(j)) vI gy(�)jS(T 1(j)� lm2) = x� lm; S(T 1(j)) = x; S(T 3(j)) = y; q̂�(w1(j)) � q�x(�); ĝ�(w1(j)) vI� g�x(�)):Now, by the Markov property of SP (Yj = 1jEstop(�)) =P (S(T 1(j)� lm2) = x� lmjEstop(�)))�P (S(T 1(j)) = x; q̂�(w1(j)) � q�x(�); ĝ�(w1(j)) vI� g�x(�)jS(T 1(j)� lm2) = x� lm)�P (S(T 3(j)) = yjS(T 1(j)) = x)�P (q̂(w3(j)) � qy(�); ĝ(w3(j)) vI gy(�)jS(T 3(j)) = y):In Subsetion 7.1.4, we showedP �S(T 1(j)� lm2) = x� lm���Estop(�)� � exp(�1:5l1)By the same argument as in Subsetion 7.1.4, we get for  2 B1intervalsOK,P �S(T 1(j)) = x; q̂�(w1(j)) � q�x( ); ĝ�(w1(j)) vI�x( ) g�x( )jS(T 1(j)� lm2) = x� lm2� �inf : j[y;y+lm℄ is OKP �S(T 3(j) + lm2) = y + lm; q̂(w3(j)) � qy( ); ĝ(w3(j)) vIy( ) gy( )���S(T 3(j)) = y�:



7.3. Reonstrution at level l1 329By Theorem 7.2.3, we have that the right side of the previous display is at least exp[�l�II ℄.Hene, for  2 B1intervals OK, it holdsP �S(T 1(j)) = x; q̂�(w1(j)) � q�x( ); ĝ�(w1(j)) vI�x( ) g�x( )jS(T 1(j)� lm2) = x� lm2�� exp[�l�II ℄P �q̂(w3(j)) � qy( ); ĝ(w3(j)) vIy( ) gy( )jS(T 3(j)) = y� � exp[�l�II ℄:Finally, P (S(T 3(j)) = yjS(T 1(j)) = x) = (pL)1l1L:This means, for  2 B1intervals OKP (Yj = 1jEstop(�)) � exp[�1:5l1℄ exp[�2l�II ℄(pL)1l1L = p�: (7.3.27)Conditional on Estop(�) and  , the random variables Yi are independent. That followsfrom the de�nition of Estop(�)). HeneP �e�l1Xj=1 Yj � el1��Estop(�)� � P�e�l1Xj=1 Zj � el1�= P�e�l1Xj=1(Zj � p�) � el1 � e�l1p��;(7.3.28)where Zi are independent Bernoulli random variables with parameter p�. By (7.3.24), theright side of (7.3.28) is bounded byP�e�l1Xj=1(Zj � p�) � el1 � e�l1p��� P�e�l1Xj=1(Zj � p�) � �el1�:Use H�o�ding's inequality to getP�e�l1Xj=1(Zj � p�) � �el1�� exp[�2e(2��)l1 ℄:Finally, integrate over E1stop(�) \ B1intervals OK and use (7.3.26) to dedueP�E1stop(�) \ (E1enough times(x; y)) \B1intervals OK� � exp[�2 exp((2 � �)l1)℄:Sum over all pairs (x; y) 2 H1 to get (7.3.25).7.3.6 Tuning parametersReall that for big n, �I > 8�II .� Choose n so big that statements of Theorem 7.2.1, Theorem 7.2.2, relation (7.2.23)and the statement of Corollary 7.2.1 hold.� Then hoose 1(n) > C1(n), where C1(n) is spei�ed in Proposition 7.3.1.



330 Chapter 7. Retrieving the exat sequene� Then hoose l2(1; n) so big that simultaneously�II l2 > 1:5 + ln 2� 1 ln pL (7.3.29)(�I � 7�II)l2 > 9 (7.3.30)4�II l2 > �21 ln pmin (7.3.31)al2 > 3 (7.3.32)� Then take (n; 1; l2) = 4�IIl2� Then take �(n; 1; l2) = 7�II l27.3.7 Proof of the main theoremReall Lemma 7.3.1. By (12.4.12), (12.4.13) and (7.3.6), for l1 big enough, it holdsP��E1alg works(�)� \ E1stop(�)� �P��E1only ladders� \ E1stop(�)� + P��E1all ladders� \ E1stop(�)� + P��B1unique �t��; (7.3.33)P��E1only ladders� \ E1stop(�)� � P��E1reon straight� \ E1stop(�)� � (7.3.34)P��E1reon straight� \ E1stop(�) \B1reon straight� + P��B1reon straight��;P��E1all ladders� \ E1stop(�)� � P��B1enough barriers��+ P��E1no mistake��+ P��B1enough times� \ E1stop(�)�; (7.3.35)P��E1no mistake�� � P��E1no mistake� \B1intervals OK� + P��B1intervals OK��; (7.3.36)P��B1enough times� \ E1stop(�)� � P��B1enough times� \ E1stop(�) \B1intervals OK� + P��B1intervals OK��:(7.3.37)Reall the de�nitions of l2. The ondition (7.3.33) states 7�IIl2 > 4�IIl2+1:5 + ln 2� 1 ln pL+2�II l2 or, equivalently, �l1 > ( + 1:5 + ln 2� 1 ln pL)l1 + 2�II l:Taking exponentials,exp(�l1) exp(�1:5l1 � 2�II l)(pL)1l1 > 2 exp(l1):Reall the de�nition of p� and note that the inequality in the previous display is (7.3.24).Hene, by Proposition 7.3.2, we have the bound (7.3.25). By de�nition of � and , we getk4 := exp(2 � �) = exp(�II l2), implying that (7.3.25) is exponentially small in l1. By



7.4. Appendix 331(7.3.32), there exist k5 > 0 suh that (7.3.10) is bounded by 4 exp[�k5l1℄. With (7.3.25),we obtain that (7.3.37) is bounded by 68 exp[�(k4 ^ k5)l1℄.Use (7.3.20) and (7.3.17) with (7.3.30) to obtain that P (�E1no mistake� � 12 exp[(9 +�)l1 � �I l℄ = 12 exp[�k6l1℄ for a k6 > 0. Hene, (7.3.36) is bounded by 12 exp[�k6l1℄ +4 exp[�k5l1℄ � 16 exp[�(k6 ^ k5)l1℄:By (7.3.13), we now get that (7.3.35) is bounded by 68 exp[�(k4 ^ k5)l1℄ + 16 exp[�(k6 ^k5)l1℄ + exp[�k3l1℄ � 85 exp[�k7l1℄ for a k7 > 0:The requirement (7.3.31) states that  + 21 ln pmin > 0 implying that for a k8 > 0exp�l1[2(n2l2 + l2) ln 2 + (4l2)(ln l1 + ln l2)℄� 2 exp(( + 21 ln pmin)l1)� � exp[�k8l1℄for l1 big enough. By (7.3.23), this means (7.3.34) is bounded by exp[�k9l1℄ for l1 bigenough.Finally, we get that (7.3.33) is bounded by exp[�kl1℄, if l1 is big enough. This provesTheorem 7.1.1.7.4 Appendix7.4.1 Proof of Theorem 7.2.1Reall m(n) > n.For eah i = 1; : : : ; l random ells �i = �jDi = (�(di�1); : : : ; �(di)).Consider the event EOKa. We an rewriteEOKa = n lXi=2Lm2Xi � l2�(n)o;where Xi is Bernoulli random variable that is one if and only i� �i is not weak-OK. Letl� := Lm2 + + 2; l� = l � + 1:Then (l� � 1)m� m = Lm3 +m and (l� � 1)m + m = lm. Clearly P (Xi = 1) � �(n),if l� � i � l�. If i > l�, then, by de�nition, �i annot be weak-OK and, hene, Xi = 1.Now, let n be so big that l� � 2Lm2 i.e. + 2 � Lm2. This means, EOKa is independenton �Lm3 . Then also l � l� = � 1 � 2Lm2. Let us estimateEOKa = n lXi=2Lm2Xi > l2�(n)o � nl�2Lm2Xi=2Lm2Xi > l2�(n)� 2Lm2o� [j=�+1n k�Xk=k�Xik2�j > l2�(n)� 2Lm22 o� [j=�+1n k�Xk=k�Xk2�j � (k� � k� + 1)�(n) > l2�(n)� 2Lm22 � l�(n)2 o:



332 Chapter 7. Retrieving the exat sequeneHere k� := p2Lm2+2 q and k� := x l�2Lm2�+12 y. Thus k��k� � l�4Lm2+12 < l2 , k��k�+1 < l.Note, by de�nition Xi 2 �(�jjj = i � ; i �  + 1; : : : ; i +  � 1). Thus, Xk and Xk2 areindependent. This means, for eah j we an apply H�o�ding's inequality. Thus, for eah jP� k�Xk=k�(Xk2�j � �(n)) > l�(n)� 2Lm22 � � P� k�Xk=k�(Xk2�j � EXk2�j) > l�(n)� 2Lm22 �� exph�(l�(n)� 2Lm2)2(k� � k�) i � exp[� l�2(n)2 ℄;provided l is big enough to satisfy l�(n)� 2Lm2 � l �(n)2 . Hene,P (EOKa) � 2 exp���2(n)l2 � � exp(�a1(n)l); (7.4.1)for some a1(n) > 0, provided l is big enough.We estimate P (EOKb) by the same argument. De�neEi�OKb := ���IiII(�ml)�� � l(1� exp(�m0:8))	 ; i = 1; 2:Clearly, for n big enough,E1�OKb \ E2�OKb � EOKb and P(EOK) � P (E1�OKb) + P (E2�OKb): (7.4.2)Let us estimate P (E2�OKb).Let Yi be Bernoulli random variable that is 1 if and only if �i has not empty neighborhood.Let us estimate P (Yi = 1). If di�1 � Lm2 � 0 and di + Lm2 � lm, thenP (Yi = 1) = �9j 2 [di�1 � Lm2; di + Lm2℄ : �(j) = � � � = �(j +m0:9)�� (2Lm2 +m+ 1)(0:5)m0:9 � exp(�m0:85);in m is big. Otherwise, by de�nition, Yi = 1. Let N be suh that the inequality aboveholds as well as (7.4.2) if n > N . Note that E2�OKb is independent of �Lm3 .Clearly Yi 2 �(�i�Lm; : : : ; �i+Lm). Hene Yi and Yi+2+2Lm are independent. Let k =2(1 + Lm). Now with i� = x l�2Lm2�k+1k y and i� � lk we getE2�OKb = n lXi=2Lm2 Yi > l exp(�m0:8)o � nl�2Lm2Xi=2Lm2 Yi > l exp(�m0:8)� 2Lm2o� k�1[j=0n i�Xi=0 Y2Lm2+j+ik > l exp(�m0:8)� 2Lm2k o� k�1[j=0n i�Xi=0 Y2Lm2+j+ik � i� exp(�m0:85) > l(exp(�m0:8)� exp(�m0:85))� 2Lm2k o� k�1[j=0n i�Xi=0 (Y2Lm2+j+ik � EY2Lm2+j+ik) > l(exp(�m0:8)� exp(�m0:85))� 2Lm2k o:



7.4. Appendix 333Denote exp(�m0:8)� exp(�m0:85) =: e(m) and apply H�o�dings inequalityP� i�Xi=0 (Y2Lm2+j+ik�EY2Lm2+j+ik) � le(m)� 2Lm2k � � exph�2(le(m)� 2Lm)2lk i � exp[�a2(m)l℄;for some a2(m) > 0, if l is suÆiently big. Now, for big l,P (E2�OKb) � 2(k + 1) exp(�a2(m)l) � 2(m+ 1) exp(�a2(m)l) � exp(�a3(m)l);for some a3(m) > 0.Similarly we estimate P (E1�OKb).Let Zi be Bernoulli random variable that is 1 if and only if �i is not isolated. If i � l�Lm,then, by de�nition Zi = 1. ThusE1�OKb = f lXi=2Lm2 Zi > l exp(�m)o � n l�LmXi=2Lm2 Zi > l exp(�m)� Lmo:Again, E1�OKb is independent on �Lm3 . Note, ifPli+2Lm2 Zi > l exp(�m)�Lm, then amongthe vetors f�2Lm2�Lm�1; �2Lm2�Lm; : : : ; �lg there exists at least 12(l exp(�m) � Lm � 1)intervals �i without fene.Let Z 0i Bernoulli random variable that is 1 if and only if the random vetor (but notthe ell) �j(di�1; di) does not ontain a fene. Sine the intervals (di�1; di) and (dj�1; dj)(i 6= j) are disjoint, Z 0i are iid. random variables. Hene, with j� = 2Lm2 � Lm � 1, weget P (E1�OKb) � P� lXj=j�Z 0j > 12(l exp(�m)� Lm� 1)�:ClearlyP (Z 0i = 1) = P (�j(di�1; di) ontains no fene) � (1� (0:5)2L�1)m�22L < e�m;for some  > 0. Now H�o�ding's inequality yieldsP� lXj=j�Z 0j � 12(le�m0:8 � Lm)�� P� lXj=1 Z 0j � le�m � 12(le�m0:8 � Lm)� le�m�=P� lXj=1(Z 0j � EZ 0j) > 12 l(e�m0:8 � 2e�m)� L2m�� exph� (l(e�m0:8 � 2e�m)� Lm)22l i:(7.4.3)The right side of (7.4.3) is bounded by exp(�la4(m)), for some a4(m) > 0, provided l isbig enough.Now, there exists a5(m) > 0 suh that for big l,P (EOKb) � exp(�a3l) + exp(�a4l) � exp(�a5l) (7.4.4)Now, by (7.2.2), (7.4.1), (7.4.4)P (EOK) � P (EOKa) + P (EOKb) � exp(�la1) + exp(�la5) � exp(�la);for some a(m) > 0 and big l.



334 Chapter 7. Retrieving the exat sequene7.4.2 Proof of Proposition 7.2.1By de�nition, Fmin(j) 2 ��S(t)� S(t� 1)���t 2 [1; (sj � rj)m℄�:This means, if Fmin(j) 6= ?, then P (Fmin(j)) � (pmin)(sj�rj)m: We shall show thatFmin(j) 6= ?.Let j 2 f1; : : : ; kg. Let us desribe an admissible path R := Rj 2 R((sj � rj)m) suhthat simultaneously satis�es R1, R2, R3. If suh a path exists, then (7.2.13) holds.Consider an arbitrary index-interval [l2j�1; l2j℄, j > 1. It orresponds to the loation-interval [rj; sj℄. Let C1 < � � � < Cq be the big lusters of  in [sj; rj℄. Denote by i; di,i = 1; : : : ; q the beginnings and ends of big lusters, respetively. Hene, Ci � [i; di℄. Thepath R should read the big lusters as one blok, i.e. along the reading-path.Moreover, let B1 < B2 < � � � < Bp be the bloks of  in the set [sj; rj℄n([qi=1[i+2; di�2℄)that are bigger thanm2=2�v. By de�nition, l(Bi) < m3, i = 1; : : : ; p. Indeed, if l(Bi) � m3,then Bi would be a (part of) big luster. We refer to a Bi as a small blok. The smallbloks should be rossed as shortly as possible, i.e. along the reading path.Finally let A1 < A2 < � � � < AK , K = p+ q be the ordered big lusters and small bloks.Let ai; bi denote (an arbitrary) reading-beginning and reading-end of Ai.Sine j > 1, it holds l2j�1 2 III . Then D2j�1 has empty neighborhood, hene [rj; rj+Lm2℄is empty (for  ) and, therefore, does not ontain any small bloks. Also D2j�1 is isolated.This implies that there is no point in [rj; rj + Lm2℄ that is onneted with any point in[rj + Lm2 +m; sj℄. In partiular, all objets A1; : : : ; AK are outside of [rj; rj + Lm2℄ or,formally, a1 > rj + Lm2.If sj � rj � 2Lm2; then the interval does not ontain bloks that are bigger than m0:9. Inthis ase R starts at rj, i.e. R(0) = rj and goes to the point sj with (l2j � l2j�1 + 1)m2step without generating more than m�v onseutive same olors in observations. This islearly possible.If sj � rj > 2Lm2, then we de�ne the minimum-bloks path R for interval [rj; sj℄ bak-wards. More preisely, we de�ne or presribe a path R� that starts at sj and goes to rjwith (sj�rj)m2 steps. The presription of R� is the following: start at sj, i.e. R�(0) = sj.Then move stepwise to bK (reall, this is a reading-end of the last small blok or the lastbig luster in [ri; sj℄). Reall sj = l2jm If sj 6= l, then l2j 2 III and [sj � Lm2; sj +m℄ isempty and [sj � Lm2 �m; sj � Lm2℄ ontains a fene. As explained above, this impliesthat bK � sj � Lm2. So, by moving stepwise from sj to bK, it is not possible that Sgenerates more than m0:9�v same olors in the beginning.After reahing bK move along the reading path to aK . Then move stepwise to bK�1.Continue so until a1 and then go stepwise until rj + Lm2. Sine a1 > rj + Lm2,for suh a path less than ((sj � rj) � Lm2)�v steps are needed. This means that thepath has more than (sj � rj)(m � �v) + Lm2�v steps to over the interval [rj; rj + Lm2℄with length Lm2 without generating more than m�v onseutive same olors in obser-vations and satisfying R�((sj � rj)m) = rj. This is obviously possible, beause theinterval does not ontain more than m0:9 onseutive same olors. Finally de�ne R asR� bakwards, i.e. R(0) = R�((sj � rj)m) = rj; R(1) = R�((sj � rj)m � 1); : : : ; R(i) =R�((sj � rj)m� i); : : : ; R((sj � rj)m) = R�(0) = sj (reall, S is symmetri).Suh de�nition of Rj ensures thatR1 and R3 are met. Let us show that R2 holds as well.



7.4. Appendix 335Note that the number of big bloks in  Æ R is equal with the number of big lustersin [rj; sj℄. Let this number be M . That meansq̂V ( Æ rj) = qV ([rj; sj℄) =M;where V := l2j � l2j�1 + 1. LetT (i) := inffk : qk( j[rj; sj℄) = ig; T̂ (i) := inffk : q̂k( Æ rj) = ig i = 1; : : : ;M:R2 is violated, if there exists i 2 f1; : : : ;Mg suh that T̂ (i) < T (i). Fix an i 2 f1; : : : ;Mg.The inequality T̂ (i) < T (i) means that after reading the i-th big luster, R has more than(V � T (i) + 1)m2 steps to go to sj. However, the path R is onstruted suh that afterreahing to the bi we have at most (V � T (i) + 1)m�v step to go sj. That proves R2.Finally onsider the �rst interval [r1; s1℄ = [0; s1℄ (obviously, r1 = 0). Sine l1 = 1 =2 III ;the interval [0; Lm2℄ is not neessarily empty. And [Lm2; Lm2 + m℄ does not nees-sarily ontain a fene. This means that it might be not possible to go from a1 to 0without generating more than m�v onseutive same olors in observations and satisfy-ing R�(s1m) = 0. However, it is learly possible to go from a1 to 0 without generatingany big blok in observations. So, for R1, the desription of reverse-path, R� ends: gofrom a1 to 0 without generating any big blok in the observations. For example, if (0) =  (1) = � � � =  (Lm3) = 1, then the reverse of the minimum-blok path, R�,states that S goes to 0 (with suitable many steps, satisfying R�(s1m2) = 0) by generatingonly one's. Thus, if R1 and  (0) =  (1) = � � � =  (Lm3) = 1 hold, then  Æ R1 startswith at least m3 onseutive ones but it does not start with a big blok. This means thatR2 still holds.Hene, Fmin(j) 6= ? for eah j = 1; : : : ; k.
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Chapter 8Retrieving random media(submitted)By Heinrih Matzinger and Silke RollesBenjamini asked whether the senery reonstrution methods of Matzinger (see e.g. [19℄,[20℄, [18℄) an be done in polynomial time. In this artile, we give the following answerfor a 2-olor senery and simple random walk with holding: We prove that a piee of thesenery of length of the order 3n around the origin an be reonstruted { up to a reetionand a small translation { with high probability from the �rst 2 � 310�n observations with aonstant � > 0 independent of n. Thus, the number of observations needed is polynomialin the length of the piee of senery whih we reonstrut. The probability that thereonstrution fails tends to 0 as n!1.In ontrast to [19℄, [20℄, and [18℄, the proofs in this artile are all onstrutive. Ourreonstrution algorithm is an algorithm in the sense of omputer siene. This is the�rst artile whih shows that the senery reonstrution is also possible in the 2-olorase with holding. The ase with holding is muh more diÆult than [20℄ and requires aompletely di�erent methods. 18.1 Introdution and ResultA senery is a oloring of Z with �nitely many olors. We all two seneries � and �0equivalent, � � �0, if � = �0 Æ T where T is a translation, a reetion, or the ompositionof both. Let S := (Sk)k2N0 be a reurrent random walk on Z. Observing the seneryalong the random walk path, we obtain the olor reord � := (�k := �(Sk))k2N0 . Thesenery reonstrution problem asks the following question: Given the olor reord �, anwe reonstrut the senery � up to equivalene?Early questions about random seneries were raised by Benjamini and Kesten and,independently, by Keane and den Hollander. For the history of the problem we referthe reader to the survey paper of Kesten [12℄. Early work on random seneries inludeartiles of Benjamini and Kesten [1℄, den Hollander [4℄, Howard ([7℄, [8℄, [9℄), Keaneand den Hollander [10℄, Kesten [11℄, and Lindenstrauss [15℄. More reent ontributionsare due to Burdzy [2℄, Heiklen, Ho�man, and Rudolph [6℄, den Hollander and Steif1MSC 2000 subjet lassi�ation: Primary 60K37, Seondary 60G10, 60J75.Key words: Senery reonstrution, jumps, stationary proesses, random walk, ergodi theory.339



340 Chapter 8. Retrieving random media[3℄, Levin, Pemantle and Peres [14℄, Levin and Peres [13℄. We refer the reader to theintrodutions of [?℄ and [22℄ for more details. Various ontributions to the subjet ofsenery reonstrution have been made by Matzinger ([19℄,[20℄), L�owe and Matzinger([17℄, [16℄), L�owe, Matzinger, and Merkl [18℄, Matzinger and Rolles [22℄. In these papers,the senery is taken random, independent of the random walk, and it is shown that foralmost all realizations of the random walk path, almost all seneries an be reonstrutedup to equivalene.The senery reonstrution algorithms in [19℄, [20℄, [17℄, [16℄, [18℄, and [22℄ do not workin polynomial time. Benjamini asked whether some of these reonstrutions an be donein polynomial time. In this artile, we give the following answer to Benjamini's question:Let � := (�k)k2Z with �k i.i.d. uniform on f0; 1g, and let S = (Sk)k2N0 be a simple randomwalk with holding on Z, independent of �. We prove that in order to reonstrut { up toa reetion and a small translation { with high probability a piee of senery of lengthof the order 3n around the origin, we need only the observations up to time p(3n) with apolynomial p, independent of n.In order to reonstrut the whole senery, we need in�nitely many observations beausethe senery is in�nite. In �nite time, we an never reonstrut with probability 1 a pieeof senery of length � 2. As a matter of fat, the random walk stays with positiveprobability at the origin. Hene, we mean by reonstrution in polynomial time thatthere exist algorithms An, n � 1, with the following properties: An obtains as input�nitely many observations, namely �j[0; 2 � 310�n[ with a onstant � > 0 and produesan output of length of the order 3n. The probability that the reonstrution sueeds,in the sense that the output is { up to a reetion and a small translation { a piee ofthe senery around the origin, tends to 1 as n!1. The number of observations neededis polynomial in the length of the reonstruted piee of senery. Sine the senery isassumed to be i.i.d., with probability 1 every �nite piee of senery ours somewhere inthe senery. Thus it is ruial to reonstrut something lose to the origin.Formally, our result an be desribed as follows: Let C := f0; 1g denote the set ofolors. For two piees of senery  and  0 (not neessarily of the same length), we write �  0 if  is up to a possible reetion ontained in  0. We prove:Theorem 8.1.1. There exist onstants �; 3; 4; 25 > 0 and maps An : C2�310�n !C[�3�3n;3�3n℄, n � 3, whih are measurable with respet to the anonial �-algebras, suhthat for all n � 3 the eventEn := ��j[�3n; 3n℄ � An(�j �0; 2 � 310�n�) � �j[�4 � 3n; 4 � 3n℄	satis�es P ([En℄) � 4 exp (�25n0:2).As a onsequene of Theorem 8.1.1 the whole senery an be reonstruted almostsurely:Theorem 8.1.2. There exists a map A : CN0 �! CZ, whih is measurable with respet tothe anonial �-algebras, suh that P (A(�) � �) = 1.The present artile is the �rst artile whih solves the senery reonstrution problemin the ase of two olors and simple random walk with holding. We all this ase thestatistial ase. On the piee of senery 01, the random walker an produe every patternby jumping bak and forth or staying. Thus, at many plaes in the senery, the random



8.1. Introdution and Result 341walk an produe every possible pattern in the observations. This makes the statistialase muh more diÆult than the ombinatorial ase, where with high probability wordsof length 1n (with a onstant 1 > 0) are harateristi for ertain parts of the senery.Two olors and simple random walk [20℄, many olors and simple random walk on Z2 [17℄,enough olors and random walk on Z with jumps [18℄ are examples of the ombinatorialase. In the statistial ase, it is muh more diÆult than in the ombinatorial ase toreonstrut small piees of the senery. The methods used below are ompletely di�erentfrom the tehniques developed in earlier artiles.

The remainder of the artile is organized as follows: Setion 9.2 ollets some nota-tion. In Setion 8.3, we show how Theorem 8.1.2 follows from Theorem 8.1.1. Sine thede�nition of the maps An whih ful�ll the laim of Theorem 8.1.1 is quite involved, theonstrution is split in several steps. In Setion 8.3, we state the results needed in theonstrution of the An. The ruial step onsists in �nding small words in the senery;this is done in Setion 8.4. The seond important step is the onstrution of a partialreonstrution algorithm BigAlgn whih is treated in Setion 8.5. In addition, we need asmall piee of the senery to get the reonstrution started and also sequenes of stoppingtimes indiating when the random walker is lose to the origin. These results are provedin [21℄. At the end of Setion 8.3, we show how the results of Setions 8.4 and 8.5 togetherwith the results from [21℄ imply Theorem 8.1.2.

The following diagram is a guide to the proofs of Theorems 8.1.2 and 8.1.1:



342 Chapter 8. Retrieving random media
Central part:Reonstruting wordsTheorem 9.7.1

Proved in [21℄Finding aninitial blok:Theorem 3.1 ) Reonstrutinga small piee:Theorem 3.2 )Stopping loseto the origin:Proposition 3.3| {z }+Main resultsPolynomial reonstrution: Theorem 8.1.1+Reonstruting the whole senery: Theorem 8.1.2
8.2 NotationIn this setion, we ollet some notations and onventions.Numbers, sets, and funtions: We denote by N := f1; 2; 3; : : :g the set of naturalnumbers and set N0 := N [ f0g. If x 2 R, we denote by bx the largest integer � x. Wewrite x ^ y for the minimum of x; y 2 R. For a vetor y = (yk)k2[1;m℄ 2 Rm we de�ne thel1-norm kyk1 := Pmk=1 jykj and the l2-norm kyk2 := (Pmk=1[yk℄2)1=2. The ardinality of aset D is denoted by jDj. We write f jD for the restrition of a funtion f to a set D. Aninteger interval is a set of the form I \Z with an interval I � R. In this artile, intervalsare always taken over the integers, e.g. [a; b℄ = fz 2 Z : a � z � bg.Admissible paths: Let I = [i1; i2℄ be an integer interval. We all R 2 ZI an admissiblepiee of path if Ri+1�Ri 2 f�1; 0; 1g for all i 2 [i1; i2�1℄. We all Ri1 the starting point,Ri2 the endpoint, and jIj the length of R.Measures: We de�ne Æx to be the Dira measure in x. We denote the image of a measureQ under a map F by QF�1.



8.2. Notation 343Seneries: We denote by C := f0; 1g the set of olors. A senery is an element of CZ.Let I � Z be an integer interval. An element of CI is a piee of senery or a word. If 2 CI , we all jIj the length of  and denote it by j j. We write (1)I for the piee ofsenery in CI whih is identially equal to 1.Bloks: Let a; b 2 I with a < b and ja � bj � 2. We de�ne  2 C [a;b℄ to be a blok if a =  b and   6=  a for all  2℄a; b[.   is the olor of the blok. We all a the leftendpoint, b the right endpoint, and j j := b � a � 1 the bloklength of  . For instane,01110 is a blok of length 3. We set � := fa; bg.Let �j[t1; t2℄ and �j[a; b℄ be bloks. We say that �j[t1; t2℄ is generated by the randomwalk S on the blok �j[a; b℄ if fSt1 ; St2g � fa; bg and St 2℄a; b[ for all t 2℄t1; t2[.Equivalene of seneries: Let  2 CI and  0 2 CI0 be two piees of senery. We saythat  and  0 are equivalent and write  �  0 i� I and I 0 have the same length andthere exists a 2 Z and b 2 f�1; 1g suh that for all k 2 I we have that a + bk 2 I 0 and k =  0a+bk. We all  and  0 strongly equivalent and write  �  0 if I 0 = a+ I for somea 2 Z and  k =  0a+k for all k 2 I. We say  ours in  0 and write  v  0 if  �  0jJfor some J � I 0. We write  �  0 if  �  0jJ for some J � I 0. If the subset J is unique,we write  �1  0.Random walks and random seneries: Let 
2 � ZN0 denote the set of admissiblepaths. Let p; q > 0 satisfy 2p+q = 1. We denote by Qx the distribution on 
2 of a randomwalk (Sk)k2N0 starting at x with i.i.d. inrements distributed aording to pÆ�1+qÆ0+pÆ1,i.e. S is a simple random walk with holding, and satis�esp = P (Sk+1 � Sk = 1) = P (Sk+1 � Sk = �1);q = P (Sk+1 � Sk = 0)for all k � 0. The senery � := (�k)k2Z is i.i.d. with P (�k = 0) = P (�k = 1) = 1=2.We assume that � and S are independent and realized as anonial projetions on 
 :=CZ�
2 with the produt �-algebra generated by the anonial projetions and probabilitymeasures Px := (12Æ0 + 12Æ1)
Z
Qx, x 2 Z. We abbreviate P := P0. We all � := (�k :=�(Sk))k2N0 the senery observed along the random walk path; sometimes we write � Æ Sinstead of �.For a �xed senery � 2 CZ we set Px;� := Æ� 
 Qx, P� := P0;�. Thus Px;� is theanonial version of the onditional probability Px(�j�), the distribution P onditioned onthe random walk to start in x and the senery �. We never work with a di�erent versionof the onditional probability Px(�j�).Filtration: We de�ne G := (Gn)n2N0 with Gn := �(�k; k 2 [0; n℄) to be the natural�ltration of the observations over 
.Shifts: We de�ne the shift � : CN0 ! CN0 , � 7! �(�+1). We introdue the shift � : 
! 
,(�; S) 7! (�(S1 + �); S(1 + �) � S1). For a set A � 
 and a random time T � 0 we set��T (A) := f! : �T (!)(!) 2 Ag.Constants: We denote onstants by i, i � 1; they keep their meaning throughout thewhole artile. Constants 1; 2; 6; 7, and � play a speial role. They are hosen as follows:� 2 > 21,� 1 2 4N with 1 > maxf153; 42g,� 6 > (1 + 4) ln 3,



344 Chapter 8. Retrieving random media� 7 > maxf0; 2 ln 3� 21 ln p+ 26 + 21 ln[maxi2[1;5℄ kx�i k2℄g with x�i as in De�nition9.7.5,� � 2 N with � > 1 + 171 + [247 � 31 ln p℄= ln 3.8.3 Overview of the reonstrutionIn this setion, we show how Theorem 8.1.1 is proved using the results from Setions 8.4and 8.5 and [21℄. First we show how Theorem 8.1.1 implies Theorem 8.1.2.Proof of Theorem 8.1.2. Let An : C2�310�n ! C [�3�3n;3�3n℄ be as in Theorem 8.1.1. We saythat a sequene of piees of seneries (�n 2 CIn)n�3 onverges pointwise to a senery � iffor all z 2 Z there exists nz suh that z 2 In and �n(z) = �(z) for all n � nz. We de�neA(�) := � limn!1An(�j [0; 2 � 310�n[) if this limit exists pointwise,(1)Z else.As a limit of measurable maps, A is measurable. Theorem 8.1.1 impliesP1n=3 P ([En℄) �P1n=3 4 exp (�25n0:2) <1. Hene by the Borel-Cantelli lemma, P ([1m=3\1n=mEn) = 1.In order to prove P (A(�) � �) = 1, we use the same arguments as in the proof of Theorem3.7 of [18℄. (One shows P �[1m=3 \1n=m f�j [�3n; 3n℄ �1 �j [�4 � 3n+1; 4 � 3n+1℄g� = 1, whihimplies that the reonstruted piees of senery An(�j [0; 2 � 310�n[) �t uniquely togetherfor all n suÆiently large and yield the senery �.)Hene, it suÆes to de�ne maps An whih ful�ll the laim of Theorem 8.1.1. Themain ingredient in the onstrution of An is a map BigAlgn whih obtains as input datathe observations olleted by the random walk up to time 2 � 310�n (as An does). Inaddition, BigAlgn needs a sequene of stopping times � := (�k)k2[1;3�n℄ and a small pieeof senery  . BigAlgn produes as output a piee of senery w 2 C [�3�3n;3�3n℄ whih satis�es�j[�3n; 3n℄ � w � �j[�4 � 3n; 4 � 3n℄ with high probability.The reason why we need the stopping times (�k)k2[1;3�n℄ is the following: In order to beable to reonstrut the senery in the interval [�3n; 3n℄, the random walk must visit thispart of the senery many times. Otherwise, we will not have enough information for thereonstrution. Sine 2 � 310�n is onsiderably larger than 3n, there is a good hane, therandom walk visits the interval [�3n; 3n℄ often up to time 2 � 310�n. However, up to time2 �310�n, only a small fration of the time is spent in [�3n; 3n℄. The rest of the time, whenthe random walk is outside of [�3n; 3n℄, the observations do not provide us with usefulinformation. Hene we need to be able to determine whih parts of the observations aregenerated by the random walk on �j[�3n; 3n℄. Formally, the task of the stopping times(�k)k2[1;3�n℄ is spei�ed by the event En;�stop de�ned as follows.De�nition 8.3.1. For n 2 N and a sequene � = (�k)k�1 of G-adapted stopping times,we de�ne the eventEn;�stop := 3�n\k=1��k < 310�n; jS�k j � 3n; �j + 2 � 33n � �k for j < k	 :



8.3. Overview of the reonstrution 345Besides stopping times, BigAlgn obtains as input a piee of senery  of length �2n2 + 1. Compared to the output of BigAlgn, whih has length of the order 3n,  is verysmall. If  � �j[�3n; 3n℄, i.e. if we have with  some information about the underlyingsenery, and if the event En;�stop holds, then with high probability, BigAlgn reonstruts apiee of senery around the origin. More formally:Theorem 8.3.1. There exist 8; 17; 21 > 0 and a sequene of measurable mapsBigAlgn : [0; 310�n℄[1;3�n℄ � C2�310�n � [k�n2 C[�k;k℄! C [�3�3n;3�3n℄; n 2 N ;suh that for all n � 8 and every sequene � = (�k)k2[1;3�n℄ of G-adapted stopping timesP �En;�stop n En;�reon Big� � 17e�21n; whereEn;�reon Big := �For all  2 C [�k;k℄ with k � n2 and  � �j [�3n; 3n℄ we have�j[�3n; 3n℄ � BigAlgn(�; �j [0; 2 � 310�n[ ;  ) � �j[�4 � 3n; 4 � 3n℄. � :Let us explain how BigAlgn reonstruts a piee of the senery. Using the stoppingtimes � together with the observations from its input, BigAlgn reonstruts with highprobability all words of length 1n=2 in �j[�5 � 3n; 5 � 3n℄; here 1 is a (large) onstantas desribed in Setion 9.2. This is the ruial step in the de�nition of BigAlgn. Thewords annot be extrated from � in a simple manner. Instead we need to look at ertainempirial distributions of words whih then allow us to obtain information about the truedistribution and �nally about the words themselves. Theorem 9.7.1 below provides ariterion to �nd words in the senery. Reonstruting the words is a hard problem underour assumptions on random walk and senery. In fat, this part of the reonstrution ismuh more diÆult in the present setting than in previously solved senery reonstrutionproblems.Sine with high probability, eah word of length 1n=4 ours at most one in �j[�5 �3n; 5 � 3n℄, it is possible to reonstrut a piee of senery ontaining �j[�3n; 3n℄ from theolletion of words of length 1n=2. The assemblage will be done as follows: We startwith the small piee of senery  from the input of BigAlgn. Then we look for a word oflength 1n=2 whih overlaps with  by at least 1n=4 letters and extends  by at leastone letter. We ontinue the proedure with the extended  .One we have de�ned BigAlgn, we an de�ne the map An in terms of BigAlgn withsuitable stopping times � and a piee of senery  as input. The initial piee  will be apiee of senery around a long blok of � lose to the origin. Sine the ideas for �ndingwords and de�ning BigAlgn are entral for this paper, we deided to onentrate on theseparts. The proofs onerning the stopping times and the initial piee an be found in [21℄.Let blokn+ := �j[bn+l ; bn+r ℄ designate the leftmost blok of � of length� n with bn+l � 0,and let blokn� := �j[bn�l ; bn�r ℄ denote the rightmost blok of � of length � n with bn�r � 0.Finally, let blokn 2 fblokn+; blokn�g denote the blok whih is visited �rst by S.The map An will reonstrut a piee of senery around blokn. Thus, �rst we need toloate blokn. With high probability, in a large neighborhood of blokn there is no largeblok in the senery. Hene, up to a ertain time horizon, long bloks in the observations� indiate that the random walker generates the observations on blokn. The followingtheorem states that with high probability, there is a stopping time that stops the randomwalk in the set �blokn.



346 Chapter 8. Retrieving random mediaTheorem 8.3.2. ([21℄, Theorem 3.1) For all n 2 N, there exists a G-adapted stoppingtime �n(0), measurable with respet to �(�k; k 2 [0; 310�n[), suh that the probability of theeventEn�(0) ok := fS�n(0) 2 �blokng \ f�n(0) � 2 � 33ng \ f�blokn � [�3n=3; 3n=3℄g:satis�es the following bound: There exist onstants 11; 12; 13 suh that for all n � 11P ��En�(0) ok�� � 12e�13n0:3 :Next, we reonstrut a piee of senery around blokn. We show that there is amap SmallAlgn with the following properties: Given 3bn0:3 observations olleted bythe random walker starting in the set �blokn, a piee of senery of length of the order3bn0:2 around blokn an be reonstruted with high probability. For our purposes, it isonvenient to state this di�erently: For � in a set of probability lose to 1, onditionedon the senery �, SmallAlgn reonstruts with high probability a piee of senery aroundblokn.Theorem 8.3.3. ([21℄, Theorem 3.2) There exist onstants 14; 15; 18; 13; 15 > 0 and asequene SmallAlgn : C [0;3bn0:3[ ! C [�3�3bn0:2;3�3bn0:2℄; n � 14;of measurable maps suh that the following holds: We set Hni := minfk � 0 : Sk = bni gfor i 2 fl; rg. If we de�neEnreon Small := �SmallAlgn��j�0; 3bn0:3�� � �j[�3 � 3bn0:2; 3 � 3bn0:2℄	 and�n := �� 2 CZ : P�����TEnreon Small�� � e�18n0:2 for all T 2 fHnl ; Hnr g	;then P (� 62 �n) � e�18n0:2 for all n � 14.In fat, in [21℄, we heavily use the ideas from the onstrution of BigAlgn to de�neSmallAlgn. The piee of senery reonstruted by SmallAlgn is muh smaller than thepiee of senery whih An is supposed to reonstrut. The map SmallAlgn is used tode�ne stopping times �n(k), k � 1, whih indiate when the random walk is in theinterval [�3n; 3n℄. Reall that An should reonstrut a piee of senery of length of theorder 3n whih is ontained in �j[�4 � 3n; 4 � 3n℄. Hene, it will be useful to have stoppingtimes whih stop the random walk in the interval [�3n; 3n℄. We de�ne n := SmallAlgn(�j[�n(0); �n(0) + 3bn0:3[); (8.3.1)Tn := �t 2 [�n(0); 310�n � 3bn0:3[: 9w 2 C [�3bn0:2;3bn0:2℄ suh that w �  nand w � SmallAlgn(�j[t; t + 3bn0:3[) � :(8.3.2)Let ~�n(1) < ~�n(2) < : : : denote the points in Tn in inreasing order. We de�ne �n :=(�n(k))k2[1;3�n℄ by�n(k) := � ~�n(2 � 33nk) + 3bn0:3 if 2 � 33nk � jTnj310�n else:



8.3. Overview of the reonstrution 347Note that �n(k) depends only on �j[0; 310�n[ and is a G-adapted stopping time. In fat, inorder to determine whether t 2 Tn, we need to look at �j[t; t+ 3bn0:3[, but �n(k) is neverde�ned to be t, but only t+ 3bn0:3.The idea behind the de�nition of the �n(k)'s is the following: With high proability,�n(0) stops the random walk in the set �blokn and  n is up to a possible reetion a pieeof senery of length 6�3bn0:2+1 around blokn. The set Tn onsists of times t � �n(0) suhthat SmallAlgn applied to the observations starting at time t produes an output whihagrees on a large subpiee, namely a piee of length 2 � 3bn0:2 + 1, with  n. With highprobability,  n is typial for the senery around blokn, and hene the random walker is inthe interval [�3n; 3n℄ at time t. (With high probability, blokn an be found in the pieeof senery �j[�3n=3; 3n=3℄.) For the onstrution below, it will be essential that we havesuÆiently many �n(k)'s whih are far enough apart from eah other and all bounded by310�n. Formally, the task of the stopping times �n(k) is spei�ed by the event En;�nstop , seeDe�nition 9.3.1.Reall the de�nition of �n from Theorem 8.3.3. If the event En�(0) ok\���n(0)[Enreon Small℄holds and � 2 �n, then with high probability the stopping times �n stop the random walkorretly, in the sense that the event En;�nstop holds. This is made preise by the followingpropositon:Proposition 8.3.1. ([21℄, Proposition 3.3) There exist onstants 19; 20; 21 suh that forall n � 19P ��En�(0) ok \ ���n(0)[Enreon Small℄ \ f� 2 �ng� n En;�nstop � � 20e�21n0:3 :Now, we have ahieved the following: Using SmallAlgn,we an reonstrut a piee of senery  n around blokn. With high probability,  n ��j[�3n; 3n℄. Furthermore, the stopping times �n(k) stop the random walk with highprobability in the interval [�3n; 3n℄. Hene, with this input data, the algorithm BigAlgnreonstruts with high probability a piee of senery of length of the order 3n around theorigin.Let n � 14 with 14 as in Theorem 8.3.3, and let  n be as in (9.3.4). We de�neAn(�j[0; 2 � 310�n[) := BigAlgn(�n; �j[0; 2 � 310�n[;  n):Proof of Theorem 8.1.1. We show that the maps An de�ned above ful�ll the laim ofTheorem 8.1.1. We haveP ([En℄) � P ��En;�nstop \ En�(0) ok \ ���n(0)[Enreon Small℄� n En�+ P ([En�(0) ok℄)+P ��En�(0) ok \ ���n(0)[Enreon Small℄ \ f� 2 �ng� n En;�nstop �+P �[En�(0) ok \ f� 2 �ng℄ n���n(0)[Enreon Small℄�+ P (� 62 �n): (8.3.3)If ���n(0)[Enreon Small℄ holds, then  n � �j[S�n(0)�3 �3bn0:2; S�n(0)+3 �3bn0:2℄. If in additionEn�(0) ok holds, then S�n(0) 2 �blokn � [�3n=3; 3n=3℄, and onsequently,  n � �j[�3n; 3n℄for all n suÆiently large. Hene, using Theorem 8.3.1,P ��En;�nstop \ En�(0) ok \���n(0)[Enreon Small℄� n En� � P �En;�nstop n En;�nreon Big� � 17e�21n



348 Chapter 8. Retrieving random mediafor all n suÆiently large. By Theorem 9.3.1, P ([En�(0) ok℄) � 12e�13n0:3 for all n � 11.Proposition 9.3.3 states thatP ��En�(0) ok \���n(0)[Enreon Small℄ \ f� 2 �ng� n En;�nstop � � 20e�21n0:3for all n � 19. Next, we estimate the seond but last term in (8.3.3):P �[En�(0) ok \ f� 2 �ng℄ n���n(0)[Enreon Small℄�= Zf�2�ng P��En�(0) ok \ ����n(0)[Enreon Small℄��dP� Zf�2�ng P��fS�n(0) = bnl g \ ����n(0)[Enreon Small℄��dP+ Zf�2�ng P��fS�n(0) = bnr g \ ����n(0)[Enreon Small℄��dP:Using the strong Markov property of the random walk and Theorem 8.3.3, we on-lude that the last quantity is � 2e�18n0:2 . Finally, by Theorem 8.3.3, P (� 62 �n) �exp[�18n0:2℄ for all n � 14. Combining all these estimates with (8.3.3), the laim fol-lows.8.4 How we �nd words in the observationsIn this setion, we show that many words of length of the order n an be reonstrutedfrom the observations.8.4.1 A suÆient riterionLet us �rst explain why in the present setting it is so diÆult to reonstrut words.Assume for a moment that the senery �, instead of being a 2-olor senery, is a 4-olor senery, i.e.� 2 f0; 1; 2; 3gZ. Let us assume furthermore, that for two integers x1; x2 we have �x1 = 2 and �x2 = 3,but �x 62 f2; 3g for all x 2 Z n fx1; x2g. Then we ould reonstrut the portion of the senery � lyingbetween x1 and x2: As a matter of fat, sine the random walk S is reurrent, it traverses a.s. at leastone (and hene in�nitely often) the shortest path from x1 to x2. Sine we are given in�nitely manyobservations � the distane between x1 and x2 is the shortest time lapse that a 3 ever appears in theobservations � after a 2. When the random walk goes in a shortest possible way from x1 to x2, ittraverses the straight path from x1 to x2. During that time, the random walk reveals in the observationsthe portion of � lying between x1 and x2. More preisely, if the pair of integers t1, t2 with t2 > t1minimizes jt2 � t1j under the onditions �St1 = 2 and �St2 = 3, then the piee of the senery � lying inthe interval [minfx1; x2g;maxfx1; x2g℄ is equal to the word �j[t1; t2℄ or its transpose.A related, but muh more involved idea an still be used for 2-olor seneries. Let us next explain whythe 2-olor senery reonstrution problem is muh more diÆult for simple random walk with holdingthan for simple random walk. So assume for the moment that S is a simple random walk, i.e. in eahstep S jumps one to the right or one to the left with probability 1=2. In this ase, we an use insteadof the extra olors 2 and 3 in the previous paragraph binary words of the form 001100 and 110011: It iseasy to verify that the only possibility for the word 001100 to appear in the observations, is when 001100ours in the senery (i.e. �j[x; x + 5℄ = 001100 for some x) and the random walk traverses the straightpath between x and x+ 5. The same is true for the word 110011.If 001100 ourred in preisely one plae x1 of the senery and 110011 ourred in preisely one plaex2 6= x1 of the senery, then we ould reonstrut up to a reetion the piee of senery ourring between001100 and 110011. We would just look in the observations where the word 110011 ours in shortest



8.4. How we �nd words in the observations 349time after the word 001100. In between, we see a opy of the piee of the senery � omprised between001100 and 110011.Of ourse, in an i.i.d. senery, the word 001100 ours a.s. in�nitely often. Nevertheless,a slight modi�ation of this idea was for instane used by L�owe, Matzinger, and Merkl in[18℄. They used, that with high probability ertain words our only in ertain areas ofthe senery, whih allowed them to reonstrut the words in between.For a random walk with holding, the idea of patterns in the observations whih tellus when we are bak at the same spot like for example 001100 does not work at all. Thereason is that if �z = 1 and �z+1 = 0, then the random walk with holding an produe anypattern by just moving bak and forth between z and z+1 and doing holdings. Thus, allpatterns an be produed in most plaes in � and are thus not spei� for some plaes inthe senery. However, in the ase of a random walk with holding, the same idea of gettingin shortest time from a point x1 to a point x2 an be applied to the distributions of theobservations. In order to make this preise, we need some notation.Let � 2 Sk�33n C [0;k[; the reader should think of � as a piee of observations. Weonsider ~On1On2 ~On3 where ~On1 onsists of the �rst 1n bloks of � after time 32n, On2 equalsthe following 1n=2 observations in � extended until the next blok starts, and ~On3 onsistsof the following 1n bloks of �. (We do not look at the �rst 32n bits of � beause therandom walk needs to have a hane to visit all points in the interval [�3n; 3n℄ before westart olleting information.) We are interested in On2 . The words ~On1 and ~On3 are usedto �nd those On2 whih our in � \lose to the origin". ~On1 and ~On3 play the role of theextra olors 2 and 3 in the argument above. It turns out that it suÆes to use insteadof ~Onj (j = 1; 3) the orresponding sequenes of trunated blok lengths: we replae ~Onjby the sequene Onj 2 f1; 2; 3; 4; 5g1n where the ith omponent equals the minimum of 5and the length of the ith blok of ~Onj . Formally:De�nition 8.4.1. Let � 2 Sk�33n C [0;k[. We abbreviate �n := �j [32n; 33n[. We denote byBk(�) the kth blok of � if � possesses at least k bloks; otherwise we set Bk(�) := 101 2C[33n ;33n+3[. We denote by onl (�) the right end of B1n(�n). Furthermore we denote by ~onr (�)the left end of the �rst blok of �nj [onl (�) + 1n=2� 2; 33n[ and set onr (�) := ~onr (�) + 1. If�nj [onl (�) + 1n=2� 2; 33n[ does not ontain a blok, then we set onr (�) := onl (�). We de�neOn := (On1 ;On2 ;On3 ) by On1 (�) := (jBk(�n)j ^ 5)k2[1;1n℄;On2 (�) := �j [onl (�); onr (�)℄ ;On3 (�) := (jBk(�~onr (�)(�))j ^ 5)k2[1;1n℄:The letter \O" should remind the reader of \observation". By de�nition, jOn2(�)j �1n=2 unless onr (�) = onl (�). The following piture illustrates our de�nitions for 1n = 6:� = 1110 : : : 01110010| {z }�j[0; 32n[ 0 01110100000011000 1| {z }~On1 (�) 000 0 1 11001011110001| {z }~On3 (�) 00111110 : : :�onl and �onr are marked with boxes. In this example, we have On1 (�) = (3; 1; 1; 5; 2; 3),On2 (�) = 100001, On3 (�) = (3; 2; 1; 1; 4; 3).In the following, let � = (�k)k2[1;3�n℄ be a sequene of G-adapted stopping times.



350 Chapter 8. Retrieving random mediaDe�nition 8.4.2. For � 2 C [0;2�310�n[, we de�ne the empirial distribution of On observedafter eah time �k, k 2 [1; 3�n℄:�̂n;�� := 3��n Xk2[1;3�n℄ ÆOn(��k�):For � 2 CN0 , we set �̂n;�� := �̂n;��j[0;2�310�n[.Reall that Px;� [On(�)℄�1 denotes the distribution of On(�) onditioned on the seneryto be � and onditioned on the random walk to start in x.De�nition 8.4.3. For an admissible path R 2 Z[0;2�310�n[, let an;�R (x) be the proportion ofk 2 [1; 3�n℄ with R�k = x. We de�ne�n;��;R := Xx2[�3n;3n℄ an;�R (x)Px;� [On(�)℄�1"n;��;R := �̂n;��ÆR � �n;��;R:For an admissible path R 2 ZN0 , we set �n;��;R := �n;��;Rj[0;2�310�n[.Hene, �n;��;R is a mixture of the distributions Px;� [On(�)℄�1. The signed measure "n;��;Rmeasures the di�erene between the empirial measure and �n;��;R. It will be shown inLemma 8.5.8 that with high P -probability "n;��;S is small provided the stopping times �stop orretly. This is used to reonstrut the senery: �̂n;�� an be omputed from�j[0; 2 � 310�n[ and � . It is lose to �n;��;S , from whih we will extrat information about thesenery �. Of ourse, �n;��;S annot be obtained from � and � only.By de�nition, �n;��;R and �̂n;�� are measures on the set obs := [1; 5℄1n � obs2 � [1; 5℄1nwith obs2 := fw 2 Ck : k � 1n=2; wk�1 6= wk; wj = wk�1 for all j 2 [1n=2 � 1; k � 1℄g.We denote by �2 : obs! obs2; �1;3 : obs! [1; 5℄1n � [1; 5℄1nthe anonial projetions. Furthermore, we introdue the event that an observation O 2obs has �2(O) of length d � 1n=2:En;dblok := fO 2 obs : [�2(O)℄d�1 6= [�2(O)℄dg :We order the 2d elements of Cd lexiographially and denote them by v1; v2; � � � ; v2d.Let evk := (evk(i))i2[1;2d℄ be de�ned by evk(i) := Æk(i); i.e. fevk ; k 2 [1; 2d℄g is the anonialbasis in R2d . Let f1vk ; k 2 [1; 2d℄g be the dual basis, i.e. 1vk(evj ) = Æk(j) for all j; k 2 [1; 2d℄.Sometimes it will be onvenient to identify a measure � whih is supported on a �niteordered set fs1; s2; : : : ; smg with the vetor (�(fs1g); �(fs2g); : : : ; �(fsmg)). Similarly, wesometimes identify measures supported on N0 by one-sided in�nite vetors.Let w 2 Cd. For any probability measure � on Cd we have 1w(�) = �(w). In partiular,if � gives mass one to w, then 1w(�) = 1. We denote by 1 the linear funtional de�ned by1(�) :=Pdi=1 �i. If g1 and g2 are two linear funtionals we denote by g1 
 g2 their tensorprodut.The following theorem gives suÆient onditions for a word w 2 Cd to be ontainedin the senery �j[�33n; 33n℄. Its proof is postponed to Setion 8.4.3. For the de�nitionof positivity for a linear funtional we refer the reader to Setion 8.4.2, in partiularDe�nition 9.7.6.



8.4. How we �nd words in the observations 351Theorem 8.4.1. There exists 11 > 0 suh that for all n � 11, d 2 [1n=2; 1n℄, andw 2 Cd with wd�1 6= wd the following holds whenever the event En;�stop holds: Suppose thereexist positive linear funtionals g1 and g3 on (R5)
1n with the following properties:1. Case q 6= 0: (g1 
 1w 
 g3)(�̂n;��ÆS[� \ En;dblok℄) > 1 (8.4.1)(g1 
 1
 g3)(�̂n;��ÆS[� \ En;d�1blok ℄) � 1=(5n2) (8.4.2)kg1 
 g3k2 � k"n;��;Sk1=21 � 1=(2n2): (8.4.3)2. Case q = 0: (9.7.1), (9.7.3), and(g1 
 1
 g3)(�̂n;��ÆS[� \ En;d�2blok ℄) � 1=(5n2): (8.4.4)Then w � �j [�33n; 33n℄.8.4.2 Positive linear funtionalsFor m 2 N , we denote by Tm the �rst hitting time of f�1; mg by the random walk S:Tm := minfk � 0 : Sk 2 f�1; mgg. Let �j[a; b℄ be a blok of length m and let SB bea random walk with SB0 2 fa; bg having its inrements distributed as S. Then the P�-distribution of the length of the �rst blok in � Æ SB equals P [Tm℄�1, the distribution ofTm. We abbreviate�ml (�) := P (fTm 2 �g \ fSTm = �1g) ; �mr (�) := P (fTm 2 �g \ fSTm = mg) :Clearly, Tm � 1 P -almost surely. We ompute�1r = (p; pq; pq2; pq3; pq4; : : :);�2r = (0; p2; 2p2q; p4 + 3p2q2; : : :);�3r = (0; 0; p3; 3p3q; 2p5 + 6p3q2; : : :);�4r = (0; 0; 0; p4; : : :);�5r = (0; 0; 0; 0; p5; : : :);here \: : :" means we are not interested in these values. We de�ne h : N0 ! [1; 5℄, x 7! x^5.Then �ml h�1(�) = P (fTm ^ 5 2 �g \ fSTm = �1g) :The measures �ml h�1; �mr h�1 are supported on the set f1; 2; 3; 4; 5g. Hene we an identifythem with vetors in R5+ .De�nition 8.4.4. We de�ne vetors in R5+ :~x1 := (p; pq; pq2; pq3; pq4);~x2 := �2rh�1 = (0; p2; 2p2q; p4 + 3p2q2; �2r([5;1[);~x3 := (0; 0; p3; 3p3q; p5 + 6p3q2);~x4 := �4rh�1 = (0; 0; 0; p4; �4r([5;1[);~x5 := (0; 0; 0; 0; 1):Clearly, f~xigi2[1;5℄ is a basis of R5 . We denote by f~x�i gi2[1;5℄ the orresponding dual basis.



352 Chapter 8. Retrieving random mediaRemark 8.4.1. 1. For any m � 1 and i 2 fl; rg the vetor �mi h�1 an be written asa linear ombination with positive oeÆients of ~xj, 1 � j � 5.2. We have ~x�2(�mi h�1) 6= 0 i� i = r and m = 2. Furthermore, ~x�4(�mi h�1) 6= 0 i� i = rand m = 4.3. For i 2 f1; 3; 5g, we have x�i (�2r) = 0 and x�i (�4r) = 0.4. The lower bound ~x�m^5 (�mr h�1) � (m + 1)�1 holds for all m � 1.Proof. By de�nition, �mr h�1 = ~xm for m = 2; 4. Furthermore, �1r = ~x1 + �1r(℄5;1[)~x5 and�3r = ~x3+(p5+�3r(℄5;1[))~x5. Finally, we have �mr h�1 = P (STm = m) �~x5 = (m+1)�1 �~x5for m � 5.By symmetry, �1l h�1 = �1rh�1. Furthermore, �2l h�1 = (p; pq; pq2 + p3; pq3 + 3p3q; p5 +6p3q2 + pq4 + �2l (℄5;1[)) = ~x1 + ~x3 + �2l (℄5;1[) � ~x5 and �3l h�1 = (p; pq; pq2 + p3; pq3 +3p3q; 2p5 + 6p3q2 + pq4 + �3l (℄5;1[)) = ~x1 + ~x3 + �3l (℄5;1[) � ~x5. Let m � 4. Sine anypath, whih starts at 0, hits 3 before hitting �1, and hits �1 before m has � 7 steps, wehave �ml h�1 = �3l h�1 for all m � 4. The laim follows.De�nition 8.4.5. We all a funtion f : (R5)
m ! R positive if f (
mk=1~xnk) � 0 for alln1, n2; : : : ; nm 2 f1; 2; 3; 4; 5g.Remark 8.4.2. Let g be a positive linear funtional on (R5)
1n. If Px;�[Sonl = y℄ > 0,then g(Px;�[On1 2 �jSonl = y℄) � 0. If Px;�[Sonr = y℄ > 0, then g(Px;�[On3 2 �jSonr = y℄) � 0.Proof. Suppose Px;�(Sonl = y) > 0. By the de�nition of On1 , we an write the probabilityPx;�[On1 2 �jSonl = y℄ as a linear ombination with positive oeÆients of tensor produtsof the �mi h�1's. Eah �mi h�1 equals a linear ombination with positive oeÆients of ~xi,1 � i � 5 by Remark 8.4.1. The estimate g(Px;�[On1 2 �jSonl = y℄) � 0 follows beause gis positive. The seond part of the statement is proved analogously.8.4.3 Proof of Theorem 9.7.1We begin with a lemma, whih we need in the proof of Theorem 9.7.1.Lemma 8.4.1. There exists 7 > 0 suh that for all n � 7, for all d 2℄2; 1n℄, and allx 2 [0; d[ the following hold:1. If q 6= 0, then P (Sd = x) � n2P (Sd�1 = x).2. If q = 0 and P (Sd�2 = x) > 0, then P (Sd = x) � n2P (Sd�2 = x).Proof. Let n 2 N , d 2℄2; 1n℄, x 2 [0; d[, and suppose q 6= 0. We denote by �d;x � Z[0;d℄the set of all admissible piees of paths from 0 to x, and we de�ne a map f : �d;x ! �d�1;xas follows: If � 2 �d;x ontains a holding, i.e. �y = �y�1 for some y 2℄0; d℄, then we de�nef(�) to be the path obtained from � by removing the �rst holding in �. Otherwise,beause of x < d, there exists either a step to the left followed by a step to the right ora step to the right followed by a step to the left in �. In this ase, we de�ne f(�) to bethe path obtained from � by replaing the �rst ourrene of suh a pair of steps by aholding. For any � 2 �d;x we haveP (Sj[0; d℄ = �) � max�q; p2q�1	P (Sj[0; d� 1℄ = f(�)):



8.4. How we �nd words in the observations 353Furthermore, any �0 2 �d�1;x has at most 3d pre-images under f . Hene we obtainP (Sd = x) = X�2�d;x P (Sj[0; d℄ = �) � X�02�d�1;x X�2f�1(�0)P (Sj[0; d℄ = �)� X�02�d�1;x ��f�1(�0)��max�q; p2q�1	P (Sj[0; d� 1℄ = �0)� 3dmax�q; p2q�1	P (Sd�1 = x):Sine d � 1n, we have 3dmaxfq; p2q�1g � n2 for all n suÆiently large and the laimfollows in the ase q 6= 0. The ase q = 0 is treated similarly.Proof of Theorem 9.7.1. Let q 6= 0. Let the assumptions of the theorem be satis�ed andsuppose w 6� �j [�33n; 33n℄.By H�older's inequality, jPmi=1 gi�ij � [Pmi=1 g2i ℄1=2[Pmi=1 �2i ℄1=2 for all gi; �i 2 R. Henewe have for any linear funtional g : Rm ! R and � 2 Rm the estimate jg(�)j � kgk2k�k2.Sine "n;��;S is the di�erene of two probability measures, k"n;��;S[�\En;dblok℄k22 � k"n;��;Sk1. Usingthis together with (9.7.3), we obtainj(g1 
 1w 
 g3)("n;��;S[� \ En;dblok℄)j � kg1 
 1w 
 g3k2 � k"n;��;S[� \ En;dblok℄k2� kg1 
 g3k2 � k"n;��;Sk1=21 � 1=(2n2): (8.4.5)Hene it follows from �n;��;S = �̂n;��ÆS � "n;��;S and (9.7.1) that(g1 
 1w 
 g3)(�n;��;S[� \ En;dblok℄) � 1� 1=(2n2) > 3=4for all n � 2. Inserting the de�nition of �n;��;S and using the linearity of g1 
 1w 
 g3 andthe de�nition of 1w, yields3=4 < (g1 
 1w 
 g3)(�n;��;S[� \ En;dblok℄) (8.4.6)= Xx2[�3n;3n℄ an;�S (x)(g1 
 1w 
 g3)(Px;�[(On1 (�);On2(�);On3 (�)) 2 � \ En;dblok℄)= Xx2[�3n;3n℄ an;�S (x)(g1 
 1w 
 g3)(Px;�[(On1 (�);On2(�) = w;On3(�)) 2 �℄):In the following, we omitt dependenies on � in the notation if there is no risk of onfusion.Sine we assumed w 6� �j [�33n; 33n℄, we have for any admissible path R 2 [�33n; 33n℄[0;d[with � ÆR = w the estimate jR0 � Rd�1j < d� 1. Consequently,Px;�[(On1 ;On2 = w;On3) 2 �℄ =Xy;z Px;�[Sonl = y; Sonr = z; (On1 ;On2 = w;On3) 2 �℄; (8.4.7)where the sum is taken over all y; z 2 [�33n; 33n℄ with the property jy � zj < d � 1 andPx;�[Sonl = y; Sonl +d�1 = z℄ > 0. We rewrite the summands: On the event fOn2 = wg, wehave onr = onl + d � 1. Note that On1 depends only on the random walk up to time onl ,



354 Chapter 8. Retrieving random mediawhereas (Sonr ;On2 ;On3 ) depends only on Sonl and the random walk inrements Sonl +t � Sonl ,t � 0. Therefore, On1 and (Sonr ;On2 ;On3 ) are independent onditioned on Sonl = y. Thus(8:4:7) =Xy;z Px;�[Sonl = y;On1 2 �℄
 Px;�[Sonr = z; (On2 = w;On3) 2 �jSonl = y℄=Xy;z Px;�[Sonl = y;On1 2 �℄
 Px;�[Sonl +d�1 = zjSonl = y℄Px;�[(On2 = w;On3) 2 �jAd�1y;z ℄(8.4.8)with Ad�1y;z := fSonl = y; Sonl +d�1 = zg. Using again the Markov property of the randomwalk, we see that On2 and On3 are independent, onditioned on Ay;z := fSonl = y; Sonr = zg.HenePx;�[(On2 = w;On3) 2 �jAd�1y;z ℄ = Px;�[Ay;z℄Px;�[Ad�1y;z ℄Px;�[(On2 = w;On3) 2 �jAy;z℄= Px;�[Ay;z℄Px;�[Ad�1y;z ℄Px;�[On2 = w 2 �jAy;z℄
 Px;�[On3 2 �jAy;z℄= Px;�[On2 = w 2 �jAd�1y;z ℄
 Px;�[On3 2 �jAy;z℄:Consequently, we obtain from (8.4.7) and (8.4.8)Px;�[(On1 ;On2 = w;On3) 2 �℄ = Xy;z Px;�[Sonl = y;On1 2 �℄
 Px;�[Sonl +d�1 = zjSonl = y℄Px;�[On2 = w 2 �jAd�1y;z ℄
 Px;�[On3 2 �jAy;z℄: (8.4.9)In view of (8.4.6), the aim is to apply g1
 1w
 g3 to the last sum. We observe for n � 7with 7 as in Lemma 8.4.1Px;�[Sonl +d�1 = zjSonl = y℄1w(Px;�[On2 = w 2 �jAd�1y;z ℄)� Px;�[Sonl +d�1 = zjSonl = y℄ = P0;�[Sd�1 = z � y℄ � n2P0;�[Sd�2 = z � y℄= n2Px;�[Sonl +d�2 = zjSonl = y℄; (8.4.10)here we used the Markov property of the random walk and Lemma 8.4.1. Combining(8.4.9) with (8.4.10) and using Remark 8.4.2 yields(g1 
 1w 
 g3)(Px;�[(On1 ;On2 = w;On3) 2 �℄) (8.4.11)� Xy;z g1[Px;�[Sonl = y;On1 2 �℄℄n2Px;�[Sonl +d�2 = zjSonl = y℄g3[Px;�[On3 2 �jAy;z℄℄:We an enlarge the last sum by summing over all y; z 2 [�33n; 33n℄ with jy�zj < d�1 andPx;�(Sonl = y; Sonr = z) > 0 and not only over those with Px;�[Sonl = y; Sonl +d�1 = z℄ > 0.The terms added in this way are non-negative by Remark 8.4.2. Note thatPx;�[(On1 ;On2On3 ) 2 � \ En;d�1blok ℄ =Xw0 Px;�[On2 = w0; (On1 ;On3) 2 �℄;where the sum is taken over all w0 2 Cd�1 with w0d�1 6= w0d�2. We use (8.4.9) for d � 1instead of d to obtain(8:4:11) � n2(g1 
 1
 g3)[Px;�[(On1 ;On2 ;On3 ) 2 � \ En;d�1blok ℄℄: (8.4.12)



8.5. Reonstruting a piee of senery 355Sine the event En;�stop holds, Px2[�3n;3n℄ an;�S (x) = 1. Consequently, the estimates (8.4.6)and (8.4.12) imply 3=(4n2) < (g1 
 1
 g3)(�n;��ÆS[� \ En;d�1blok ℄): (8.4.13)Similar to (8.4.5), we obtainj(g1 
 1
 g3)("n;��;S[� \ En;d�1blok ℄)j � kg1 
 g3k2 � k"n;��;Sk1=21 � 1=(2n2):Hene it follows from (8.4.13) and �̂n;��ÆS = �n;��ÆS � "n;��;S(g1 
 1
 g3)(�̂n;��ÆS[� \ En;d�1blok ℄) > 3=(4n2)� 1=(2n2) = 1=(4n2);whih ontradits assumption (9.7.2). Thus w � �j [�33n; 33n℄ and the theorem is provedin the ase q 6= 0. If q = 0, one replaes d� 1 by d� 2 in the above argument und uses(8.4.4) instead of (9.7.2).8.5 Reonstruting a piee of seneryLet n 2 N . The aim of this setion is to de�ne a map BigAlgn whih ful�lls the laim ofTheorem 8.3.1. Speial funtionals and events are needed in the proof of Theorem 8.3.1;their de�nitions are stated in Subsetion 8.5.2. Subsetion 8.5.3 ontains the ombinatorialpart in the proof of Theorem 8.3.1, and Subsetion 8.5.4 deals with the probabilistiestimates.8.5.1 De�nition of BigAlgnBigAlgn takes as arguments� 2 �0; 310�n�[1;3�n℄ ; � 2 C2�310�n ; and  2 [k�n2 C[�k;k℄ (8.5.1)and produes an output BigAlgn(�; �;  ) 2 C [�3�3n;3�3n℄. The reader should think of � as arealization of a sequene of 3�n stopping times, � stands for 2 � 310�n observations, and  should be thought of as a small piee of the senery � around whih the reonstrutiontakes plae. In the following, we treat � , �, and  as abstrat input data of BigAlgn whihneed to ful�ll (8.5.1) only.Let � , �, and  satisfy (8.5.1). We use the onditions of Theorem 9.7.1 to de�ne a setWordsn(�; �) of building bloks for the senery whih we would like to reonstrut.De�nition 8.5.1. Let 7 > 0 be hosen as in Setion 9.2. We de�ne Wordsn(�; �) to bethe set of all w 2 Cd , d 2 [1n=2; 1n℄ suh that there exist positive linear funtionals g1and g3 on (R5)
1n with the following properties:1. Case q 6= 0: (g1 
 1w 
 g3) (�̂n;�� [� \ En;dblok℄) > 1 (8.5.2)(g1 
 1
 g3)(�̂n;�� [� \ En;d�1blok ℄) � 1=(5n2) (8.5.3)kg1 
 g3k2 � e7n: (8.5.4)



356 Chapter 8. Retrieving random media2. Case q = 0: (9.7.10), (9.7.12), and(g1 
 1
 g3)(�̂n;d�2;�� [� \ En;d�2blok ℄) � 1=(5n2): (8.5.5)The output of BigAlgn is supposed to ontain  in the middle and all subpiees oflength 1n=2 should be ontained in a possibly bigger piee of Wordsn(�; �). Formally:De�nition 8.5.2. We de�ne Outputn(�; �;  ) :=�w 2 C [�3�3n;3�3n℄ : wj[�k; k℄ =  for k = (j j � 1)=2 and for all intervals I �[�3 � 3n; 3 � 3n℄ with jIj = 1n=2 there exists w0 2 Wordsn(�; �) suh that wjI v w0� :We will see in the proof of Lemma 8.5.2 below that under appropriate onditions,there is preisely one element in Outputn(�; �;  ).De�nition 8.5.3. We de�neBigAlgn : [0; 310�n℄[1;3�n℄ � C2�310�n � [k�n2 C [�k;k℄ ! C [�3�3n;3�3n℄as follows: If Outputn(�; �;  ) 6= ?, then we de�ne BigAlgn(�; �;  ) to be its lexiographi-ally smallest element. Otherwise we set BigAlgn(�; �;  ) := (1)[�3�3n;3�3n℄.8.5.2 De�nitions of funtionals and eventsBelow we will need some speial linear funtionals. Reall the de�nition of f~x�igi2[1;5℄ fromDe�nition 9.7.5.De�nition 8.5.4. Let � 2 CZ.1. Let z 2 Z be suh that �z 6= �z�1, and let B i;z denote the ith blok of �$j℄ �1; z℄,where �$ denotes the reeted senery, de�ned by �$y := ��y for all y 2 Z. We set~gn;lz;� := 1nOi=1 �jB i;zj+ 1� � ~x�jB i;z j^5and all gn;lz;� := 32np�1n�2~gn;lz;� the left funtional of � at z.2. Let z 2 Z be suh that �z 6= �z�1, and let B!i;z denote the ith blok of �j[z � 1;1[.We de�ne the right funtional of � at z bygn;rz;� := 1nOi=1 �jB!i;zj+ 1� � ~x�jB!i;zj^5:Clearly, gn;lz;� and gn;rz;� are positive linear funtionals.De�nition 8.5.5. Let � 2 CZ.1. Let x1 2 Z suh that �x1 6= �x1�1. We all a positive linear funtional g a leftlimiting funtional of � at x1 i� for all x2 > x1 with �x2�1 6= �x2 we have that forall x 2 [�3n; 3n℄, Px;�(Sonl = x2) > 0 implies g(Px;�(On1 2 �jSonl = x2)) = 0, whilstg(Px;�(On1 2 �jSonl = x1)) > 0.



8.5. Reonstruting a piee of senery 3572. Let y1 2 Z suh that �y1 6= �y1�1. We all a positive linear funtional g a rightlimiting funtional of � at y1 i� for all y2 < y1 with �y2 6= �y2�1 we have that forall x 2 [�3n; 3n℄, Px;�(Sonr = y2) > 0 implies g(Px;�(On3 2 �jSonr = y2)) = 0, whilstg(Px;�(On3 2 �jSonr = y1)) > 0.In the remainder, we abbreviate�n := �j[0; 2 � 310�n[:We de�ne in alphabetial order events whih will be needed below. The event Bnbloks bdholds if the lengths of any 1n onseutive bloks are bounded in a ertain sense in a regionaround the origin. Bnfuntional is the event that gn;lz;� and gn;rz;� are limiting funtionals for allz not too large. Bn;�O2 gives bounds on the length of On2 (�). If Bnsen ok holds, then for everyword w of length 1n=2 there exist bloks to the left and to the right of w whih are loseto w. Bnunique �t guarantees that all words of length 1n=4 in a ertain region of the seneryare distint. Bloks of lengths 2 and 4 play a speial role in the arguments below. Bnbloks 2;4guarantees that there are suÆiently many bloks of lengths 2 and 4 in the senery. InDe�nition 8.5.12 we introdue a onvenient notation for a sequene of bloks of lengths 2and 4. Bnsignals denotes the event that ertain sequenes of bloks of lengths 2 and 4 anonly be observed to the left or to the right of a point in the senery. Finally, En;�Words okis the event that all words in Wordsn(�; �n) are ontained (up to a possible reetion) in�j[�33n; 33n℄ and Wordsn(�; �n) ontains suÆiently many words.De�nition 8.5.6. Let 6 > 0 be as in Setion 9.2. Reall the de�nitions of B!i;z and B i;zfrom De�nition 8.5.4. We de�ne Bnbloks bd := Bn;!bb \ Bn; bb with Bn;!bb :=f8z 2 ��2 � 33n; 2 � 33n� we have 1nYi=1[jB!i;zj+ 1℄ � e6n and 1nXi=1 [jB!i;zj+ 2℄ � 81ng;and Bn; bb is de�ned by replaing \!" by \ " in the de�nition of Bn;!bb .De�nition 8.5.7. Let 2 be as in Setion 9.2. We de�neBnbloks 2;4 := �In any sequene of 1n onseutive bloks of �j [�7 � 3n; 7 � 3n℄there are at least 2n bloks of length 2 or 4. � :De�nition 8.5.8. Let 7 be as in Setion 9.2. We de�ne Bn;�" := �k"n;��;Sk1 � e�47n	.De�nition 8.5.9. We de�ne Bnfuntional := Bn;lfun \ Bn;rfun withBn;lfun := �For all y 2 [�6 � 3n; 6 � 3n℄ with �y 6= �y�1 the left funtional at y isa left limiting funtional at y � ;Bn;rfun := �For all y 2 [�6 � 3n; 6 � 3n℄ with �y 6= �y�1 the right funtional at yis a right limiting funtional at y � :De�nition 8.5.10. We de�ne the event Bn;�O2 := Bn;�O2 small \ BnO2 large withBn;�O2 small := f8k 2 [1; 3�n℄ : jOn2(��k�)j � 3ng ;BnO2 large := �8� 2 CZ and 8x 2 [�3n; 3n℄ : Px;�(jOn2 (�)j > 3n) � e�87n	 :



358 Chapter 8. Retrieving random mediaDe�nition 8.5.11. We de�ne Bnsen ok :=�For all intervals I � [�5 � 3n; 5 � 3n℄ of length 1n=2 there exist y; z 2 Z suhthat jy � zj < 1n, I � [y; z℄, �y 6= �y�1, and �z 6= �z�1. � :De�nition 8.5.12. Let n2;4 be the number of bloks of length 2 and 4 in the piee ofsenery �n := �j [�7 � 3n; 7 � 3n℄. Let B2;4i;y be the ith blok of �j[y � 1;1[ of length 2or 4, and let C2;4i;y be its olor. We an desribe the bloks of length 2 and 4 of �n byol(�n) := (oli(�n) := (jB2;4i;y j; C2;4i;y ))i2[1;n2;4℄ with y = �7 � 3n. For R 2 [1; n2;4℄I we haveol ÆR = (olRi)i2I . We setŵx;2n;! := ol(�n)j[x; x + 2n[; ŵx;2n; := (olx�i(�n); i 2 [0; 2n[) (8.5.6)for all x where this makes sense. For all other x, we set ŵx;2n;!; ŵx;2n; := ((1; 1))i2[0;2n[.We denote by ��n the senery obtained from �n by replaing all 0's by 1's and all 1's by0's. We de�ne �wx;2n;!, �wx;2n; by replaing �n by ��n in (8.5.6).De�nition 8.5.13. We all R 2 Z[a;b℄ a nearest-neighbor path if Ri+1 � Ri 2 f�1;+1gfor all i 2 [a; b[. We de�ne Bnsignals := Bn;lsign \ Bn;rsign withBn;lsign := �8x 2 [1; n2;4℄ 8 nearest-neighbor path R 2 [1; n2;4℄[0;2n[ with R0 > xwe have ol(�n) ÆR 62 fŵx;2n; ; �wx;2n; g � ;Bn;rsign := �8x 2 [1; n2;4℄ 8 nearest-neighbor path R 2 [1; n2;4℄[0;2n[ with R0 < xwe have ol(�n) ÆR 62 fŵx;2n;!; �wx;2n;!g � :De�nition 8.5.14. For z 2 Z and m 2 N we de�ne wz;m;! := �j[z; z+m[ to be the wordof length m starting at z, and we denote by wz;m; the word obtained by reading wz;m;!from right to left. We de�neBnunique �t := �8z1; z2 2 [�33n; 33n℄ and 8i1; i2 2 f ;!g with (z1; i1) 6=(z2; i2) we have wz1;i1;1n=4 6= wz2;i2;1n=4 � :De�nition 8.5.15. We de�ne En;�Words ok := En;�only xi \ En;�all words withEn;�only xi := �If w 2 Wordsn(�; �n); then w � �j ��33n; 33n�	 ;En;�all words := �If w � �j [�5 � 3n; 5 � 3n℄ and jwj = 1n=2, then 9w0 2Wordsn(�; �n) with w v w0 � :8.5.3 CombinatorisLemma 8.5.1. There exists 8 > 0 suh that for all n � 8 the following inlusion holds:En;�stop \ Bnbloks bd \Bn;�" \ Bnfuntional \Bnsen ok � En;�Words ok:Proof. Let n 2 N and suppose the events En;�stop, Bnbloks bd, Bn;�" , Bnfuntional, and Bnsen okhold.First we show that En;�only xi holds: Let w 2 Wordsn(�; �n). Then there exist positivelinear funtionals g1 and g3 suh that (9.7.10), (9.7.11/8.5.5), and (9.7.12) are ful�lled.Sine Bn;�" holds, it follows from (9.7.12) that kg1 
 g3k2 � k"n;��;Sk1=21 � e�7n, whih is



8.5. Reonstruting a piee of senery 359� 1=(2n2) for all n suÆiently large. Consequently, the assumptions (9.7.1), (9.7.2/8.4.4),and (9.7.3) of Theorem 9.7.1 are satis�ed, and Theorem 9.7.1 implies w � �j [�33n; 33n℄for all n suÆiently large.It remains to show that En;�all words holds: Let I � [�5 � 3n; 5 � 3n℄ with jIj = 1n=2. SineBnsen ok holds, there exist y; z suh that jy� zj < 1n, I � [y; z℄, �y�1 6= �y, and �z 6= �z�1.For n suÆiently large, jyj; jzj � 6 � 3n. We set d := z� y+1, w := �j[y; z℄, g1 := gn;ly;�, andg3 := gn;rz;� and laim that w, g1, and g3 satisfy (9.7.10), (9.7.11/8.5.5), and (9.7.12) with� = �n whih implies w 2 Wordsn(�; �n).Note that kg 
 g0k2 = kgk2kg0k2 for any g; g0. Using this together with the fat thatBnbloks bd holds, we obtainkg1 
 g3k2 � 32np�1n�2 1nYi=1 �jB!i;zj+ 1� � �jB i;yj+ 1� [maxi2[1;5℄ k~x�i k2℄21n� 32np�21ne26n[maxi2[1;5℄ k~x�i k2℄21n � e7n (8.5.7)beause 1n � 2 and 7 � 2 ln 3� 21 ln p+26+21 ln �maxi2[1;5℄ k~x�i k2� (see Setion 9.2).Hene (9.7.12) is satis�ed.Next, we verify (9.7.11) in the ase q 6= 0. By the de�nition of �n;��;S , we have�n;��;S[� \ En;d�1blok ℄��11;3 = Xx2[�3n;3n℄ an;�S (x)Px;�[(On1 ;On3 ) 2 �; onr = onl + d� 2℄:With Au;v := fSonl = u; Sonr = v; onr = onl + d� 2g the following holdsPx;�[(On1 ;On3 ) 2 �; onr = onl + d� 2℄= Xfu;v2Z:ju�vj�d�2gPx;� [Au;v℄Px;�[(On1 ;On3 ) 2 �jAu;v℄= Xfu;v2Z:ju�vj�d�2gPx;� [Au;v℄Px;� [On1 2 �jAu;v℄
 Px;�[On3 2 �jAu;v℄;for the last equality we used that On1 and On3 are independent onditioned on Sonl andSonr . Let ju � vj � d � 2 suh that Px;�(Au;v) > 0. We annot have simultaneouslyu � y and v � z beause z � y = d � 1. Hene u > y or v < z. Reall that we hoseg1 = gn;ly;� and g3 = gn;rz;� . Sine the event Bnfuntional holds, g1 and g3 are left and rightlimiting funtionals at y and z, respetively. Consequently, g1(Px;�[On1 2 �jAu;v℄) = 0 org3(Px;�[On3 2 �jAu;v℄) = 0, and we onlude(g1 
 1
 g3)(�n;��;S[� \ En;d�1blok ℄) = 0:Hene, beause of �̂n;��ÆS = �n;��;S + "n;��;S and the linearity of g1 
 g3, we obtain(g1 
 1
 g3)(�̂n;��ÆS[� \ En;d�1blok ℄) = g1 
 1
 g3("n;��;S[� \ En;d�1blok ℄)� kg1 
 g3k2 � k"n;��;S[� \ En;d�1blok ℄k2: (8.5.8)Sine "n;��;S is the di�erene of two probability measures and Bn;�" holds, k"n;��;S[�\En;d�1blok ℄k22 �k"n;��;Sk1 � e�47n. Thus, using (8.5.8) and (8.5.7) yields(g1 
 1
 g3)(�̂n;��ÆS[� \ En;d�1blok ℄) � e�7n � 1=(5n2)



360 Chapter 8. Retrieving random mediafor all n suÆiently large. Thus (9.7.11) holds.Finally, we hek that (9.7.10) holds for q 6= 0. Note that k"n;��;Sk2 � k"n;��;Sk1=21 � e�27nbeause "n;��;S is the di�erene of two probability measures and Bn;�" holds. Sine �̂n;�� =�n;��;S + "n;��;S and (g1 
 1w 
 g3)("n;��;S) � kg1 
 g3k2 � k"n;��;Sk2 � e�7n by (8.5.7), we obtain(g1 
 1w 
 g3)(�̂n;�� [� \ En;dblok℄) � (g1 
 1w 
 g3)(�n;��;S[� \ En;dblok℄)� e�7n: (8.5.9)Sine En;�stop holds, Px2[�3n;3n℄ an;�S (x) = 1. Hene, by the de�nition of �n;��;S, it suÆes toshow that (g1 
 1w 
 g3)(Px;�[(On1 ;On2 ;On3 ) 2 �; onr = onl + d� 1℄) � 2 (8.5.10)for all x 2 [�3n; 3n℄ beause (8.5.10) and (8.5.9) imply (9.7.10) for all n suÆiently large.Let y0 and z0 denote the right end of the 1nth blok of �$j℄1; y℄ and �j[z;1[, re-spetively; reall �$u = ��u. I.e. y0 is the left end of the 1nth blok in � to the left of y.The following piture illustrates this for 1n = 6. The points y and z are marked with abox. : : : 0|{z}y0 1101000010 1 1100001 0| {z }�j[y; z℄ 1111001000110 1|{z}z0 : : :Let ônl denote the left end of the 1nth blok of � before onl (here bloks are ountedbakwards), and let ônr denote the right end of the 1nth blok of � after onr . Reall thede�nitions of B i;y and B!i;z from De�nition 8.5.4. We observePx;� [(On1 ;On2 ;On3 ) 2 �; onr = onl + d� 1℄ (8.5.11)� Px;� �(On1 ;On2 ;On3) 2 �; onr = onl + d� 1; Sônl = y0; Sonl = y; Sonr = z; Sônr = z0�= pPx;� �Sônl = y0� 1nOi=1 �jB i;y jr h�1O�pdÆw� 1nOi=1 �jB!i;zjr h�1:Deomposing (8.5.11) aording to the di�erent possible values for Sonl and Sonr and usingRemark 8.4.2, we obtain(g1 
 1w 
 g3)(Px;�[(On1 ;On2 ;On3 ) 2 �; onr = onl + d� 1℄)� (g1 
 1w 
 g3)�pPx;� �Sônl = y0� 1nOi=1 �jB i;yjr h�1O[pdÆw℄ 1nOi=1 �jB!i;zjr h�1�= 32np�1n+d�1Px;�[Sônl = y0℄ 1nYi=1 �[jB i;yj+ 1℄ � ~x�jB i;y j^5(�jB i;yjr h�1)�� 1nYi=1 �[jB!i;zj+ 1℄ � ~x�jB!i;zj^5(�jB!i;zjr h�1)�� 32np�1Px;�[Sônl = y0℄; (8.5.12)for the last estimate we used d � 1n and the fat that ~x�m^5 (�mr h�1) � (m+ 1)�1 for allm � 1 by Remark 8.4.1. Reall the de�nition of onl . We have that ônl is the left end of



8.5. Reonstruting a piee of senery 361the �rst blok of �32n(� Æ S). If S32n = y0 and S32n+1 = y0 + 1, then Sônl = y0. (Reallthat a blok of � starts at y0.) Using this and the loal entral limit theorem (see e.g. [5℄Theorem (5.2), page 132) yields32np�1Px;�[Sônl = y0℄ � 32np�1Px;�[S32n = y0; S32n+1 = y0 + 1℄= 32nPx;�[S32n = y0℄ � 2532n3�n = 253n � 2for all n � 9 with onstants 25; 9 > 0 independent of x 2 [�3n; 3n℄ and y0; reall thatjy0j � 7 � 3n for all n suÆiently large beause Bnbloks bd holds. The estimate (8.5.10)follows from (8.5.12).In the ase q = 0, the above proof an be easily adapted.Lemma 8.5.2. There exists 27 > 0 suh that for all n � 27 the following inlusionholds: En;�Words ok \Bnunique �t � En;�reon Big:Proof. Let n 2 N , and suppose En;�Words ok and Bnunique �t hold. Let  2 [k�n2C [�k;k℄ with � �j[�3n; 3n℄. There exist a 2 [�3n; 3n℄ and b 2 f�1; 1g suh that j = �a+bj and a+ bj 2 [�3n; 3n℄ for all j 2 [�k; k℄: (8.5.13)We argue that w := (�a+bj)j2[�3�3n;3�3n℄ 2 Outputn(�; �n;  ): By (8.5.13),  = wj[�k; k℄.Let I � [�3 � 3n; 3 � 3n℄ be an integer interval with jIj = 1n=2. Then the imageof I under the map j 7! a + bj is again an integer interval, whih is ontained in[�5 � 3n; 5 � 3n℄ for all n suÆiently large beause jaj � 3n and 1n=2 � 3n for all nsuÆiently large. Sine En;�all words holds, there exists w0 2 Wordsn(�; �n) with wjI v w0.Hene w 2 Outputn(�; �n;  ). In partiular, Outputn(�; �n;  ) 6= ?.It remains to show �j [�3n; 3n℄ � w � �j[�4 � 3n; 4 � 3n℄ for all w 2 Outputn(�; �n;  ).Let w 2 Outputn(�; �n;  ). Then wj[�k; k℄ =  , and onsequently, by (8.5.13),wj = �a+bj (8.5.14)for all j 2 [�k; k℄. Suppose we prove (8.5.14) for all j 2 [�3 � 3n; 3 � 3n℄. Then there ispreisely one element in Outputn(�; �n;  ). Sine  � �j[�3n; 3n℄, there are more than2 � 3n letters to the left and to the right of  in w, and onsequently �j[�3n; 3n℄ � w. Onthe other hand, in w, there are less than 3 � 3n letters to the left and to the right of  .Hene w � �j[�4 � 3n; 4 � 3n℄.Thus, to �nish the proof, it suÆes to verify (8.5.14) for all j 2 [�3 � 3n; 3 � 3n℄. Supposewe know (8.5.14) for all j 2 [�s; s℄ for some s 2 [k; 3 � 3n � 1℄. This assumption is truefor s = k. We set Il := [�s� 1;�s� 1+ 1=2[, Ir :=℄s+1� 1n=2; s+1℄, wl := wjIl, andwr := wjIr. Note that wl and wr have both preisely 1n=2 � 1 points in ommon withwj[�s; s℄; wl and wr extend wj[�s; s℄ one letter to the left and to the right, respetively.The words wl and wr are well de�ned beause 1n=2 � j j = 2k + 1 for all n suÆientlylarge. Sine w 2 Outputn(�; �n;  ), there exist w0l; w0r 2 Wordsn(�; �n) with wl v w0l,wr v w0r. Using that En;�only xi holds, we see that wl; wr � �j [�33n; 33n℄.Suppose (8.5.14) does not hold for j = �s � 1. Let Il;� denote the image of Ilunder the map j 7! a + bj. Then �jIl;� 6= wl; more preisely, �jIl;� and wl disagreein preisely one point, namely the leftmost point. Thus we found two words of length



362 Chapter 8. Retrieving random media1n=2 in �j[�33n; 33n℄ whih disagree in preisely one point. Consequently, there existz; z0 2 [�33n; 33n℄, i; i0 2 f ;!g with (z; i) 6= (z0; i0) suh that �jIl;� = wz;i;1n=2 andwl = wz0;i0;1n=2. If we restrit wz;i;1n=2 and wz0;i0;1n=2 to the last 1n=4 letters, we obtaintwo words of length 1n=4 in �j [�33n; 33n℄, and these two words agree. This ontraditsthe fat that the event Bnunique �t holds. Thus (8.5.14) holds for j = �s� 1.To see that (8.5.14) holds for j = s+1, one applies the above argument with �w de�nedby �wj := w�j for j 2 [�3 � 3n; 3 � 3n℄ in plae of w. By the indution priniple, (8.5.14)holds for all j 2 [�3 � 3n; 3 � 3n℄.Lemma 8.5.3. There exists 28 suh that for all n � 28 the following inlusion holds:Bnbloks bd \Bnbloks 2;4 \ Bnsignals � Bnfuntional:Proof. The proof will be done by ontradition. Suppose the events Bnbloks bd, Bnbloks 2;4,and Bnsignals hold, but Bnfuntional = Bn;lfun \ Bn;rfun does not hold. Suppose Bn;rfun does nothold. Then there exists y 2 [�6 � 3n; 6 � 3n℄ with �y 6= �y�1 suh that the right funtionalat y is not a right limiting funtional at y, i.e. there exist y1 < y with �y1 6= �y1�1 andx 2 [�3n; 3n℄ suh that g�;ny;r (Px;�(On3 2 �jSonr = y)) = 0 or both Px;�(Sonr = y1) > 0 andg�;ny;r (Px;�(On3 2 �jSonr = y1)) 6= 0 hold.Let R be an admissible piee of path. If � Æ R onsists of preisely k bloks, we saythat R generates k bloks on �. We denote by �j[bRi;l; bRi;r℄ the blok of � on whih the ithblok of � Æ R is generated. If RbRi;l = RbRi;r , we set jRi := l, otherwise we set jRi := r. Weabbreviate lRi := bRi;r � bRi;l � 1. Using this notation, we havePx;�(On3 2 �; Sonr = y) = X(li;ji) 1nOi=1 �lijih�1; (8.5.15)where the sum is taken over all (li; ji)i2[1;1n℄ 2 (N � fl; rg)[1;1n℄ suh that there exists anadmissible piee of path R starting at y whih generates bloks with (lRi ; jRi ) = (li; ji).Sine Bnbloks bd holds, the path whih starts at y and walks 61n (whih is � 3n forall n suÆiently large) steps to the right generates at least 1n bloks on �, namelyB!i;y, i 2 [1; 1n℄. Consequently, by the de�nition of the right funtional of � at y andRemark 8.4.1, we have g�;ny;r (Px;�(On3 2 �; Sonr = y)) > 0. Hene, by our assumption,Px;�(Sonr = y1) > 0 and g�;ny;r (Px;�(On3 2 �jSonr = y1)) 6= 0. Writing Px;�(On3 2 �; Sonr = y1) asa sum as in (8.5.15), we see that for at least one admissible piee of path R starting aty1 and generating at least 1n bloks on � we have g�;ny;r (
1ni=1�lRijRi h�1) > 0. Inserting thede�nition of g�;ny;r , we obtain0 < g�;ny;r� 1nOi=1 �lRijRi h�1� = 1nYi=1[jB!i;yj+ 1℄ � ~x�jB!i;y j^5(�lRijRi h�1):By Remark 8.4.1, ~x�2(�mi h�1) 6= 0 i� i = r and m = 2, and also, ~x�4(�mi h�1) 6= 0 i� i = rand m = 4. Furthermore, x�i (�2r) = 0 and x�i (�4r) = 0 for i 2 f1; 3; 5g. Thus jB!i;yj 2 f2; 4gi� lRi 2 f2; 4g and R rosses the blok B!i;y from left to right. Sine jyj � 6 � 3n andBnbloks bd holds, we have B!i;y v �j [�7 � 3n; 7 � 3n℄ for all n suÆiently large and i 2 [1; 1n℄.Using that Bnbloks 2;4 holds, we see that at least 2n of the bloks B!i;y, i 2 [1; 1n℄, havelength 2 or 4. Hene there are � 2n bloks with lRi 2 f2; 4g.



8.5. Reonstruting a piee of senery 363Clearly, the olor of two suessive bloks in �, and also in the observations, must bedi�erent. Hene the olors of the bloks of length 2 or 4 among the �rst 1n bloks of� Æ R either all agree with the olors of the bloks B!i;y, i 2 [1; 1n℄, of length 2 or 4 orthey have all the opposite olor. But this ontradits the fat that Bn;rsign holds. A similarargument shows that the assumption that Bn;lfun holds leads to a ontradition.8.5.4 Probabilisti estimatesIn this setion, we prove that the omplements of all the basi events Bn::: de�ned in Setion8.5.2 have a probability whih is exponentially small in n; for some events this is onlytrue under the assumption that En;�stop holds. We treat the events in alphabetial order.Lemma 8.5.4. There exist 29; 5 > 0 suh that for all n � 29P ([Bnbloks bd℄) � 2e�5n:Proof. By the de�nition of Bnbloks bd = Bn;!bb \Bn; bb ,[Bn;!bb ℄ = [z2[�2�33n;2�33n℄n 1nYi=1[jB!i;zj+ 1℄ > e6no [ n 1nXi=1 [jB!i;zj+ 2℄ > 81no:For eah z, the blok lengths jB!i;zj, i � 1, are i.i.d. with P (jB!i;zj = k) = 2�k, k � 1; inpartiular EjB!i;zj = 2. By Chebyshev's inequality, we obtainP� 1nYi=1[jB!i;zj+ 1℄ > e6n� � e�6nE� 1nYi=1[jB!i;zj+ 1℄� = 31ne�6n:Furthermore, by the large deviation priniple, we haveP� 1nXi=1 [jB!i;zj+ 2℄ > 81n� = P� 1nXi=1 jB!i;zj > 61n� � e�1nI(6)with rate funtion I(x) = (x� 1) ln(x� 1) + x ln(2=x). Sine I(6) > 1, we onludeP ([Bn;!bb ℄) � (4 � 33n + 1) �31ne�6n + e�1n� � e�5nfor some onstant 5 > 0 for all n suÆiently large; here we used that 6� (1+4) ln 3 > 0by our hoie of 6 and 1 > 4 ln 3. The same estimate holds for P ([Bn; bb ℄).Lemma 8.5.5. There exist 31 > 0 suh that for all n 2 NP ��Bnbloks 2;4�� � 14e�31n:Proof. Reall that for all z, the blok lengths jB!i;zj, i � 1, are i.i.d. with P (jB!i;zj = k) =2�k, k � 1. Hene P (jB!i;zj 2 f2; 4g) = 2�2 + 2�4 = 5=16. Let Yk, k � 1, be i.i.d.Bernoulli with parameter 5=16, and let J(x) := (1 � x) ln �16(1�x)11 � + x ln �16x5 �. By thelarge deviation priniple (see e.g. [5℄), P (P1nk=1 Yk � 1n=4) � e�J(1=4)1n. Sine 2 < 1=4and there are at most 14 � 3n sequenes of 1n onseutive bloks in �j [�7 � 3n; 7 � 3n℄, wehave P ��Bnbloks 2;4�� � 14 � 3ne�J(1=4)1n � 14e�31nbeause J(1=4)1 � ln 3 > 0.



364 Chapter 8. Retrieving random mediaReall that 3�nan;�S (x) equals the number of stopping times �k, k 2 [1; 3�n℄, withS�k = x. The following lemma, whih will be needed in the proof of Lemma 8.5.8, statesthat with very high probability, the stopping times stop often in x provided the eventEn;�stop holds.Lemma 8.5.6. There exists 32 > 0 suh that for all n � 32P�En;�stop \ [x2[�3n;3n℄�3�nan;�S (x) � 3171ne167n	� � e�n:Proof. The proof is very similar to the proof of Lemma 6.14 in [22℄. In the notation of[22℄, the estimate holds whenever � > 1 +  � [31 ln p℄= ln 3 with  := 171 + 167= ln 3,whih is satis�ed by our hoie of � (see Setion 9.2).The following basi large deviation estimate will be needed below.Lemma 8.5.7. Let Xi, i � 1, be i.i.d. Bernoulli with parameter Æ, and let �m :=Pmi=1Xi.There exists a onstant 33 > 0 suh that for all m 2 N and all a > 0P (�m � m(a + Æ)) � e�33ma2 :Proof. By the large deviation priniple (see e.g. [5℄), we have P (�m � m(a + Æ)) �e�mIÆ(a+Æ) with rate funtion IÆ(a) = a ln �aÆ �+(1�a) ln �1�a1�Æ �. One veri�es that IÆ(a+Æ) �33a2 for all Æ 2℄0; 1[ and a 2℄0; 1� Æ[ with a onstant 33 > 0 independent of Æ and a.Lemma 8.5.8. There exist onstants 2; 35; 36 > 0 suh thatP �En;�stop nBn;�" � � 35e�36n for all n � 2:Proof. We de�ne for x 2 [�3n; 3n℄�̂n;�x;�ÆS := [3�nan;�S (x)℄�1 Xk2[1;3�n℄ 1fS�k = xgÆOn(��k�);i.e. �̂n;�x;�ÆS is the empirial distribution of the On olleted after times �k with S�k = x.Suppose the event En;�stop holds. Then jS�k j � 3n for all k 2 [1; 3�n℄, and onsequently"n;��;S = Xx2[�3n;3n℄ an;�S (x) ��̂n;�x;�ÆS � Px;� [On(�)℄�1� :By the triangle inequality,k"n;��;Sk1 � Xx2[�3n;3n℄ an;�S (x) �̂n;�x;�ÆS � Px;� [On(�)℄�11 : (8.5.16)Let S denote the set of possible states of the random variable On(�) if jOn2 (�)j � 3n,and let S 0 be the set of possible states of On(�) if jOn2 (�)j > 3n. Reall that On =(On1 ;On2 ;On3 ) where On1 , On3 2 f1; 2; : : : ; 5g1n and On2 is the onatenation of a word oflength < 1n=2 with a blok. Consequently, jSj � 521n21n3n � 281n.Reall the de�nition of Bn;�O2 from De�nition 8.5.10. Clearly,P �En;�stop nBn;�" � � P ��En;�stop \ Bn;�O2 � nBn;�" �+ P �En;�stop nBn;�O2 � : (8.5.17)



8.5. Reonstruting a piee of senery 365We split the sum in (8.5.16) in two parts. LetJseldom := �x 2 [�3n; 3n℄ : 3�nan;�S (x) � 3njSj2e167n	 ; Joften := [�3n; 3n℄ n Jseldom:By the de�nition of Jseldom, we haveXx2Jseldom an;�S (x) �̂n;�x;�ÆS � Px;� [On(�)℄�11 � 3(1��)n2161ne167n � e�87n; (8.5.18)where the last inequality follows from our hoie of �. Next, we de�ne the event that theontribution to k"n;��;Sk1 oming from On = s 2 S is small: We set for x 2 [�3n; 3n℄ ands 2 SBn;�;sx often := � If x 2 Joften; then ���̂n;�x;�ÆS(fsg)� Px;� [On(�)℄�1 (fsg)�� � jSj�1e�87n	 :If the event \x2[�3n;3n℄ \s2S Bn;�;sx often holds, thenXx2Joften an;�S (x)Xs2S ���̂n;�x;�ÆS(fsg)� Px;� [On(�)℄�1 (fsg)�� � e�87n: (8.5.19)If the event Bn;�O2 holds, then �̂n;�x;�ÆS(fsg) = 0 for all s 2 S 0 and onsequently,Xx2Joften an;�S (x)Xs2S0 ���̂n;�x;�ÆS(fsg)� Px;� [On(�)℄�1 (fsg)��� Xx2Joften an;�S (x)Px;�(jOn2(�)j > 3n) � e�87n:Combining the last estimate with (8.5.19) and (8.5.18), we obtainEn;�stop \ Bn;�O2 \ \x2[�3n;3n℄\s2SBn;�;sx often � En;�stop \ Bn;�O2 \ �k"n;��;Sk1 � 3e�87n	� En;�stop \ Bn;�O2 \Bn;�"for all n suÆiently large. Hene, using 
 = fx 2 Jseldomg [ fx 2 Jofteng, we obtainP ��En;�stop \Bn;�O2 � nBn;�" � � P�En;�stop \Bn;�O2 \ [x2[�3n;3n℄[s2S [Bn;�;sx often℄ � (8.5.20)� P�En;�stop \ [x2[�3n;3n℄fx 2 Jseldomg� + P� [x2[�3n;3n℄[s2S [fx 2 Jofteng nBn;�;sx often℄�� PhEn;�stop \ [x2[�3n;3n℄fx 2 Jseldomgi+ 32njSj maxx2[�3n;3n℄;s2S Phfx 2 Jofteng nBn;�;sx ofteni:It follows from jSj � 281n and Lemma 8.5.6 that for all n � 32PhEn;�stop \ [x2[�3n;3n℄fx 2 Jseldomgi � PhEn;�stop \ [x2[�3n;3n℄�3�nan;�S (x) � 3171ne167n	 i� e�n: (8.5.21)



366 Chapter 8. Retrieving random mediaWe introdue the stopping times �xk when the random walker is at x: �x1 := minf�i :i 2 [1; 3�n℄ ; S�i = xg, �xk+1 := minf�i > �xk : i 2 [1; 3�n℄ ; S�i = xg. The random variables�j [�xk + 32n; �xk + 33n[, k 2 [1; j℄, are i.i.d. onditioned on En;�stop. Hene, by the de�nitionof �̂n;�x;�ÆS, P �fx 2 Jofteng nBn;�;sx oftenjEn;�stop� equals a large deviation probability for sumsof Bernoulli random variables and we an apply Lemma 8.5.7 with m = 3�nan;�S (x) >3njSj2e167n and a = jSj�1e�87n. Sine for this hoie, ma2 > 3n we obtainP (fx 2 Jofteng nBn;�;sx often) � exp(�333n): (8.5.22)Combining (8.5.20) with (8.5.21), jSj � 281n, and (8.5.22), we onludeP ��En;�stop \ Bn;�O2 � nBn;�" � � 2e�n (8.5.23)for all n � 2 with some onstant 2 � 32. The laim of the lemma follows from (8.5.17),(8.5.23), and Lemma 8.5.10.Lemma 8.5.9. There exist 37; 38; 39 > 0 suh that for all n � 37P ([Bnfuntional℄) � 38e�39n:Proof. By Lemma 8.5.3, Bnfuntional � [Bnbloks bd℄ [ �Bnbloks 2;4� [ �Bnsignals�. The laimfollows immediately from Lemmas 8.5.4, 8.5.5, and 8.5.12.Lemma 8.5.10. There exist 40; 41; 42 > 0 suh that for all n � 40P �En;�stop nBn;�O2 � � 41e�42n:Proof. Clearly,P �En;�stop nBn;�O2 � � P ��En;�stop \ Bnbloks bd� nBn;�O2 �+ P ([Bnbloks bd℄) : (8.5.24)Reall that Bn;�O2 = Bn;�O2 small \BnO2 large. By de�nition,P ��En;�stop \ Bnbloks bd� nBn;�O2 small� � 3�n maxx2[�3n;3n℄Px(Bnbloks bd \ fjOn2 (�)j > 3ng)= 3�n maxx2[�3n;3n℄Ex [1Bnbloks bdPx;�(jOn2(�)j > 3n)℄ : (8.5.25)Let x 2 [�3n; 3n℄. Suppose the random walk starts at x and jOn2(�)j > 3n. Then�j [0; 33n[ ontains a blok of length � 3n � 1n and this blok must be generated on�j [�2 � 33n; 2 � 33n℄. If Bnbloks bd holds, all bloks of �j [�2 � 33n; 2 � 33n℄ have length � 61n.Consequently, the random walk stays time t � 3n� 1n in an interval I of length � 61n.It is known (see e.g.[21℄, Lemma 5.2) thatP (Si 2 I for all i 2 [0; t[) � 43 exp(�44t=jIj2)with onstants 43; 44 > 0. Thus it follows from (8.5.25)P ��En;�stop \ Bnbloks bd� nBn;�O2 small� � 433�n exp h� 44[3n � 1n℄3621n2 i � e�n (8.5.26)for all n suÆiently large. Furthermore, by the above argument, �En;�stop \ Bnbloks bd� nBnO2 large = ? for all n suÆiently large. Thus P ��En;�stop \ Bnbloks bd� nBn;�O2 � � e�n for alln suÆiently large. The laim follows from (8.5.24) and Lemma 8.5.4.



8.5. Reonstruting a piee of senery 367Lemma 8.5.11. There exist 45; 4 > 0 suh that for all n � 45P ([Bnsen ok℄) � 12e�4n:Proof. It is not hard to see that for all n suÆiently large, Bnsen ok ontains the eventfAll bloks of �j [�6 � 3n; 6 � 3n℄ have length � 1n=4g. Consequently,P ([Bnsen ok℄) � P (9 blok of �j [�6 � 3n; 6 � 3n℄ of length > 1n=4)� 12 � 3n � 2�1n=4;here we used that there are � 12 �3n possible left endpoints for a blok in �j [�6 � 3n; 6 � 3n℄and that the probability that a blok starting at x has length > 1n=4 equals 2�1n=4beause the senery is i.i.d. uniformly olored. The laim follows beause 1 > 4 ln 3= ln 2.Lemma 8.5.12. There exists 47 > 0 suh that for all n 2 NP ��Bnsignals�� � 60e�47n:Proof. Reall the notation introdued in De�nitions 8.5.12 and 8.5.13. Let y := �7 �3n. The sequene (jB2;4i;y j; C2;4i;y )i�1 is a Markov hain under P with time-homogeneoustransition probabilities. The blok lengths (jB2;4i;y j)i�1 are i.i.d. with P (jB2;4i;y j = 2) =2�2=(2�2 + 2�4) = 4=5 and P (jB2;4i;y j = 4) = 1=5 and independent of the olors (C2;4i;y )i�1.Note that C2;4i;y 6= C2;4i+1;y i� between B2;4i;y and B2;4i+1;y there are 2k bloks of length 1, 3, or 5for some k � 0. Reall the de�nition of B!i;y from De�nition 8.5.4. Let p2;4 := P (jB!i;yj 2f2; 4g) = 2�2 + 2�4 = 5=16 and set q2;4 := 1� p2;4 = 11=16. ThenP (C2;4i;y 6= C2;4i+1;y) = 1Xk=0 q2k2;4p2;4 = p2;41� q22;4 = 11 + q2;4 = 1627and P (C2;4i;y = C2;4i+1;y) = 11=27. Hene the one-step transition probabilities of the Markovhain oli(�n), i � 1, are � 45 � 1627 = 64135 < 12 .Let x 2 [1; n2;4℄, let R 2 [1; n2;4℄[0;2n[ be a nearest-neighbor path with R0 < x, andlet w 2 fŵx;2n;!; �wx;2n;!g, w = (wi)i2[0;2n[. We set Hk := �(oli(�n); i 2 [1; k℄). Clearly,wk 2 Hx+k. Sine R is a nearest-neighbor path, Rk < x+k for all k; hene olRk 2 Hx+k�1for all k. Using that wk, k 2 [0; 2n[, is a Markov hain with the above spei�ed transitionprobabilities, we obtainP (ol(�n) ÆR = w) = P (oli(�n) = wi 8i 2 [0; 2n[)� 2n�2Yi=0 P (oli+1(�n) = wi+1joli(�n) = wi) � � 64135�2n�1:There are n2;4 � 14 �3n possibilities to hoose x and 22n�1 possibilities to hoose R. Thus,by the de�nition of Bn;rsign,P ��Bn;rsign�� � 2 � 14 � 3n22n�1 � � 64135�2n�1 � 30 � 3n22n� 64135�2n � 30e�47nfor some onstant 47 > 0 beause 64=135 < 1=2 and 2 > ln 3=(ln(135=128)). Thesame estimate holds for Bn;lsign, and the laim follows from the de�nition of Bnsignals =Bn;lsign \ Bn;rsign.



368 Chapter 8. Retrieving random mediaLemma 8.5.13. There exists 48 > 0 suh that for all n 2 NP ��Bnunique �t�� � 4e�48n:Proof. Let z1; z2 2 [�33n; 33n℄ and i1; i2 2 f ;!g with (z1; i1) 6= (z2; i2). For k = 1; 2,we set ok := +1 if ik =!, ok := �1 if ik = , and we de�ne fk(j) := zk + okj forj 2 [0; 1n=4[. As is shown in the proof of Lemma 6.8 of [22℄, there exists a subsetJ � [0; 1n=4[ of ardinality jJ j � 1n=12 suh that f1(J) \ f2(J) = ?. Consequently,P (wz1;i1;1n=4 = wz2;i2;1n=4) � P (wz1;i1;1n=4jf1(J) = wz2;i2;1n=4jf2(J)) = 2�1n=12:Sine there are � (2 � 33n+1)2 � 38n possibilities to hoose z1 and z2 and � 4 possibilitiesto hoose i1 and i2, we onludeP ��Bnunique �t�� � 4 � 38n2�1n=12 � 4e�48nfor some onstant 48 > 0 beause 1 > 96 ln 3= ln 2.Proof of Theorem 8.3.1Proof of Theorem 8.3.1. Combining Lemmas 8.5.2, 8.5.1, and 8.5.3 we obtainEn;�stop \Bnbloks bd \ Bnbloks 2;4 \Bn;�" \Bnfuntional \Bnsen ok \Bnsignals \ Bnunique �t� En;�reon Bigfor all n suÆiently large. HeneEn;�stop n En;�reon Big � [Bnbloks bd℄ [ �Bnbloks 2;4� [ �En;�stop nBn;�" � [ [Bnfuntional℄[ [Bnsen ok℄ [ �Bnsignals� [ �Bnunique �t� :The laim follows from Lemmas 8.5.4, 8.5.5, 8.5.8, 8.5.9, 8.5.11, 8.5.12, and 8.5.13.Referenes[1℄ I. Benjamini and H. Kesten. Distinguishing seneries by observing the senery alonga random walk path. J. Anal. Math., 69:97{135, 1996.[2℄ K. Burdzy. Some path properties of iterated Brownian motion. In Seminar onStohasti Proesses, 1992 (Seattle, WA, 1992), volume 33 of Progr. Probab., pages67{87. Birkh�auser Boston, Boston, MA, 1993.[3℄ F. den Hollander and J. E. Steif. Mixing properties of the generalized T; T�1-proess.J. Anal. Math., 72:165{202, 1997.[4℄ W. Th. F. den Hollander. Mixing properties for random walk in random senery.Ann. Probab., 16(4):1788{1802, 1988.[5℄ R. Durrett. Probability: Theory and Examples. Duxbury Press, Seond edition, 1996.[6℄ D. Heiklen, C. Ho�man, and D. J. Rudolph. Entropy and dyadi equivalene ofrandom walks on a random senery. Adv. Math., 156(2):157{179, 2000.
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Chapter 9Finding bloks and other patterns ina random oloring of Z(submitted)By Heinrih Matzinger, and Silke RollesLet � := (�k)k2Z be i.i.d. with P (�k = 0) = P (�k = 1) = 1=2, and let S := (Sk)k2N0 be asymmetri random walk with holding on Z, independent of �. We onsider the senery �observed along the random walk path S, namely the proess (�k := �Sk)k2N0 . With highprobability, we reonstrut the olor and the length of blokn, a blok in � of length � nlose to the origin, given only the observations (�k)k2[0;2�33n℄. We �nd stopping times thatstop the random walker with high probability at partiular plaes of the senery, namelyon blokn and in the interval [�3n; 3n℄. Moreover, we reonstrut with high probabilitya piee of � of length of the order 3n0:2 around blokn, given only 3bn0:3 observationsolleted by the random walker starting on the boundary of blokn. 19.1 IntrodutionWe all a f0; 1g-oloring of the integers a senery. Let � := (�k)k2Z be i.i.d. uniformlydistributed on f0; 1g; so � is a random senery. Let S := (Sk)k2N0 be a symmetri randomwalk with holding on Z, independent of �, i.e. we assume that there exist p; q > 0 with2p+ q = 1 suh that for all k 2 N0P (Sk+1 � Sk = 1) = P (Sk+1 � Sk = �1) = p andP (Sk+1 � Sk = 0) = q:We observe the senery � along the random walk path (Sk)k2N0 : at time k, we observe�k := �Sk , the olor at loation Sk. We denote by � := (�k)k2N0 the olor reord.For k 2 N , we denote by 0k and 1k the element in f0; 1gk onsisting of k zeros andk ones, respetively. A blok is a piee of senery of the form 01k0 or 10k1. For n 2 N ,let blokn+ designate the leftmost blok of � of length � n to the right of the origin,and let blokn� denote the rightmost blok of � of length � n to the left of the origin.1MSC 2000 subjet lassi�ation: Primary 60K37, Seondary 60G10, 60J75.Key words: Senery reonstrution, jumps, stationary proesses, random walk, ergodi theory.371



372 Chapter 9. Finding bloks and other patterns in a random oloring of ZFurthermore, let blokn 2 fblokn+; blokn�g denote the blok whih is visited �rst byS. For a blok �j[a; b℄, we set �(�j[a; b℄) := fa; bg. The following piture illustrates ourde�nitions for n = 7. The origin is marked with a double box, whereas the points of�blokn+ and �blokn� are marked with one box.
: : : 000 1 0000000 1| {z }blokn� 1011010000110111 0 000110100 0 1111111111 0| {z }blokn+ 0111 : : :Let n 2 N be large, and suppose we are given �j[0; 2 � 33n℄ only, i.e. the observationsolleted by the random walker up to time 2 �33n. We will show that with high probability,we an onstrut a random time (depending on �j[0; 2�33n℄) when the random walker visits�blokn. Our proof is onstrutive: long bloks in the observations � turn out to be agood indiation that the random walker ollets observations on a long blok of �. Sinewith high probability, blokn is isolated, up to a ertain time horizon, long bloks in theobservations are with high probability generated on blokn.With high probability, we an even reonstrut the olor and the length of blokngiven only a stopping time T with ST 2 �blokn and �n;T := �j[T; T + 3nb0:3[. The ideabehind this is the following: If ST 2 �blokn, long bloks in �n;T are with high probabilitygenerated on blokn. The distribution of the length of a blok in � whih is generatedby the random walk on blokn equals the distribution of the �rst exit time of the randomwalk from the interval [�1; m℄ given the starting point is 0. Expliit alulations withthe distribution of the random walk allow us to determine the length of blokn with highprobability. The olor of blokn agrees with high probability with the olor of the �rstblok of �n;T of length � n2.Even more is true: It will be shown that there exists a �nite sequene of stoppingtimes suh that with high probability all of them stop the random walk in �blokn. Thesestopping times are used to de�ne an algorithm that reonstruts with high probability apiee of senery of length of the order 3n0:2 around blokn given only 3bn0:3 observationsolleted by the random walker starting in �blokn. This reonstrution algorithm is usedto de�ne a sequene of stopping times that stop the random walk with high probabilityin the interval [�3n; 3n℄. Our approah is ompletely onstrutive: the method desribedbelow ould be performed by a omputer program.The results of this paper are used in [22℄ to solve the senery reonstrution problem fori.i.d. 2-olor seneries and simple random walk with holding using only polynomially manyobservations. The senery reonstrution problem addresses the question whether one anreonstrut the senery � if one is only given the olor reord � (without any additionalinformation about the random walk path (Sk)k2N0 ). More preisely, the question is thefollowing: We de�ne two seneries � and �0 to be equivalent and write � � �0 if � is obtainedfrom �0 by a reetion and/or translation. Does there exist a map A : f0; 1gN0 ! f0; 1gZ,measurable with respet to the �-algebras generated by the anonial projetions, suhthat A(�) � � for almost all pairs (�; S)? In [22℄, this question is answered in theaÆrmative. Furthermore, it is proved that in order to reonstrut with probability �1� e�n0:2 a piee of the senery of length of the order 3n around the origin, we need onlythe �rst 2 �310�n observations olleted by the random walker; here ; � > 0 are onstants.



9.2. Frequently used notation 373The senery reonstrution problem and related questions have attrated onsiderableattention during the past deade. Among others, the following people ontributed tothe area: Benjamini and Kesten [1℄, Burdzy [2℄, Heiklen, Ho�man, and Rudolph [7℄,den Hollander [4℄, den Hollander and Steif [3℄, Howard ([8℄, [9℄, [10℄), Keane and denHollander [11℄, Kesten ([12℄, [13℄), Levin, Pemantle, and Peres [15℄, Levin and Peres [14℄,Lindenstrauss [16℄, L�owe and Matzinger ([18℄, [17℄), L�owe, Matzinger, and Merkl [19℄,Matzinger ([20℄, [21℄), Matzinger and Rolles [23℄.The remainder of this artile is organized as follows: Setion 9.2 ollets frequentlyused notations. The results of the artile are explained in more detail in Setion 9.3. InSetion 9.4, we analyze the distribution of the �rst exit time of the random walker froma �nite interval. These results are needed to give a good estimate of the length of blokn.Setion 9.5 ontains the onstrution of a stopping time that stops the random walkerwith high probability in the set �blokn. In Setion 9.6 we show that there is a wholesequene of stopping times with this property. In Setion 9.7, we de�ne an algorithmwhih reonstruts with high probability a piee of the senery � around blokn. Thisalgorithm is used in Setion 9.8 to onstrut a sequene of stopping times that stop therandom walker with high probability in the interval [�3n; 3n℄.9.2 Frequently used notationNumbers, sets and funtions: We denote by N := f1; 2; 3; : : :g the set of naturalnumbers and set N0 := N [ f0g. If x 2 R, we denote by bx the largest integer � x. Wewrite x ^ y for the minimum of x; y 2 R. For a vetor y = (yk)k2[1;m℄ 2 Rm we de�ne thel1-norm kyk1 := Pmk=1 jykj and the l2-norm kyk2 := (Pmk=1[yk℄2)1=2. The ardinality of aset D is denoted by jDj. We write f jD for the restrition of a funtion f to a set D. Aninteger interval is a set of the form I \Z with an interval I � R. In this artile, intervalsare always taken over the integers, e.g. [a; b℄ = fn 2 Z : a � n � bg.Admissible paths: Let I = [i1; i2℄ be an integer interval. We all R 2 ZI an admissiblepiee of path if Ri+1�Ri 2 f�1; 0; 1g for all i 2 [i1; i2�1℄. We all Ri1 the starting point,Ri2 the endpoint, and jIj the length of R.Measures: We de�ne Æx to be the Dira measure in x. We denote the image of a measureP under a mapping F by PF�1.Seneries: We set C := f0; 1g. A senery is an element of CZ, a piee of senery or aword is an element of CI with an integer interval I � Z. If  2 CI , we all j j := jIj thelength of  . We write (1)I for the piee of senery in CI whih is identially equal to 1.Bloks: Let a; b 2 I with a < b and ja � bj � 2. We de�ne  2 C [a;b℄ to be a blok if a =  b and   6=  a for all  2℄a; b[.   is the olor of the blok. We all a the leftendpoint, b the right endpoint, and j j := b � a � 1 the bloklength of  . For instane,01110 is a blok of length 3. We set � := fa; bg.Let �j[t1; t2℄ and �j[a; b℄ be bloks. We say that �j[t1; t2℄ is generated by the randomwalk S on the blok �j[a; b℄ if fSt1 ; St2g � fa; bg and St 2℄a; b[ for all t 2℄t1; t2[.Equivalene of seneries: Let  2 CI and  0 2 CI0 be two piees of seneries. Wesay that  and  0 are equivalent and write  �  0 i� I and I 0 have the same length andthere exists a 2 Z and b 2 f�1; 1g suh that for all k 2 I we have that a + bk 2 I 0 and k =  0a+bk. We all  and  0 strongly equivalent and write  �  0 if I 0 = a+ I for somea 2 Z and  k =  0a+k for all k 2 I. We say  ours in  0 and write  v  0 if  �  0jJ



374 Chapter 9. Finding bloks and other patterns in a random oloring of Zfor some J � I 0. We write  �  0 if  �  0jJ for some J � I 0.Random walks and random seneries: Let 
2 � ZN0 denote the set of admissiblepaths. Let p; q > 0 satisfy 2p + q = 1. We denote by Qx the distribution on (
2)N0of a random walk (Sk)k2N0 starting at x with i.i.d. inrements distributed aording topÆ�1 + qÆ0 + pÆ1, i.e. S is a symmetri random walk with holding. The senery � :=(�k)k2Z is i.i.d. with �k uniformly distributed on C = f0; 1g. We assume that � and Sare independent and realized as anonial projetions on 
 := (CZ;
2) with the produt�-algebra generated by the anonial projetions and probability measures Px := (12Æ0 +12Æ1)
Z
 Qx, x 2 Z. We abbreviate P := P0. We denote the expetation with respetto P by E. We all � := (�k := �(Sk))k2N0 the senery observed along the random walkpath. Sometimes, we write � Æ S instead of �.For a �xed senery � 2 CZwe set Px;� := Æ�
Qx, P� := P0;�. Thus Px;� is the anonialversion of the onditional probability Px(�j�); we never work with a di�erent version.Filtration and shifts: We de�ne a �ltration over 
: G := (Gn)n2N0 with Gn := �(�k; k 2[0; n℄) is the natural �ltration of the observations. We de�ne the shift � : CN0 ! CN0 ,� 7! �(�+ 1). We introdue the shift � : 
! 
, (�; S) 7! (�(S1 + �); S(1 + �)� S1). Fora set A � 
 and a random time T � 0 we set ��T (A) := f! : �T (!)(!) 2 Ag.Constants are denoted by i, i � 1. They keep their meaning throughout the wholeartile. Constants 1; 7, and � play a speial role. They are hosen as follows:� 1 2 4N with 1 > 153,� 7 > maxf0; 10 ln3 + 21(ln(3=p) + ln[maxi2[1;5℄ kx�ik2℄)g with x�i as in De�nition9.7.5,� � 2 N with � > 1 + 171 + [247 � 31 ln p℄= ln 3.9.3 ResultsReall the de�nition of blokn from the introdution. Our �rst aim is to �nd a random timewhih stops the random walk S with high probability on �blokn. With high probability,in a large neighborhood of blokn there is no long blok in the senery. Hene, up to aertain time horizon, long bloks in the observations � indiate that the random walkergenerates the observations on blokn.In order to make this preise, we need the following fat: Suppose the random walkergenerates a blok B in the observations � while walking on a blok of � of length m. Thelength of the blok B is random and has the same distribution as Tm, the �rst hittingtime of the set f�1; mg by the random walk S starting at 0.It turns out that given the length of an observed blok is � (8=p)n2 lnn, the expetedlength of a blok observed on bloks of � of length < n on one hand and � n on the otherhand an be distinguished by a threshold dn. This statement is made preise by Part1 of the following lemma. Part 2 shows that the onditional expetations of Tm givenTm � (8=p)n2 lnn and STm are signi�antly di�erent for m and m+1 for m 2 [bn0:4; 2n[.This will allow us to determine the preise length of blokn with high probability.Lemma 9.3.1. Let in := (8=p)n2 lnn. There exists a onstant 3 > 0 suh that for alln � 3 the following holds:



9.3. Results 3751. There exists dn > in suh thatE(TmjTm � in; STm) � dn � 1 for all m 2 [1; n[ andE(TmjTm � in; STm) � dn + 1 for all m 2 [n; 2n℄:2. For all m 2 [bn0:4; 2n[ there exist dnm suh that m 7! dnm is stritly inreasing andE(TmjTm � in; STm) � dnm � 1 andE(Tm+1jTm+1 � in; STm+1) � dnm + 1:Lemma 9.3.1 is used to introdue a stopping time �n(0) whih is supposed to stop therandom walk with high probability in �blokn. We have no hane to detet the �rst timewhen �blokn is visited. Typially, at time �n(0), the random walker has visited �bloknalready many times.Let in and dn be as in Lemma 9.3.1. We denote by �nl (k) and �nr (k) the left and rightendpoint of the kth blok of �j[0; 310�n[ of length � in, respetively. If there exists nosuh blok, we set �nl (k) = �nr (k) = 310�n. We denote by �n(0) the smallest element ofthe set f�nr (k); k � 3bn0:2g with the property that3�bn0:2 Xi2℄k�3bn0:2;k℄ [�nr (i)� �nl (i)� 1℄ � dn: (9.3.1)If there exists no suh element, we set �n(0) := 1. Note that �n(0) is a G-adaptedstopping time.In other words, we look at the empirial mean of the length of 3bn0:2 suessive bloksof length � in in the observations. If the empirial mean is � dn, then �n(0) is the rightend of a blok of length � in. Roughly speaking, the idea behind this onstrution isthe following: Typially, there is no blok of length � n0:4 in a neighborhood of blokn.Bloks of length � in in the observations are with high probability generated on bloksof length � n0:4, and the �rst time the random walker visits a blok of length � n0:4,she visits blokn. Moreover, for n large, the empirial mean is lose to the onditionalexpetation E(TmjTm � in). If the empirial mean is � dn, then Lemma 9.3.1 suggeststhat m � n. This way, we have identi�ed a time when the random walker visits �blokn.The following theorem states that indeed with high probability �n(0) stops the randomwalk in the set �blokn.Theorem 9.3.1. We de�neEn�(0) ok := fS�n(0) 2 �blokng \ f�n(0) � 2 � 33ng \ f�blokn � [�3n=3; 3n=3℄g:There exist onstants 11; 12; 13 suh that for all n � 11P ��En�(0) ok�� � 12e�13n0:3 :Next, we estimate the olor and the length of blokn. We start with an abstratde�nition: Let � 2 C [0;3bn0:3[. Let olorn(�) be the olor of the �rst blok of length � n2 in�. If there exists no suh blok, we set olorn(�) := 1. Let in and dnm be as in Lemma 9.3.1.We denote by ��nl (k; �) and ��nr (k; �) the left and right endpoint of the kth blok of � of



376 Chapter 9. Finding bloks and other patterns in a random oloring of Zlength � in, respetively. If there exists no suh blok, we set ��nl (k; �) = ��nr (k; �) = 2 �33n.Let lengthn(�) be the smallest m � n suh thatdnm+1 > 3�bn0:2 Xi2[1;3bn0:2℄ ���nr (i; �)� ��nl (i; �)� 1� � dnm: (9.3.2)If there exists nom with this property, we set lengthn(�) := 2n+1. Let estimated-blokn(�)2 [k�n+2Ck be the blok of length lengthn(�) and of olor olorn(�).Let bnl and bnr denote the left and right endpoint of blokn, respetively. Then �blokn =fbnl ; bnrg. For i 2 fl; rg we de�neHni := minfk � 0 : Sk = bni g: (9.3.3)Proposition 9.3.1. There exist onstants 7; 8; 9 > 0 suh that for all n � 7 and allT 2 fHnl ; Hnr g the following holds:P (estimated-blokn(�j[T; T + 3bn0:3[) 6= blokn) � 8e�9n0:3 :It turns out that, one we have a stopping time T with ST 2 �blokn, we obtain awhole (�nite) sequene of stopping times whih stop the random walk in the set �blokn:we just look at long bloks in the observations. For k � 1, let ~�n;Tb (k) denote the rightend of the kth blok of �[T; T +310�bn0:2[ of length � n2=16. If there exists no suh blok,we de�ne ~�n;Tb (k) := T + 310�bn0:2. We de�ne �n;Tb := (�n;Tb (k))k2[1;3�bn0:2℄ by�n;Tb (k) := ~�n;Tb (2k � 33bn0:2):Note that for all k, �n;Tb (k) is a G-adapted stopping time. The following propositionstates that with high probability, the �n;Tb (k)'s stop the random walk in the set �blokn.It will be essential below that the �n;Tb (k)'s are suÆiently far apart from eah other andthat we have suÆiently many of them.Proposition 9.3.2. There exist onstants 10; 11 > 0 suh that for all n � 10 and allT 2 fHnl ; Hnr g the following holds: The eventEn;T�b ok := 3�bn0:2\k=1 (�n;Tb (k) 2 [T; T + 310�bn0:2[, S�n;Tb (k) 2 �blokn,�n;Tb (j) + 2 � 33bn0:2 � �n;Tb (k) for all j < k ) :satis�es P ��En;T�b ok�� � e�11n0:2 .Given a stopping time T that stops the random walk in �blokn, we an de�ne a mapSmallAlgn whih reonstruts with high probability a piee of senery of length of theorder 3bn0:2 around blokn, given only the observations between times T and T + 3bn0:3.The probability that the reonstrution fails is small onditioned on the senery �, at leastfor � in a set of large probability. The following theorem makes this preise.Theorem 9.3.2. There exist onstants 14; 18 > 0 and a sequeneSmallAlgn : C [0;3bn0:3[ ! C [�3�3bn0:2;3�3bn0:2℄; n � 14;



9.3. Results 377of measurable maps suh that the following holds: If we de�neEnreon Small := �SmallAlgn��j�0; 3bn0:3�� � �j[�3 � 3bn0:2; 3 � 3bn0:2℄	 and�n := n� 2 CZ : P�����TEnreon Small�� � e�18n0:2 for all T 2 fHnl ; Hnr go ;then P (� 62 �n) � e�18n0:2 for all n � 14.We use SmallAlgn to de�ne a sequene of stopping times whih stop the random walkerwith high probability in the interval [�3n; 3n℄. We de�ne n := SmallAlgn(�j[�n(0); �n(0) + 3bn0:3[); (9.3.4)Tn := �t 2 [�n(0); 310�n � 3bn0:3[: 9w 2 C [�3bn0:2;3bn0:2℄ suh that w �  nand w � SmallAlgn(�j[t; t + 3bn0:3[) � :(9.3.5)Let ~�n(1) < ~�n(2) < : : : denote the points in Tn in inreasing order. We de�ne �n :=(�n(k))k2[1;3�n℄ by�n(k) := � ~�n(2 � 33nk) + 3bn0:3 if 2 � 33nk � jTnj;310�n else:Note that �n(k) is a G-adapted stopping time: in order to determine whether t 2 Tn, weneed to look at �j[t; t + 3bn0:3[, but �n(k) is never de�ned to be t, but only t + 3bn0:3.The idea behind the de�nition of the �n(k)'s is the following: With high probability,�n(0) stops the random walk in the set �blokn,  n is a piee of senery of length 6 �3bn0:2+1 ontaining blokn, and  n is up to a possible reetion ontained in �j[�3n; 3n℄.(With high probability, blokn has length � 2n and an be found in the piee of senery�j[�3n=3; 3n=3℄.) The set Tn onsists of times t � �n(0) suh that SmallAlgn applied tothe observations starting at time t produes an output whih agrees on a large subpiee,namely a piee of length 2 � 3bn0:2 + 1, with  n. With high probability,  n is typial forthe senery �j[�3n; 3n℄, and hene the random walker is in the interval [�3n; 3n℄ at timet. The �n(k)'s are de�ned in suh a way that they are in some sense far apart from eahother and all bounded by 310�n. This is needed for our appliation in [22℄. Formally, thetask of the stopping times �n(k) is spei�ed by the event En;�stop de�ned as follows:De�nition 9.3.1. For n 2 N, we de�ne the eventEn;�stop := 3�n\k=1��n(k) < 310�n; jS�n(k)j � 3n; �n(j) + 2 � 33n � �n(k) for all j < k	 :Reall the de�nition of �n from Theorem 9.3.2. If the event En�(0) ok\���n(0)[Enreon Small℄holds and � 2 �n, then with high probability the event En;�stop holds as well:Proposition 9.3.3. There exist onstants 19; 20; 21 suh that for all n � 19P ��En�(0) ok \ ���n(0)[Enreon Small℄ \ f� 2 �ng� n En;�stop� � 20e�21n0:3 :



378 Chapter 9. Finding bloks and other patterns in a random oloring of Z9.4 Distinguishing bloks of di�erent lengthsReall the de�nition of Tm, m 2 N : Tm := minfk � 0 : Sk 2 f�1; mgg, i.e. Tm denotes the�rst hitting time of the set f�1; mg by the random walk. In this setion, we prove Lemma9.3.1 and ollet some properties of Tm that are needed for the onstrutions below.Proof of Lemma 9.3.1. The distribution of Tm is well known, see e.g. [6℄ for the followingidentities whih hold for all k;m 2 N with m � 2:P [Tm�1 = k; STm�1 = �1℄ = 2pm m�1Xj=1 sin2 h�jm ihq + 2p os h�jm iik�1; (9.4.1)P [Tm�1 = k; STm�1 = m� 1℄ = 2pm m�1Xj=1 sin h�j(m� 1)m i sin h�jm ihq + 2p os h�jm iik�1:(9.4.2)It turns out that the main ontribution in (9.4.1) and (9.4.2) omes from the sumandfor j = 1. We write P (Tm�1 = k; STm�1 = �1) = am[�m℄k�1 + "k;m (9.4.3)with am := 2pm sin2 h �mi ; �m := q + 2p os h �mi (9.4.4)and error terms "k;2 = 0,"k;m := 2pm m�1Xj=2 sin2 h�jm ihq + 2p os h�jm iik�1 for m � 3:We will show that the "k;m's are small so that the distribution of Tm�1 onditioned onSTm�1 = �1 is approximately geometrial with parameter �m.We alulate�(m)1 := 1Xk=in am[�m℄k�1 = am[�m℄in�11� �m ; (9.4.5)�(m)2 := 1Xk=in amk[�m℄k�1 = am[�m℄in�1 1Xk=1(k + in � 1)[�m℄k�1 (9.4.6)= am[�m℄in�1 � in1� �m + �m(1� �m)2� ; (9.4.7)�(m)2�(m)1 = in + �m1� �m � in + 17m2 (9.4.8)with a onstant 17 > 0; reall the de�nition of �m (9.4.4). In order to obtain an upperbound for "k;m, we will need the following estimate, valid for all m � 3:q + 2p os �2�m �q + 2p os � �m� � 1� 8pm2 =: rm: (9.4.9)



9.4. Distinguishing bloks of di�erent lengths 379In order to prove (9.4.9) we set y := �m and use os y 2 [0; 1℄, q + 2p = 1, and os(2y) =2 os2 y � 1 to obtain1� q + 2p os �2�m �q + 2p os � �m� = 2pos y � os(2y)q + 2p os y � 2p[os y � os(2y)℄= 2p[os y � 2 os2 y + 1℄ � 2p[1� os2 y℄ = 2p sin2 y � 8py2�2 ;for the last inequality we used the estimate sin y � 2y� for all y 2 [0; �=2℄.Using (9.4.9), we an bound the error term "k;m for all k;m:j"k;mj � [�mrm℄k�1: (9.4.10)We abbreviate "(m)1 :=P1k=in "k;m, "(m)2 :=P1k=in k"k;m and note that by (9.4.10)j"(m)1 j; j"(m)2 j � [�mrm℄in�1(in + 1)(1� �mrm)2 (9.4.11)for all m � 3 (ompare (9.4.5) and (9.4.7) with �m replaed by rm�m). In the following,we assume m 2 [3; 2n℄. Thenrin�1m = �1� 8pm2�(8=n)n2 lnn�1 � �1� 2pn2�(8=p)n2 lnn�1 � 18n�16 (9.4.12)with a onstant 18 > 0. Sine rm 2℄0; 1[, it follows from (9.4.11) thatj"(m)1 j; j"(m)2 j � 18n�16 � [�m℄in�1(in + 1)(1� �m)2 : (9.4.13)For j"(m)1 j we have the following sharper estimatej"(m)1 j � 18n�16 � [�m℄in�11� �m (9.4.14)whih follows from (9.4.12) and the de�nition of j"(m)1 j. Together with (9.4.5), the estimate(9.4.14) impliesj�(m)1 + "(m)1 j � �(m)1 � j"(m)1 j � [�m℄in�11� �m � [am � 18n�16℄:Sine am � 8p=m3, we onlude for all n suÆiently largej�(m)1 + "(m)1 j � am[�m℄in�12(1� �m) � 4p[�m℄in�1m3(1� �m) : (9.4.15)Hene, using (9.4.3),E(Tm�1jTm�1 � in; STm�1 = �1) = �(m)2 + "(m)2�(m)1 + "(m)1 = �(m)2�(m)1 + "(m)3 (9.4.16)



380 Chapter 9. Finding bloks and other patterns in a random oloring of Zwith an error term "(2)3 = 0 andj"(m)3 j � �����"(m)2 �(m)1 � "(m)1 �(m)2[�(m)1 + "(m)1 ℄�(m)1 ����� � �(m)2�(m)1 � j"(m)1 j+ j"(m)2 jj�(m)1 + "(m)1 j � �(m)2�(m)1 � 18n�16m34p � in + 11� �mfor all m � 3 and for all n suÆiently large; for the last inequality, we used (9.4.13) and(9.4.15). Combining this with (9.4.8) and the de�nition of in, we obtain for all m 2 [3; 2n℄with a onstant 19j"(m)3 j � (in + 17m2) � 18n�16m34p � in + 11� �m � 19n�5 (9.4.17)for all n suÆiently large. (9.4.16) and (9.4.8) yieldZm := E(Tm�1jTm�1 � in; STm�1 = �1) = in + �m1� �m + "(m)3 : (9.4.18)By (9.4.17), we haveZn � Zn�1 � �n1� �n � �n�11� �n�1 � 219(n� 1)�5:Sine �m1��m � pm2�2 as m !1 in the sense that the quotient of both sides onverges to 1as m ! 1, there exists 20 (large) suh that for all n � 20, Zn � Zn�1 � 2. We hoosedn suh that dn � 1 � Zn�1 and Zn � dn + 1. It follows from (9.4.18) and (9.4.17) thatZm � Zn�1 for allm 2 [1; n�1℄ and Zm � Zn for allm 2 [n; 2n℄. This proves part 1 of thelaim. Part 2 follows by a similar argument. The estimates for E(TmjTm � in; STm = m)are done analogously: the only di�erene in the formulas (9.4.1) and (9.4.2) are the termssin ��j(m�1)m � instead of sin ��jm �. All we used about these terms in the above proof wasthat their absolute value is � 1; am remains the same.Lemma 9.4.1. Reall that in = (8=p)n2 lnn, and let 3 be as in Lemma 9.3.1. Thereexist onstants 19; 28 > 0 suh that for all n � 3 the following hold:1. For all m 2 [1; 2n℄, we have E(Tm � Tm ^ n4jTm � in; STm) � 219n�1.2. For all m 2 [1; 2n℄, we have P (Tm � n4jTm � in; STm) � e�n1:5 .3. P (Tn � in) � n�28 .Proof. We ontinue in the notation of the proof of Lemma 9.3.1. Using (9.4.13) and(9.4.15) and the fat that j"(m)2 jj�(m)1 +"(m)1 j � j"(m)3 j � 19n�5, we obtain��E(Tm�1 � Tm�1 ^ n4jTm�1 � in; STm�1 = �1)�� � P1k=n4 amk[�m℄k�1 + j"(m)2 jj�(m)1 + "(m)1 j� am[�m℄n4�1(n4 + 1)(1� �m)2j�(m)1 + "(m)1 j + 19n�5 � 22[�m℄n4�inn6 + 19n�5for all n suÆiently large with a onstant 22 > 0. Reall that �m = q + 2p os � �m�.Consequently, 22[�m℄n4�inn6 � 19n�1 for all m 2 [2; 2n℄ and n suÆiently large. Thisproves Part 1.



9.5. Finding blokn 381Using (9.4.10) and (9.4.15), we get for all n suÆiently largeP (Tm � n4jTm � in; STm = �1) � ham�n4�1m1� �m + [�mrm℄n4�11� �mrm i � j�(m)1 + "(m)1 j�1� 4�n4�inm :For �m, we obtain the following estimate:�m = q + 2p os � �m� = 1� 2p�1� os � �m�� � 1� 23n2for all n suÆiently large with a onstant 23 > 0. Hene, by the de�nition of in, 4�n4�inm �e�n1:5 for all large n, and Part 2 follows.Finally we prove Part 3. Using (9.4.15) and the estimate 1� �n+1 � 1, we obtainP (Tn � in) � P (Tn � in; STn = �1) = �(n+1)1 + "(n+1)1� 4p[�n+1℄in�1(n + 1)3(1� �n+1) � 24n�3[�n+1℄in�1with a onstant 24 > 0 for all n suÆiently large. We estimate�n+1 = q + 2p os h �n + 1i � q + 2p os2 h �n+ 1i= 1� 2p sin2 h �n + 1i � 1� 2p�2(n+ 1)2 :Thus, (�n+1)in�1 � �1� 2p�2(n+ 1)2�(8=p)n2 lnn � n�1�4=(p2�2)for all n suÆiently large, and the laim follows.9.5 Finding bloknIn this setion, we prove Theorem 9.3.1 and Proposition 9.3.1.Let n 2 N be �xed. Reall the de�nition of blokn: Let blokn+ := �j[bn+l ; bn+r ℄designate the leftmost blok of � of length� n with bn+l � 0, and let blokn� := �j[bn�l ; bn�r ℄denote the rightmost blok of � of length � n with bn�r � 0. Finally, let blokn =�j[bnl ; bnr ℄ 2 fblokn+; blokn�g denote the blok whih is visited �rst by S.9.5.1 De�nitions of eventsWe de�ne in alphabetial order events, whih will be needed below.De�nition 9.5.1. We de�neBnaverage � := �The average lengths of the �rst 3bn0:2 bloks of length � inprodued by S on blokn is � dn � ;Bnaverage < := \k2[3bn0:2;2�33n℄8<:If all bloks �j[�nl (i); �nr (i)℄, i 2℄k � 3bn0:2; k℄,are generated on bloks of � of length < n, then3�bn0:2Pi2℄k�3bn0:2;k℄ [�nr (i)� �nl (i)� 1℄ < dn 9=; :



382 Chapter 9. Finding bloks and other patterns in a random oloring of ZDe�nition 9.5.2. Let s; t � 0. We de�nersn(1) := minfk � s : (Sk; Sk+1) 2 f(bnl ; bnl + 1); (bnr ; bnr � 1)gg;rsn(i+ 1) := minfk > rsn(i) : (Sk; Sk+1) 2 f(bnl ; bnl + 1); (bnr ; bnr � 1)gg; i � 1;Bn;s;tblok enough := frsn(bt3=10) < s+ t=2g:rsn(i) is the ith entrane time of the random walk into blokn. If Bn;s;tblok enough holds,�j[s; s+ t=2[ ontains at least bt3=10 � 1 bloks generated on blokn.De�nition 9.5.3. We de�ne Bnb small := ��blokn+ [ �blokn� � [�3n=3; 3n=3℄	.De�nition 9.5.4. Let n denote the �rst hitting time of the set �blokn by the randomwalk: n := minfk � 0 : Sk 2 �blokng. We de�ne Bnenough bloks :=fSj[n; n + 3bn0:3[ produes > 3bn0:2 bloks of length � in on blokng:De�nition 9.5.5. We de�ne Bnonly blok := Bn+only \ Bn�only withBnionly := �There exists no blok of length � bn0:4 with a distane� 3bn0:3 from �blokni � ; i 2 f+;�g:De�nition 9.5.6. We de�ne Bnrw hits := f9k 2 [0; 33n[ suh that Sk 2 f�3n=3; 3n=3gg.De�nition 9.5.7. We de�neBnshort blok := �There exists no blok of length � n2 in �j[0; 3 � 33n[ whih isgenerated by S on a blok of � of length � bn0:4 � :De�nition 9.5.8. We de�ne Bnsize blok := fjbnil � bnir j < 2n for i 2 f+;�gg.9.5.2 Proof of Theorem 9.3.1Reall the de�nition of the event En�(0) ok from Theorem 9.3.1.Lemma 9.5.1. For all n � 2 the following inlusion holds P -almost surely:Bnaverage � \Bnaverage < \Bnb small \Bnenough bloks \ Bnonly blok\Bnrw hits \ Bnshort blok � En�(0) ok:Proof. Let n 2 N and suppose Bnaverage �, Bnaverage <, Bnb small, Bnenough bloks, Bnonly blok,Bnrw hits, and Bnshort blok hold. Suppose further S0 = 0. (This holds P -almost surely.)Sine S is a nearest-neighbor random walk and Bnb small and Bnrw hits hold, there existsk 2 [0; 33n[ suh that Sk 2 �blokn. Thus n � 33n. Using that Bnenough bloks and Bnaverage �hold, we see that �n(0) � n + 3bn0:3 � 2 � 33n.Sine Bnaverage < holds, we know that �n(0) equals �nr (k) for some k � 3bn0:2 with theproperty that at least one of the bloks �j[�nl (i); �nr (i)℄, i 2℄k � 3bn0:2; k℄ is generated ona blok of � of length � n. Reall that in = (8=p)n2 lnn � n2 for all n � 2. Usingn + 3bn0:3 � 2 � 33n and Bnshort blok, we onlude that all bloks of length � in generatedby Sj[n; n + 3bn0:3[ are generated on bloks of � of length > bn0:4. The only blok of �qualifying for this is blokn beause Bnonly blok holds. Hene by the de�nition of �n(0), itfollows S�n(0) 2 �blokn.



9.5. Finding blokn 383Proof of Theorem 9.3.1. By Lemma 9.5.1, we have for all n � 2P ��En�(0) ok�� � P ([Bnaverage �℄) + P ([Bnaverage <℄) + P ([Bnb small℄) + P ([Bnenough bloks℄)+P ([Bnonly blok℄) + P ([Bnrw hits℄) + P ([Bnshort blok℄):The laim follows from Lemmas 9.5.3, 9.5.4, 9.5.6, 9.5.7, 9.5.8, 9.5.9, and 9.5.10 below.9.5.3 Probabilisti estimatesIn this subsetion, we prove that the omplements of the events de�ned in Subsetion9.5.1 have a probability whih is exponentially small in a power of n. Before we treat theevents in alphabetial order, we prove a lemma whih will be needed below.Lemma 9.5.2. There exist onstants 25; 26 > 0 suh that for all t 2 N and for anybounded integer interval I the following holds:P (Si 2 I for all i 2 [0; t[) � 25 exp �� 26 � tjIj2�:Proof. We abbreviate l := bt=jIj2. By the Markov property of the random walk,P (Si 2 I for all i 2 [0; t[) � P� \k2[0;l[f8i 2 [kjIj2; (k + 1)jIj2[: Si 2 Ig�� P� \k2[0;l[f8i 2 [kjIj2; (k + 1)jIj2[: jSi � SkjIj2j � jIjg�� P (8i 2 [0; jIj2[: jSij � jIj)l� P (jSjIj2�1j � jIj)l:By the entral limit theorem, there exists 27 2℄0; 1[ suh that P (jSk2�1j � k) � 27 forall k 2 N . The laim follows with 25 := (27)�1 and 26 := � ln 27.Lemma 9.5.3. There exists 28 suh that for all n � 28P ([Bnaverage �℄) � 2e�n:Proof. Clearly,P ([Bnaverage �℄) � P (fjbnl � bnr j < 2ng nBnaverage �) + P (jbnl � bnr j � 2n): (9.5.1)By Lemma 9.5.11, P (jbnl � bnr j � 2n) � 4 � 2�2n: (9.5.2)We denote by ~�nl (k) and ~�nr (k) the left and right end of the kth blok of length � inprodued by S on blokn. We set Y nk := ~�nr (k) � ~�nl (k) � 1. Conditioned on (~�nl (k))k�1,the random variables Y nk are independent with distribution P (Tm 2 �jTm � in) withm = jbloknj. We have[Bnaverage �℄ = n3�bn0:2 Xk2[1;3bn0:2℄Y nk < dno � n3�bn0:2 Xk2[1;3bn0:2℄[Y nk ^ n4℄ < dno:



384 Chapter 9. Finding bloks and other patterns in a random oloring of ZBy part 1 of Lemma 9.4.1 and part 1 of Lemma 9.3.1, we haveE[Y nk ^ n4j jbnl � bnr j < 2n℄ � dn + 1� 219n�1for all n suÆiently large. Hene P�3�bn0:2Pk2[1;3bn0:2℄[Y nk ^ n4℄ < dn�� jbnl � bnr j <2n; ( ~�nl (k))k�1	 is a large deviation probability for the sequene (Y nk ^n4)k�1 of bounded,independent random variables. Thus,P (fjbnl � bnr j < 2ng nBnaverage �)� P�jbnl � bnr j < 2n; 3�bn0:2 Xk2[1;3bn0:2℄[Y nk ^ n4℄ < dn�� P�n3�bn0:2 Xk2[1;3bn0:2℄[Y nk ^ n4℄ < dno���jbnl � bnr j < 2n�� exp h� 293bn0:24n8 iwhih is � e�n for all n suÆiently large; here 29 > 0 is a onstant. Combining this with(9.5.1) and (9.5.2), the laim follows.Lemma 9.5.4. There exists 30 suh that for all n � 30P ([Bnaverage <℄) � e�n:Proof. For k � 1, let �̂nl (k) and �̂nr (k) be the left and right end of the kth blok oflength � in produed by S on a blok of � of length < n. We set Znk := �̂nr (k) ��̂nl (k) � 1. Conditioned on (�̂nl (k))k�1, the random variables (Znk )k�1 are independentwith distribution P (Tm 2 �jTm � in) with m 2 [1; n[ equal to the length of the underlyingblok of �. We have[Bnaverage <℄ � [k2[3bn0:2;2�33n℄n3�bn0:2 Xi2℄k�3bn0:2;k℄Zni � dno: (9.5.3)We abbreviate Bn;kZ small := f8i 2℄k � 3bn0:2; k℄ : Zni � n4g. Clearly,P�3�bn0:2 Xi2℄k�3bn0:2;k℄Zni � dn�� P ([Bn;kZ small℄) + P�3�bn0:2 Xi2℄k�3bn0:2;k℄Zni ^ n4 � dn�: (9.5.4)Using Lemma 9.4.1, Part 2, yieldsP ([Bn;kZ small℄) � 3bn0:2e�n1:5 � e�n1:4for all n suÆiently large. In order to get an upper estimate for the last term in (9.5.4),we use a large deviation estimate for independent, bounded random variables:P�3�bn0:2 Xi2℄k�3bn0:2;k℄Zni ^ n4 � dn�= EhP�3�bn0:2 Xi2℄k�3bn0:2;k℄Zni ^ n4 � dn���(�̂nl (k))k�1�i � exp h� 31 3bn0:24n8 i



9.5. Finding blokn 385whih is � e�n2 for all n suÆiently large; here 31 > 0 is a onstant. It follows from(9.5.3) and (9.5.4) thatP ([Bnaverage <℄) � 2 � 33n he�n1:4 + e�n2iwhih is � e�n for all n suÆiently large.We de�ne the �ltration H := (Hk)k�0 by Hk := �(Si; �z; i 2 [0; k℄; z 2 Z). Thefollowing lemma gives an estimate for P ([Bn;s;tblok enough℄) for ertain stopping times s; thisestimate will be needed in the proof of Lemma 9.5.7.Lemma 9.5.5. There exists 32 suh that for all n; t 2 N and for all H-adapted stoppingtimes  with S 2 �blokn P ([Bn;;tblok enough℄) � 32t�1=30:Proof. For i � 1, we set Xi := rn(i + 1)� rn(i). Sine the random walk is reurrent, Xiis well de�ned. Note that �blokn depends only on � and the random walk up to time .Thus, by the strong Markov property of S and the symmetry of the distribution of therandom walk jumps Sk+1 � Sk, the random variables Xi, i � 1, are i.i.d. onditioned onbnl and bnr . In partiular, all Xi have the same moments.The following inlusion holds:[Bn;;tblok enough℄ � n bt3=10Xi=1 Xi � t=2o � nh bt3=10Xi=1 X1=3i i3 � t=2o:By Chebyshev's inequality,P ([Bn;;tblok enough℄) � P� bt3=10Xi=1 X1=3i � (t=2)1=3� � (t=2)�1=3E� bt3=10Xi=1 X1=3i �� 2t�1=3t3=10E[X1=31 ℄ = 2t�1=30E[X1=31 ℄: (9.5.5)Conditioned on �blokn, X1 is stohastially dominated by r2 � r1, wherer1 := minfk � 0 : (Sk; Sk+1) = (0; 1)g;r2 := minfk > r1 : (Sk; Sk+1) = (0; 1)g:Let T denote the �rst return time to the origin of the random walk S. Let Ti, i � 1, bei.i.d. with the same distribution as T . Sine the random walk starting at 0 an make kholdings at 0 and m exursions to the left before hitting 1, we obtainE[(r2 � r1)1=3℄ = 1Xk=0 1Xm=0 qkp2m+1�m+ 1 + kk �E[(k + 2m+ 1 + mXi=1 Ti)1=3℄� 33 + 34E[T 1=3℄with onstants 33; 34 > 0. By P3, page 381, of [24℄, limn!1pnP (T > n) = 35 forsome 35 > 0. Thus with a onstant 36 > 0, E[T 1=3℄ � 1 + P1n=1 P (T 1=3 > n) �1 + 36P1n=1 n�3=2 <1. Hene E[X1=31 ℄ <1, and the laim follows.



386 Chapter 9. Finding bloks and other patterns in a random oloring of ZLemma 9.5.6. There exists 37 suh that for all n � 37P ([Bnb small℄) � e�n:Proof. Starting with �3n=3, we partition the set [�3n=3; 3n=3℄ into N disjoint intervalsI1; I2; : : : ; IN of length n + 2, N := b(2 � 3n�1 + 1)=(n + 2). Let Xk be the Bernoullirandom variable de�ned as follows: Xk := 1 if �jIk is a blok of length n and Xk := 0otherwise. Then Xk, k 2 [1; N ℄ are i.i.d. with P (Xk = 1) = 2�n�2. Moreover, [Bnb small℄ �fPNk=1Xk = 0g. HeneP ([Bnb small℄) � Ph NXk=1Xk = 0i = �1� 2�n�2�N = exp �N ln[1� 2�n�2℄� � e�2�n�2N ;for the last inequality we used the estimate ln(1 + x) � x for jxj < 1. Sine 2�n�2N � nfor all n suÆiently large, the laim follows.Lemma 9.5.7. There exist 38; 39; 40 > 0 suh that for all n � 38P ([Bnenough bloks℄) � 39e�40n0:3 :Proof. Reall the de�nition of rsn(k) from De�nition 9.5.2. Let Y nk be the Bernoulli randomvariable de�ned by Y nk := 1 if rnn (k) is the left endpoint of a blok of � of length � inand Y nk := 0 otherwise. Note that if Y nk = 1, then the blok of � starting at rnn (k) isgenerated by the random walk on blokn.Let t := 3bn0:3. If the event Bn;n;tblok enough holds, then rnn (k) <1 for all k 2 [1; bt3=10[=[1; b33bn0:3=10[. ThusBn;n;tblok enough \ n bt3=10Xk=1 Y nk > 3bn0:2o � Bnenough bloks: (9.5.6)Beause of Lemma 9.5.5 and t = 3bn0:3,P ([Bn;n;tblok enough℄) � 32t�1=30 = 323�bn0:3=30: (9.5.7)It remains to estimate P (Bn;n;tblok enough \ fPbt3=10k=1 Y nk � 3bn0:2g). Reall that Tm denotesthe �rst hitting time of the set f�1; mg by the random walk. Sine blokn has length� n, it follows from Lemma 9.4.1 thatP (Y nk = 1jrnn (k) <1) � P (Tn � in) � n�28 :Let ~Y nk , k � 1, be i.i.d. Bernoulli random variables with parameter n�28 (on a possiblyenlarged probability spae). ThenP 0�Bn;n;tblok enough \ n bt3=10Xk=1 Y nk � 3bn0:2o1A � P 0�bt3=10Xk=1 Y nk � 3bn0:2���Bn;n;tblok enough1A� P 0�bt3=10Xk=1 ~Y nk � 3bn0:21A :



9.5. Finding blokn 387For k � 1, let Zni := Xj2℄(k�1)bn28;kbn28℄ ~Y nj :By the Poisson onvergene theorem (see e.g.[5℄, page 137, theorem (6.1)), Zni onvergesweakly as n!1 to a Poisson(1)-distributed random variable. Thus,~Znk := Xi2℄3(k�1)3bn0:2;3k3bn0:2℄Zni ;k � 1, satisfy 3�bn0:2 ~Znk ! 3 as n ! 1 in probability. Consequently, there exists41 2℄0; 1[ suh that for all n P ( ~Znk � 3bn0:2) � 41:Note that eah ~Znk is the sum of 3 � 3bn0:2bn28 random variables ~Y nj . We set T :=bt3=10=(3 � 3bn0:2bn28) = b33bn0:3=103�bn0:2�1bn28�1 � 3n0:3=10 for all n suÆientlylarge. ThenP (bt3=10Xk=1 ~Y nk � 3bn0:2) � P ( bT Xk=1 ~Znk � 3bn0:2) � P (bT \k=1f ~Znk � 3bn0:2g)= P ( ~Zn1 � 3bn0:2)bT  � (41)3bn0:3=10 � e�nfor all n suÆiently large. Combining this with (9.5.6) and (9.5.7), the laim follows.Lemma 9.5.8. There exists a onstant 42 suh that for all n � 42P ([Bnonly blok℄) � 2�n0:4=2:Proof. By de�nition, [Bnonly blok℄ = [Bn+only℄ [ [Bn�only℄ with[Bnionly℄ = f9blok of length � bn0:4 with a distane � 3bn0:3 from �bloknigfor i 2 f+;�g. For x 2 Z, the probability that there is a blok of length � bn0:4 in�j[x; x+3bn0:3℄ is bounded by 3bn0:3 �2 �2�bn0:4 � 2�n0:4=2=4 for all n � 42 with a onstant42. This is beause the probability that a piee of senery of length bn0:4 is olored withthe same olor equals 2 � 2�bn0:4 and in [x; x+3bn0:3℄ there are at most 3bn0:3 possible leftends for suh a onstantly olored piee of senery. Thus, onditioning on the endpointsof blokni yields the laim.Lemma 9.5.9. There exists 43 suh that for all n � 43P ([Bnrw hits℄) � e�n:Proof. By the de�nition of Bnrw hits and Lemma 9.5.2, we haveP ([Bnrw hits℄) = P (8k 2 [0; 33n[: Sk 2℄� 3n=3; 3n=3[)� 25 exp �� 26 33n(2 � 3n�1 + 1)2� � 25 exp(�263n):The last expression is � e�n for all n suÆiently large.



388 Chapter 9. Finding bloks and other patterns in a random oloring of ZLemma 9.5.10. There exists 44 suh that for all n � 44P ([Bnshort blok℄) � e�n:Proof. If we setBn;kshort := �If the kth blok of � was generated on a blok of � of length� bn0:4, then it has length � n2 � ;then [Bnshort blok℄ � S3�33nk=1 Bn;kshort. Let k � 1. We use the strong Markov property of therandom walk at the time when it enters the blok of � underlying the kth blok of � andLemma 9.5.2 to obtainP (Bn;kshort) � P (8k 2 [0; n2[: Sk 2 [0; bn0:4[)� 25 exp h� 26 n2bn0:42 i � 25e�26n1:2 :Thus P ([Bnshort blok℄) � 32533ne�26n1:2 � e�n for all n suÆiently large.Lemma 9.5.11. For all n 2 N,P ([Bnsize blok℄) � 4 � 2�2nProof. By de�nition, [Bnsize blok℄ = f9i 2 f�;+g suh that jbnil �bnir j � 2ng. If jbnil �bnir j �2n, then the blok starting at bnil has length � 2n. Thus onditioning on bnil and usingthat the length of a blok starting at a point x is geometrially distributed, we obtainP (jbnil � bnir j � 2n) =Pk�2n 2�k = 21�2n and the laim follows.9.5.4 The estimate of bloknIn this subsetion, we prove Proposition 9.3.1. Let T 2 fHnl ; Hnr g; reall the de�nitionsof Hnl and Hnr from (9.3.3). We abbreviate�n;T := �j[T; T + 3bn0:3[: (9.5.8)We have festimated-blokn(�n;T ) = blokng = Bn;Tolor ok \ Bn;Tlength ok withBn;Tolor ok := festimated-blokn(�n;T ) and blokn have the same olorg andBn;Tlength ok := festimated-blokn(�n;T ) and blokn have the same lengthg:Proof of Proposition 9.3.1. First, we show that the event Bn;Tlength ok has high probability.We de�ne the events~Bn;Taverage � := �The average lengths of the �rst 3bn0:2 bloks of length � inprodued by Sj[T;1[ on blokn is � dn � ;~Bn;Taverage < := \m2[n;2n℄8<:If all bloks �j���nl (i; �n;T ); ��nr (i; �n;T )�, i 2 [1; 3bn0:2℄,are generated on bloks of � of length < m, then3�bn0:2Pi2[1;3bn0:2℄ ���nr (i; �n;T )� ��nl (i; �n;T )� 1� < dnm 9=; ;~Bn;Tenough bloks := �Sj[T; T +3bn0:3[ produes > 3bn0:2 bloks of length � inon blokn � ;



9.5. Finding blokn 389and laim that the following inlusion holds for all n 2 N :~Bn;Taverage � \ ~Bn;Taverage < \ ~Bn;Tenough bloks \Bnonly blok \ fjbnl � bnr j � 2ng � Bn;Tlength ok: (9.5.9)Suppose the events ~Bn;Taverage �, ~Bn;Taverage <, ~Bn;Tenough bloks, Bnonly blok, and fjbnl � bnr j � 2nghold. Beause of ~Bn;Tenough bloks \ ~Bn;Taverage �, we have3�bn0:2 Xi2[1;3bn0:2℄ ���nr (i; �n;T )� ��nl (i; �n;T )� 1� � dn = dnn:Sine ~Bn;Taverage < holds, at least one of the bloks �j���nl (i; �n;T ); ��nr (i; �n;T )�, i 2 [1; 3bn0:2℄,is generated on a blok of � of length � n. By Bnonly blok, this blok of � must be blokn.We assumed jbnl �bnr j � 2n. Hene, blokn has lengthm 2 [n; 2n�1℄. Beause of ~Bn;Taverage <,the length of blokn is the unique m 2 [n; 2n � 1℄ suh that (9.3.2) holds. By de�nition,estimated-blokn(�n;T ) has length m as well. This proves inlusion (9.5.9).It follows from Lemma 9.5.3 thatP ([ ~Bn;Taverage �℄) � 2e�nfor all n suÆiently large. The proof of Lemma 9.5.4 an easily be adapted to show thatP ([ ~Bn;Taverage <℄) � e�nfor all n suÆiently large. It follows from Lemma 9.5.7 thatP ([ ~Bn;Tenough bloks℄) � 39e�40n0:3for all n suÆiently large. Combining the preeding estimates with inlusion (9.5.9),Lemma 9.5.8, and Lemma 9.5.11 yieldsP ([Bn;Tlength ok℄) � 45e�46n0:3 (9.5.10)for all n � 47 with onstants 47; 45; 46 > 0.Next, we prove that the event Bn;Tolor ok has high probability. We de�ne the eventBn;Tlarge blok := fSj[T; T + 3bn0:3[ produes at least one blok of length � n2g and laimBn;Tlarge blok \Bnonly blok \ ��T [Bnshort blok℄ � Bn;Tolor ok: (9.5.11)Suppose the events Bn;Tlarge blok, Bnonly blok, and ��T [Bnshort blok℄ hold, and reall that theolor of estimated-blokn(�n;T ) is de�ned to be the olor of the �rst blok of length � n2in �n;T . By ��T [Bnshort blok℄, the olor of estimated-blokn(�n;T ) is the olor of a blokwhih was generated by S on a blok of � of length > bn0:4. Sine Bnonly blok holds, thisblok must be generated on blokn. Hene Bn;Tolor ok holds.It follows from (9.5.11) thatP ([Bn;Tolor ok℄) � P ([Bn;Tlarge blok℄) + P ([Bnonly blok℄) + P (���T [Bnshort blok℄�):Using in � (8=p)n2 lnn � n2 for all n � 2 and Lemma 9.5.7, we obtain P ([Bn;Tlarge blok℄) �39e�40n0:3 . By Lemma 4.1 of [19℄, the shift � preserves the measure P . Hene, weonlude from Lemmas 9.5.8 and 9.5.10P ([Bn;Tolor ok℄) � e�48n0:3 (9.5.12)for all n suÆiently large with a onstant 48 > 0. The laim follows.



390 Chapter 9. Finding bloks and other patterns in a random oloring of Z9.6 The stopping times �n;TbIn this setion, we prove Proposition 9.3.2. Let T 2 fHnl ; Hnr g; reall the de�nitions ofHnl and Hnr from (9.3.3).9.6.1 De�nitions of eventsWe ollet in alphabetial order de�nitions of events, whih will be needed in the sequel.De�nition 9.6.1. Let bn := b(bnl + bnr )=2. Thus, bn is the enter of the interval [bnl ; bnr ℄or it di�ers in absolute value from the enter by 1=2. We de�neBn;Tb often := �Sj[T; T + 310�bn0:2=2[ visits bn at least 33�bn0:2 times	:De�nition 9.6.2. LetS0n;T(�; �) := ft 2 [T;1[: St = bn ; jSt � Skj � n=4 for all k 2 [t; t+ n2=16[g:For t 2 S0n;T, let t̂ be the right end of the blok of � whih ontains t as an inner point.We set Sn;T := ft̂ : t 2 S0n;Tg:For k � 1, we denote by �n;T (k) the kth hitting time of bn whih is � T . We de�ne~Bn;Twhen bak reog := f3�2�bn0:2jfk 2 [1; 32�bn0:2℄ : �n;T (2k � 33bn0:2) 2 S0n;T(�; �)j > q=2g:De�nition 9.6.3. Reall the de�nition of the �n;Tb (k)'s from Setion 9.3. We de�ne~En;Tno error �b := f8k � 1 : if �n;Tb (k) < T + 310�bn0:2; then S�n;Tb (k) 2 �blokng:9.6.2 Proof of Proposition 9.3.2We start this setion with two ombinatorial lemmas. We setTn;T := f~�n;Tb (k) : k � 1g:Lemma 9.6.1. For all n 2 N the following inlusion holds:~En;Tno error �b \ fSn;T \ [T; T + 310�bn0:2[� Tn;T g \ Bn;Tb often \ ~Bn;Twhen bak reog � En;T�b ok:Proof. The proof is very similar to the proof of Lemma 9.8.1 below.Lemma 9.6.2. The inlusion Sn;T \ [T; T + 310�bn0:2[� Tn;T holds P -almost surely.Proof. Let t 2 Sn;T \ [T; T + 310�bn0:2[. Then, t is the right end of a blok of �j[T; T +310�bn0:2[. Let s 2 S0n;T be suh that t = ŝ. Sine at time s, the random walk is in theenter of blokn and bnr � bnl � n, we have Sj[s; s+ n2=16[� [bnl ; bnr ℄, and onsequently, t isthe right end of a blok of length � n2=16. Hene t 2 Tn;T .



9.6. The stopping times �n;Tb 391Proof of Proposition 9.3.2. By Lemmas 9.6.1 and 9.6.2, we haveP ([En;T�b ok℄) � P ([ ~En;Tno error �b℄) + P ([Bn;Tb often℄) + P ([ ~Bn;Twhen bak reog℄):The laim follows from Lemmas 9.6.5, 9.6.3, and 9.6.4 below.Lemma 9.6.3. There exist onstants 49; 50 > 0 suh that for all n � 49 and all T 2fHnl ; Hnr g P ([Bn;Tb often℄) � e�50n0:2 :Proof. Using arguments whih are very similar to the proof of Lemma 9.8.4 below, onean prove that P (fjbnil � bnir j < 2ng nBnb often) � 513��bn0:2=3with a onstant 51. By Lemma 9.5.11, P (jbnil �bnir j � 2n) � 4�2�2n. The laim follows.Lemma 9.6.4. There exists 52 suh that for all n � 52 and all T 2 fHnl ; Hnr gP ([ ~Bn;Twhen bak reog℄) � e�n:Proof. By the Markov property of the random walk, the random variables Yk := 1f�n;T (2k�33bn0:2) 2 S0n;T(�; �)g, k � 1, are i.i.d. Furthermore, we have for all k � 1,P (�n;T (k) 2 S0n;T) = P (jSkj � n=4 for all k 2 [0; n2=16[)� 1� 16n�2Var(Sn2=16) = 1� 2p = q;for the last inequality, we used Doob's submartingale inequality (see e.g. [5℄, page 250, ex-ample 4.1) and Var(S1) = 2p. The event [ ~Bn;Twhen bak reog℄ is a large deviation event for thei.i.d. Bernoulli random variables Yk. Thus, with a onstant 53 > 0, P ([ ~Bn;Twhen bak reog℄) �exp(�32�bn0:253) whih is � e�n for all n suÆiently large.Lemma 9.6.5. There exist onstants 54; 55 > 0 suh that for all n � 54 and all T 2fHnl ; Hnr g P ([ ~En;Tno error �b℄) � e�55n0:4 :Proof. Clearly,[ ~En;Tno error �b ℄ � [k2[1;310�bn0:2℄f�n;Tb (k) < T + 310�bn0:2 and S�n;Tb (k) 62 �blokng:Reall the de�nition of Bnonly blok (De�nition 9.5.5) and reall that the event Bnonly blok is�(�)-measurable. If Bnonly blok holds, �n;Tb (k) < T + 310�bn0:2, and S�n;Tb (k) 62 �blokn, then�n;Tb (k) is the right end of a blok of � of length < bn0:4. Hene, using the strong Markovproperty of S at the time when the random walker enters the blok on whih the blokof � ending at �n;Tb (k) is generated, we obtainP�(Bnonly blok \ f�n;Tb (k) < T + 310�bn0:2 and S�n;Tb (k) 62 �blokng)� 1Bnonly blokP�(8k 2 [0; n2=16[: jSkj < bn0:4)� 25 exp �� 26 � n216n0:8� = 25e�26n1:2=16;



392 Chapter 9. Finding bloks and other patterns in a random oloring of Zfor the last inequality we used Lemma 9.5.2. Thus,P (Bnonly blok n ~En;Tno error �b) � 25310�bn0:2e�26n1:2=16whih is � e�n for all n suÆiently large. Combining this with Lemma 9.5.8, ompletesthe proof.9.7 The algorithm SmallAlgnLet n 2 N be �xed, but large.In this setion, we de�ne a map SmallAlgn whih ful�lls the laim of Theorem 9.3.2.Given 3bn0:3 observations olleted by the random walker starting in the set �blokn,SmallAlgn reonstruts with high probability a piee of senery around blokn of lengthof the order 3n0:2 .The de�nition of SmallAlgn has some similarities with the de�nition of BigAlgbn0:2 inSetion 5 of [22℄. Alas, we annot diretly use the map BigAlgbn0:2 whih reonstruts apiee of senery given observations, a \typial" piee of senery lose to the origin, anda sequene of stopping times. Here, we would like to reonstrut a piee of the seneryaround blokn, but blokn is not typial for the senery lose to the origin. We have totake this into aount in the de�nition of SmallAlgn.9.7.1 Finding wordsIn order to reonstrut a piee of � of length of the order 3bn0:2, we look in the observations� for words of length 1bn0:2 ourring in the senery; here 1 > 0 is a onstant hosenas in Setion 9.2. The idea is to �nd enough of these words suh that we an assemblethem to obtain a bigger piee of the senery. Below we review a riterion from [22℄ to �ndsuh words in the senery. We abbreviatem = bn0:2 and �nb (k) := �n;0b (k) for all k � 1:Let � 2 Sk�33m C [0;k[. We onsider ~Om1 Om2 ~Om3 with the following properties: ~Om1 onsistsof the �rst 1m bloks of � after time 32m, Om2 equals the following 1m=2 observations in� extended until the next blok starts, and ~Om3 onsists of the following 1m bloks of �.We do the same thing with ��nb (k)(�) for all k 2 [1; 3�m℄, i.e. we ollet observations aftereah stopping time. The words ~Om1 and ~Om3 are used to �nd those Om2 whih our in �lose to blokn. In fat, we onsider instead of ~Om1 the sequene Om1 2 f1; 2; 3; 4; 5g1mwhere the jth omponent equals the minimum of 5 and the length of the jth blok of ~Om1 .The same is done with ~Om3 . More formally:De�nition 9.7.1. Let � 2 Sk�33m C [0;k[, and let �m := �j[32m; 33m[. We denote by Bk(�)the kth blok of � if � possesses at least k bloks; otherwise Bk(�) := 101 2 C [33m;33m+3[.Let oml (�) be the right end of B1m(�m), the 1mth blok of �m. Furthermore let ~omr (�) bethe left end of the �rst blok of �mj[oml (�) + 1m=2 � 2; 33m[ and set omr (�) := ~omr (�) + 1.If �mj[oml (�) + 1m=2� 2; 33m[ does not ontain a blok, then we set omr (�) := oml (�). Wede�ne Om := (Om1 ;Om2 ;Om3 ) byOm1 (�) := (jBk(�m)j ^ 5)k2[1;1m℄;Om2 (�) := �j[oml (�); omr (�)℄;Om3 (�) := (jBk(�~omr (�)(�))j ^ 5)k2[1;1m℄:



9.7. The algorithm SmallAlgn 393The following piture illustrates the de�nitions for 1n = 6:� = 1110 : : : 01110010| {z }�j[0; 32m[ 0111010000011000 1| {z }~Om1 (�) 000 0 1 11001011110001| {z }~Om3 (�) 00111110 : : :
�oml and �omr are marked with boxes. In this example, we have Om1 (�) = (3; 1; 1; 5; 2; 3),Om2 (�) = 100001, Om3 (�) = (3; 2; 1; 1; 4; 3).De�nition 9.7.2. For � 2 Sk�33m C [0;k[ we de�ne Lm := (Lm1 ;Lm2 ;Lm3 ) byLm1 (�) := Om1 (�); Lm2 (�) := �j[oml (�); omr (�)� 2℄; Lm3 (�) := jB1(�~omr (�)(�))j:Furthermore, we de�ne Rm := (Rm1 ;Rm2 ;Rm3 ) byRm1 (�) := jB1m(�m)j; Rm2 (�) := �j[oml (�) + 1; omr (�)℄; Rm3 (�) := Om3 (�):Thus Lm3 (�) is the non-trunated length of the �rst blok of �[oml (�)+ 1m=2� 2; 33m[and Rm1 (�) is the non-trunated length of the (1m)th blok of �m.De�nition 9.7.3. For A 2 fO;L;Rg and � 2 C [0;2�310�m[, we de�ne the empirial distri-bution of Om observed after the times �nb (k), k 2 [1; 3�m℄:�̂A;n� := 3��m Xk2[1;3�m℄ ÆAm���nb (k)��:For � 2 CN0 and T � 0, we set �̂A;n;T� := �̂A;n�j[T;T+2�310�m[.Note that blokn� and blokn+ are �(�z; z 2 Z)-measurable. For � 2 CZ and a (possibly�nite) admissible path �, blokn(�; �) equals the blok in the set fblokn�(�); blokn+(�)gwhih is visited �rst by the path �; if � visits neither blokn�(�) nor blokn+(�), then weset blokn(�; �) := 010 2 C [1;3℄. The endpoints of blokn(�; �) are bnl (�; �) and bnr (�; �). Letan;l�;� and an;r�;� be the proportion of k 2 [1; 3�m℄ with ��nb (k) = bnl (�; �) and ��nb (k) = bnr (�; �),respetively.De�nition 9.7.4. For an admissible path � 2 Z[0;2�310�m[, we de�ne�A;n�;� := an;l�;�Pbnl (�;�);� [An(�)℄�1 + an;r�;�Pbnr (�;�);� [An(�)℄�1 ;"A;n�;� := �̂A;n�Æ� � �A;n�;� :For an admissible path � 2 ZN0 and T � 0, we set �A;n;T�;� := �A;n�;�j[T;T+2�310�n[."A;n�;� measures the di�erene between the empirial distribution �̂A;n�Æ� and the distri-bution �A;n�;� . By Lemma 5.8 of [22℄, "O;n�;S is small with high P -probability provided thestopping times �nb stop orretly. This is used to reonstrut the senery: �̂A;n� an beomputed from �j [0; 2 � 310�m[ and �nb . It is lose to �A;n�;S , from whih we will extratinformation about the senery �.



394 Chapter 9. Finding bloks and other patterns in a random oloring of ZBy de�nition, �A;n�;� and �̂A;n� are measures on sets of the form obs := B � obs2 � Cwith obs2 := fw 2 Ck : k � 1m=2; wk�1 6= wk; wj = wk�1 for all j 2 [1m=2� 1; k � 1℄gand B;C 2 f[1; 5℄1m;Ng. We denote by �2 : obs ! obs2 the anonial projetions.Furthermore, we introdue the event that an observation A 2 obs has �2(A) of lengthd � 1m=2: Em;dblok := fA 2 obs : [�2(A)℄d�1 6= [�2(A)℄dg :We order the 2d elements of Cd lexiographially and denote them by v1; v2; � � � ; v2d.Let evk := (evk(i))i2[1;2d℄ be de�ned by evk(i) := Æk(i); i.e. �evk ; k 2 �1; 2d�	 is the anonialbasis in R2d . Let �1vk ; k 2 �1; 2d�	 be the dual basis, i.e. 1vk(evj ) = Æk(j) for all j; k 2�1; 2d�.Sometimes it will be onvenient to identify a measure � whih is supported on a �niteordered set fs1; s2; : : : ; slg with the vetor (�(fs1g); �(fs2g); : : : ; �(fslg)). Similarly, wesometimes identify measures supported on N0 by one-sided in�nite vetors.Let w 2 Cd. For any probability measure � on Cd we have 1w(�) = �(w). In partiular,if � gives mass one to w, then 1w(�) = 1. We denote by 1 the linear funtional de�nedby 1(�) =Pdi=1 �i. For j 2 N , let e�j : RN ! R be de�ned by e�j((xi)i2N) = xj. We de�ne1�n2 :=Pn4j=n2 e�j . If g1 and g2 are two linear funtionals we denote by g1
 g2 their tensorprodut.Reall that Tm denotes the �rst hitting time of f�1; mg by the random walk S. Form 2 N we abbreviate�ml (�) := P (fTm 2 �g \ fSTm = �1g) ; �mr (�) := P (fTm 2 �g \ fSTm = mg) :We de�ne h : N0 ! [1; 5℄, x 7! x ^ 5. Then�ml h�1(�) = P (fTm ^ 5 2 �g \ fSTm = �1g) :The measures �ml h�1; �mr h�1 are supported on the set f1; 2; 3; 4; 5g. Hene we an identifythem with vetors in R5+ .De�nition 9.7.5. We de�ne vetors in R5+ :~x1 := (p; pq; pq2; pq3; pq4);~x2 := �2rh�1 = (0; p2; 2p2q; p4 + 3p2q2; �2r([5;1[);~x3 := (0; 0; p3; 3p3q; p5 + 6p3q2);~x4 := �4rh�1 = (0; 0; 0; p4; �4r([5;1[);~x5 := (0; 0; 0; 0; 1):Clearly, f~xigi2[1;5℄ is a basis of R5 . We denote by f~x�i gi2[1;5℄ the orresponding dual basis.De�nition 9.7.6. We all a funtion f : (R5)
m ! R positive if f (
mk=1~xnk) � 0 for alln1, n2; : : : ; nm 2 f1; 2; 3; 4; 5g.The following theorem gives suÆient onditions for a word to be ontained in thesenery � around blokn. Part (1a) is a riterion to �nd words in �j [bnl � 33m; bnr + 33m℄.Parts (1b) and (1) will allow us to reonstrut the words immediately to the left andto the right of blokn. Reall the de�nitions of the events Bnonly blok and Bnshort blok fromSetion 9.5.1.



9.7. The algorithm SmallAlgn 395Theorem 9.7.1. There exists 11 > 0 suh that for all n � 11, d 2 [1m=2; 1m℄,T 2 fHnl ; Hnr gand w 2 Cd with wd�1 6= wd the following holds whenever the event En;T�b ok \Bnonly blok \ ��T [Bnshort blok℄ holds:1. Case q 6= 0:(a) If there exist positive linear funtionals g1 and g3 on (R5)
1m suh that(g1 
 1w 
 g3)(�̂O;n;T�ÆS [� \ Em;dblok℄) > 1; (9.7.1)(g1 
 1
 g3)(�̂O;n;T�ÆS [� \ Em;d�1blok ℄) � 1=(5m2); and (9.7.2)kg1 
 g3k2 � k"O;n;T�;S k1=21 � 1=(2m2); (9.7.3)then w � �j [bnl � 33m; bnr + 33m℄.(b) If there exists a positive linear funtional g1 on (R5)
1m suh that(g1 
 1w 
 1�n2)(�̂L;n;T�ÆS [� \ Em;dblok℄) > 1; (9.7.4)(g1 
 1
 1�n2)(�̂L;n;T�ÆS [� \ Em;d�1blok ℄) � 1=(5m2); and (9.7.5)kg1 
 1�n2k2 � k"L;n;T�;S k1=21 � 1=(2m2); (9.7.6)then wblokn � �j [bnl � 33m; bnr + 33m℄; here wblokn denotes the onatenationof w and blokn.() If there exists a positive linear funtional g3 on (R5)
1m suh that(1�n2 
 1w 
 g3)(�̂R;n;T�ÆS [� \ Em;dblok℄) > 1; (9.7.7)(1�n2 
 1
 g3)(�̂R;n;T�ÆS [� \ Em;d�1blok ℄) � 1=(5m2); and (9.7.8)k1�n2 
 g3k2 � k"R;n;T�;S k1=21 � 1=(2m2); (9.7.9)then bloknw � �j [bnl � 33m; bnr + 33m℄.2. Case q = 0: Replae d� 1 by d� 2 in (9.7.2), (9.7.5), and (9.7.8).Proof. Part (1a) is an immediate onsequene of Theorem 4.1 of [22℄. Note that on theevent En;T�b ok we have S�n;Tb (k) 2 �blokn, whereas in Theorem 4.1 of [22℄ the stopping times�k are only assumed to satisfy the weaker ondition jS�k j � 3n.Parts (1b) and (1) an be proved using essentially the same arguments as in the proofof Theorem 4.1 of [22℄; one replaes g1 or g3 in that proof by the funtional 1�n2. Note thaton the event En;T�b ok\Bnonly blok\��T [Bnshort blok℄ bloks of length � n2 in �j[T; T +3bn0:3[must be generated on blokn.9.7.2 De�nition of SmallAlgnTheorem 9.7.1 is used to de�ne sets of words whih will be used to assemble a larger pieeof �. Reall m = bn0:2.De�nition 9.7.7. Let 7 > 0 be hosen as in Setion 9.2.1. Case q 6= 0:



396 Chapter 9. Finding bloks and other patterns in a random oloring of Z(a) We de�ne OutsideWordsn(�) to be the set of all w 2 Cd, d 2 [1m=2; 1m℄ suhthat there exist positive linear funtionals g1 and g3 on (R5)
1m with(g1 
 1w 
 g3) (�̂O;n� [� \ Em;dblok℄) > 1; (9.7.10)(g1 
 1
 g3)(�̂O;n� [� \ Em;d�1blok ℄) � 1=(5m2); and (9.7.11)kg1 
 g3k2 � e7m: (9.7.12)(b) We de�ne LeftWordsn(�) to be the set of all w 2 Cd, d 2 [1m=2; 1m℄ suh thatthere exists a positive linear funtional g1 on (R5)
1m with(g1 
 1w 
 1�n2)(�̂L;n� [� \ Em;dblok℄) > 1; (9.7.13)(g1 
 1
 1�n2)(�̂L;n� [� \ Em;d�1blok ℄) � 1=(5m2); and (9.7.14)kg1 
 1�n2k2 � e7m: (9.7.15)() We de�ne RightWordsn(�) to be the set of all w 2 Cd, d 2 [1m=2; 1m℄ suhthat there exists a positive linear funtional g3 on (R5)
1m with(1�n2 
 1w 
 g3)(�̂R;n� [� \ Em;dblok℄) > 1; (9.7.16)(1�n2 
 1
 g3)(�̂R;n� [� \ Em;d�1blok ℄) � 1=(5m2); and (9.7.17)k1�n2 
 g3k2 � e7m: (9.7.18)2. Case q = 0: Replae d� 1 by d� 2 in (9.7.11), (9.7.14), and (9.7.17)Finally, we de�ne Wordsn(�) := OutsideWordsn(�) [ LeftWordsn(�) [ RightWordsn(�).The algorithm SmallAlgn takes as argument � 2 C [0;3bn0:3[. SmallAlgn(�) should on-tain estimated-blokn(�) in the middle and all subpiees of length 1m=2 whih do notinterset estimated-blokn(�) should our in an element of Wordsn(�).De�nition 9.7.8. We de�ne Outputn(�) :=8<:w 2 C [�3�3m;3�3m℄ : There exists a unique interval J � [�3 � 3m; 3 � 3m℄ suh thatwjJ = estimated-blokn(�) and for all intervals I � [�3 � 3m; 3 � 3m℄ n J withjIj = 1m=2 there exists w0 2 Wordsn(�) suh that wjI v w0 9=; :De�nition 9.7.9. We de�ne SmallAlgn : C [0;3bn0:3[ ! C [�3�3m;3�3m℄ as follows:If Outputn(�) 6= ?, then we de�ne SmallAlgn(�) to be its lexiographially smallestelement. Otherwise we set SmallAlgn(�) := (1)[�3�3m;3�3m℄.9.7.3 Proof of Theorem 9.3.2We need some de�nitions. For a word w 2 C [1;d℄ we de�ne w$ := (w$k )k2[1;d℄ by w$k :=wd�k+1, k 2 [1; d℄, i.e. w$ is obtained by reading w from right to left.De�nition 9.7.10. We de�neInitialPieen(�) := �wlestimated-blokn(�)wr : wl 2 LeftWordsn(�),wr 2 RightWordsn(�), and wl 6= (wr)$ � :



9.7. The algorithm SmallAlgn 397The set InitialPieen(�) ontains onatenations of estimated-blokn(�) with a wordfrom LeftWordsn(�) to its left and a word from RightWordsn(�) to its right.Reall the de�nitions of Hl and Hr from (9.3.3). In the following, let T 2 fHnl ; Hnr g.Reall �n;T = �j[T; T + 3bn0:3[.De�nition 9.7.11. We de�neEn;Tini ok := festimated-blokn(�n;T ) = blokng \ fblokn v �j[�3n=3; 3n=3℄g \�9 2 InitialPieen(�n;T ) with  v �j[bnl � 1m; bnr + 1m℄	 :De�nition 9.7.12. We de�ne En;TWords ok := En;Tonly xi \ En;Tall words withEn;Tonly xi := �If w 2 Wordsn(�n;T ); then w � �j �bnl � 33m; bnr + 33m�	 ;En;Tall words := 8<:There exists a unique interval J � [�5 � 3m; 5 � 3m℄ suhthat blokn = �jJ and for all w � �j [[�5 � 3m; 5 � 3m℄ n J ℄and jwj = 1m=2, then 9w0 2 Wordsn(�n;T ) with w v w09=; :De�nition 9.7.13. For z 2 Z and k 2 N we de�ne wz;k;! := �j[z; z+k[ to be the word oflength k starting at z, and we denote by wz;k; the word obtained by reading wz;k;! fromright to left. We de�neBnunique �t := �8z1; z2 2 [bnl � 33m; bnr + 33m℄ n [bnl ; bnr ℄ and 8i1; i2 2 f ;!gwith (z1; i1) 6= (z2; i2) we have wz1;i1;1m=4 6= wz2;i2;1m=4 � :Lemma 9.7.1. There exists 57 suh that for all n � 57 and all T 2 fHnl ; Hnr g thefollowing inlusion holds:En;T�b ok \ En;Tini ok \ En;TWords ok \Bnunique �t � ��TEnreon Small:Proof. The proof is very similar to the proof of Lemma 5.2 of [22℄. Roughly speaking,one argues as follows: Suppose the events En;T�b ok, En;Tini ok, En;TWords ok, and Bnunique �t hold.Beause of En;Tini ok, InitialPieen(�n;T ) 6= ?. Let  2 InitialPieen(�n;T ). Then, there existwl 2 LeftWordsn(�n;T ) and wr 2 RightWordsn(�n;T ) suh that = wlestimated-blokn(�n;T )wr = wlbloknwr v �j[bnl � 1m; bnr + 1m℄ v �j[�3n; 3n℄for all n suÆiently large. We use  as initial piee for our reonstrution. Sine En;TWords okholds, there exists a word w 2 Wordsn(�n;T ) with the property that the right-most 1m=2�1 letters of w agree with the left-most 1m=2�1 letters of  . This way we an extend  byat least one letter and this extension is a piee of the senery � around blokn. Proeedinglike this, we �nd that Outputn(�n;T ) 6= ? and also that every w 2 Outputn(�n;T ) satis�esw � �j[j � 3 � 3m; j + 3 � 3m℄ with j = bnl or j = bnr depending on whether T = Hnl orT = Hnr . Consequently, the event ��T [Enreon Small℄ holds. For details, we refer the readerto the similar proof of Lemma 5.2 in [22℄.



398 Chapter 9. Finding bloks and other patterns in a random oloring of ZProof of Theorem 9.3.2. By Lemma 9.7.1,P ([��TEnreon Small℄) � P ([En;T�b ok℄) + P (En;T�b ok n En;Tini ok)+P (En;T�b ok n En;TWords ok) + P ([Bnunique �t℄):By Proposition 9.3.2, P ([En;T�b ok℄) � e�11n0:2 for all n � 10. Using the de�nition of theevent En;Tini ok, we see thatP (En;T�b ok n En;Tini ok) � P (estimated-blokn(�n;T ) 6= blokn) + P (blokn 6v �j[�3n; 3n℄) +P �En;T�b ok n�9wl 2 LeftWordsn(�n;T ) 9wr 2 RightWordsn(�n;T ) with wl 6= (wr)$suh that wlbloknwr v �j[bnl � 1m; bnr + 1m℄ �� :Proposition 9.3.1 states that P (estimated-blokn(�n;T ) 6= blokn) � 8e�9n0:3 for all n �7. By Theorem 9.3.1, P (blokn 6v �j[�3n=3; 3n=3℄) � 12e�13n0:3 for all n � 11. Usingsimilar arguments as in the proof of Lemma 5.1 of [22℄ and Setion 5.4 of [22℄, we get thatP �En;T�b ok n�9wl 2 LeftWordsn(�n;T ) 9wr 2 RightWordsn(�n;T ) withwl 6= (wr)$ suh that wlbloknwr v �j[bnl � 1m; bnr + 1m℄�� � e�58n0:2and P (En;T�b ok n En;TWords ok) � e�58n0:2for all n � 59 with onstants 58; 59 > 0. The only di�erene in the two proofs is thatin our situation, SmallAlgn reonstruts around estimated-blokn, whereas in [22℄, thereonstrution is done around a typial piee of senery lose to the origin.Essentially the same arguments as in the proof of Lemma 5.13 of [22℄ show thatP ([Bnunique �t℄) � e�60n0:2for all n suÆiently large. Combining all these estimates, we onludeP ([��TEnreon Small℄) � e�261n0:2for all n � 62 with onstants 61; 62 > 0. In order to make statements about theonditional probability P�([��TEnreon Small℄), we need the following elementary lemma:Lemma 9.7.2 (see e.g. [19℄, Lemma 4.6). Let E be an event and let r � 0. IfP (E) � r2, then P [P (Ej�) > r℄ � r.Applying this lemma, we obtainP �� 2 CZ : P�([��TEnreon Small℄) > e�61n0:2� � e�61n0:2 :This ompletes the proof of Theorem 9.3.2.9.8 More stoppingIn this setion, we prove Proposition 9.3.3.



9.8. More stopping 3999.8.1 De�nitions of eventsWe ollet in alphabetial order de�nitions of events, whih will be needed below.De�nition 9.8.1. We de�neBnblok often := fSj[�n(0); 310�n=3[ visits the set �blokn at least 33�n�1 timesg:De�nition 9.8.2. LetSn(�; �) := ft 2 N0 : SmallAlgn(�j[t; t+ 3bn0:3[) � �j[bnl � 3 � 3bn0:2; bnr + 3 � 3bn0:2℄g:For k � 1, we denote by n(k�1) the kth hitting time whih is � �n(0) of the set �bloknby the random walk. We de�neBnwhen bak reog := f3�2�njfk 2 [1; 32�n℄ : n(2k � 33n) 2 Sn(�; �)j > 1=4g:De�nition 9.8.3. We de�ne Enno error � := f8k � 1 : if �n(k) < 310�n; then jS�n(k)j � 3ng.9.8.2 Proof of Proposition 9.3.3Lemma 9.8.1. Reall the de�nition of Tn (9.3.5). For all n 2 N the following inlusionholds:Enno error � \ fSn \ [�n(0); 310�n � 3bn0:3[� Tng \Bnblok often \ Bnwhen bak reog � En;�stop:Proof. Suppose the events Enno error �, fSn \ [�n(0); 310�n � 3bn0:3[� Tng, Bnblok often, andBnwhen bak reog hold. Beause of Bnblok often, Sj[�n(0); 310�n=3[ visits �blokn at least 33�ntimes. Thus, n(2k � 23n) � 310�n=3 � 310�n � 3bn0:3 for all k 2 [1; 32�n℄; reall thede�nition of n(�) from De�nition 9.8.2 and note that 2(k + 1)33n � 33�n beause � � 5.Sine Bnwhen bak reog holds, at least 32�n=4 � 2�33n+�n of the times n(2k�33n), k 2 [1; 32�n℄,belong to Sn. Using that Sn\[�n(0); 310�n�3bn0:3[� Tn, we onlude that jTnj � 2�33n+�n.Thus �n(k) < 310�n for all k 2 [1; 3�n℄. Beause of Enno error �, we have jS�n(k)j � 3n forall k 2 [1; 3�n℄. Furthermore, j�n(k) � �n(j)j � 2 � 33n for k; j 2 [1; 3�n℄, k 6= j, by thede�nition of the �n(k)'s, and we have shown that En;�stop holds.Lemma 9.8.2. Reall the de�nition of Bnsize blok from De�nition 9.5.8. There exists 63suh that for all n � 63 the following inlusion holds:En�(0) ok \ ���n(0)[Enreon Small℄ \Bnsize blok � fSn \ [�n(0); 310�n � 3bn0:3[� Tng:Proof. Suppose En�(0) ok, ���n(0)[Enreon Small℄, and Bnsize blok hold. For t 2 N0 , we abbreviate n;t := SmallAlgn(�j[t; t + 3bn0:3[). Let t 2 Sn \ [�n(0); 310�n � 3bn0:3[. Then, by thede�nition of Sn,  n;t � �j[bnl � 3 � 3bn0:2; bnr + 3 � 3bn0:2℄ and j n;tj = 6 � 3bn0:2 + 1. SineEn�(0) ok\���n(0)[Enreon Small℄ holds,  n;�n(0) � �j[s�3�3bn0:2; s+3�3bn0:2℄ with s 2 �blokn.Beause of Bnsize blok, we have jbni � sj < 2n for i 2 fl; rg. Consequently,  n;t and  n;�n(0)agree on a subpiee of length � 6 � 3bn0:2 + 1 � 2n � 2 � 3bn0:2 + 1 for all n suÆientlylarge. Consequently, by the de�nition of Tn (9.3.5), we have t 2 Tn.



400 Chapter 9. Finding bloks and other patterns in a random oloring of ZProof of Proposition 9.3.3. Combining Lemmas 9.8.1 and 9.8.2, we obtain for all n � 63�En�(0) ok \ ���n(0)[Enreon Small℄ \ f� 2 �ng� n En;�stop� ��En�(0) ok \���n(0)[Enreon Small℄ \ Bnsize blok� n Enno error �� [ [Bnblok often℄[[Bnsize blok℄ [ [f� 2 �ng nBnwhen bak reog℄:The laim follows from Lemmas 9.8.3, 9.8.4, 9.5.11, and 9.8.5.9.8.3 Probabilisti estimatesLemma 9.8.3. There exists 64 suh that for all n � 64P ��En�(0) ok \ ���n(0)[Enreon Small℄ \Bnsize blok� n Enno error �� � e�n:Proof. For i � 1, we denote by vi the ith time the random walker visits a point in the setZ n [�3n + 3bn0:3; 3n � 3bn0:3℄, and we setBn;iwrong := �9w 2 C [�3bn0:2;3bn0:2℄ suh that w � �j[bnl � 3 � 3bn0:2; bnr + 3 � 3bn0:2℄and w � SmallAlgn(�j[vi; vi + 3bn0:3[) � :Suppose the event �En�(0) ok \ ���n(0)[Enreon Small℄ \ Bnsize size� n Enno error � holds. We laimthat for some i 2 [1; 310�n℄, the event Bn;iwrong holds as well. Beause of [Enno error �℄, thereexists k � 1 suh that �n(k) < 310�n and jS�n(k)j > 3n. Sine the random walk jumps ineah step a distane of 0 or 1, jS�n(k)�3bn0:3j > 3n � 3bn0:3. Thus, �n(k)� 3bn0:3 = vi forsome i � 310�n. Using the de�nition of �n(k), we see that vi 2 Tn. Consequently, thereexists w 2 C [�3bn0:2;3bn0:2℄ suh that w � SmallAlgn(�j[vi; vi + 3bn0:3[) and w �  n with n := SmallAlgn(�j[�n(0); �n(0) + 3bn0:3[). Sine the event En�(0) ok \ ���n(0)[Enreon Small℄holds, we have  n � �j[s � 3 � 3bn0:2; s + 3 � 3bn0:2℄ with s 2 �blokn. Consequently, n � �[bnl � 3 � 3bn0:2; bnr + 3 � 3bn0:2℄. Hene the event Bn;iwrong holds, and we have shownthe following inlusion:�En�(0) ok \���n(0)[Enreon Small℄ \Bnsize blok� n Enno error � � [i2[1;310�n ℄ �En�(0) ok \ Bn;iwrong�:(9.8.1)Let i 2 [1; 310�n℄. By the de�nition of vi, we have S([vi; vi + 3bn0:3[) � Z n [�3n + 2 �3bn0:3; 3n � 2 � 3bn0:3℄. Beause of En�(0) ok, jbnl j; jbnr j � 3n=3. Hene [bnl � 3 � 3bn0:2; bnr +3 � 3bn0:2℄ \ S([vi; vi + 3bn0:3[) = ? for all n suÆiently large. Consequently, beause thesenery is independently olored, �j[bnl � 3 � 3bn0:2; bnr +3 � 3bn0:2℄ and SmallAlgn(�j[vi; vi+3bn0:3[) are independent. The probability that two independent, uniformly f0; 1g-oloredwords in C [�3bn0:2;3bn0:2℄ agree equals 2�2�3bn0:2�1. In �j[bnl � 3 � 3bn0:2; bnr + 3 � 3bn0:2℄ andSmallAlgn(�j[vi; vi + 3bn0:3[), there are at most 2 � 8 � 3bn0:2 words of length 2 � 3bn0:2 + 1if we ount also bakward words. Hene there are � 162 � 32bn0:2 pairs of suh words. Weonlude P� [i2[1;310�n℄ �En�(0) ok \ Bn;iwrong�� � 310�n � 162 � 32bn0:2 � 2�2�3bn0:2�1whih is � e�n for all n suÆiently large beause 2�2�3bn0:2�1 is the leading order term.The laim follows from (9.8.1).



9.8. More stopping 401Lemma 9.8.4. There exist onstants 65; 66; 67 > 0 suh that for all n � 65P ([Bnblok often℄) � 66e�67n0:3 :Proof. Reall the de�nition of Bn;s;tblok enough from De�nition 9.5.2. Let t := 2 � 310�n�1 �4 � 33n. Clearly, bt3=10 � (310�n�1)3=10 � 33�n�1. If En�(0) ok holds, then �n(0) � 2 � 33n.Consequently, �n(0) + t=2 � 310�n, and we obtainEn�(0) ok \ Bn;�n(0);tblok enough� En�(0) ok \ fSj[�n(0); �n(0) + t=2[ visits �blokn � bt3=10 timesg� fSj[�n(0); 310�n[ visits �blokn � 33�n timesg = Bnblok often:Hene, by Theorem 9.3.1 and Lemma 9.5.5,P ([Bnblok often℄) � P ([En�(0) ok℄) + P ([Bn;�n(0);tblok enough℄)� 12e�13n0:3 + 32(310�n�1)�1=30;and the laim follows.Lemma 9.8.5. There exists 68 suh that for all n � 68P (f� 2 �ng nBnwhen bak reog) � [0:9℄32�n :Proof. For k � 1, we set Yk := 1 if n(2k � 33n) 2 Sn and Yk := 0 otherwise. By thede�nition of the n(j)'s, we have n(2(k + 1)33n) � n(2k � 33n) � 2 � 33n > 3bn0:3. Notethat Bnwhen bak reog = f3�2�nP32�nk=1 Yk > 1=4g. By the strong Markov property of therandom walk, Yk, k � 1, are independent, onditioned on �.Suppose � 2 �n. Sine Sn(k) 2 fbnl ; bnr g, it follows from the strong Markov property ofthe random walk that P�(��n(2k�33n)[Enreon Small℄) � e�18n0:2 � 1=2 for all n suÆientlylarge. If the event ��n(2k�23n)[Enreon Small℄ holds, then n(2k � 33n) 2 Sn and onsequently,Yk = 1. Thus, for all n suÆiently large,P�(Yk = 1) � P�(��n(2k�33n)[Enreon Small℄) � 12 :By the exponential Chebyshev inequality applied to the random variable P32�nk=1 Yk, weobtain for � 2 �nP�([Bnwhen bak reog℄) � P�(3�2�n 32�nXk=1 Yk � 1=4) � 32�nYk=1 E�[e1=4�Yk ℄� he1=4 + e�3=42 i32�n � [0:9℄32�n :Consequently,P (f� 2 �ng nBnwhen bak reog) = Zf�2�ng P�([Bnwhen bak reog℄)dP � [0:9℄32�n :
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Chapter 10Markers for error-orruptedobservations SubmittedBy Andrew Hart, Heinrih MatzingerRussel Lyons and Yuval Peres have both posed the question of whether two-olorseneries an be reonstruted when the observations are orrupted by random errors.It has been proved that it is possible to do reonstrution in the ase that the observa-tions are ontaminated with errors and the senery has several olors, provided the errorprobability is small enough. However, the reonstrution problem is more diÆult withfewer olors. Although the senery reonstrution problem for two- olor seneries fromerror- free observations has been solved, the reonstrution of two-olor seneries fromerror-orrupted observations remains an open problem. In this paper, we solve one ofthe two remaining problems needed in order to reonstrut 2-olor seneries when theobservations are orrupted with random errors.Keywords: Senery reonstrution, senery distinguishing, large deviations.2000 MSC: 60K37, 60G50.10.1 IntrodutionWe all � a senery if it is a oloring of the integers � : Z 7! f1; 2; : : : ; Cg where Cis the number of olors. Let fStgt�0 be a reurrent random walk on the integers. Weall �t := �(St) the observation made of the senery by the random walk at time t. Arealization of the proess � := f�tgt�0 is alled the \observation".The senery reonstrution problem an be formulated as follows: If we do notknow the senery � but are only given one path realization of �, an we almost surelyreover �? In other words, does one path realization of the proess f�tgt�0 determine �a.s.? We should point out that it is only possible to reonstrut seneries up to shift andreetion in general. Thus the senery reonstrution problem is the problem of tryingto reonstrut � up to shift and reetion given only one realization of �. A result of405



406 Chapter 10. Markers for error-orrupted observationsLindenstrauss [14℄ implies that there exists an unountable number of seneries whihannot be reonstruted. Fortunately, these unreonstrutable seneries are in a ertainsense \untypial". So, in general we take the senery to be generated by a random proesswhih is independent of the random walk and then show that almost every senery anbe reonstruted a.s. up to shift and reetion from a single realization of �.Let f�tgt�0 be an i.i.d. sequene of Bernoulli random variables whih is independentof � and S. Here, �t represents a possible error in the observation at time t. Let ~� denotethe observations � orrupted by the errors �. We assume that �t = 0 if and only if �t = ~�t.The senery reonstrution problem with errors an now be formulated as follows: Tryto reonstrut � a.s. up to shift and reetion when you are only given one realizationof ~�. In the ase that the senery has many olors and the error probability is small, theproblem was solved by Rolles and Matzinger in [25℄. In this artile, we show how we anonstrut markers and stopping times telling us when the random walk is bak at themarkers, despite the errors. The method we use is di�erent from that used to deal withthe non-error orrupted ase. This solves one of the two remaining problems for seneryreonstrution with 2 olors and errors in the observations.Senery reonstrution is losely related to the senery distinguishing problem. Wegive a brief aount. Let �a and �b be two non-equivalent seneries whih are known tous. Assume that the senery � is either equal to �a or �b but we don't know whih. Ifwe are only given one realization of the observation proess � of the senery � by therandom walk S, an we almost surely determine if � is equal to �a or if it is equal to�b? If so, we say the seneries �a and �b are distinguishable. Kesten and Benjamini [1℄showed that almost every pair of seneries is distinguishable, even in the two-dimensionalase and with only 2 olors. To do this, they took �a to be any non-random senery and�b to be an i.i.d. senery with two olors. Earlier, Howard [8℄ showed that any pair ofperiodi, non-equivalent seneries are distinguishable, as well as periodi seneries with asingle defet [7℄.The problem of distinguishing two seneries whih di�er at only one point is alleddeteting a single defet in a senery. Kesten [11℄ was able to show that one an a.s. detetsingle defets in the ase of four olor seneries. A question Kesten raised onerning thedetetion of defets in seneries lead Matzinger [23, 24, 22℄ to investigate the seneryreonstrution problem.As with senery reonstrution, there is a version of the senery distinguishing problemwith observations that are orrupted. One again, the senery � is either equal to �a or�b, both of whih are known to us. However, the observations are now orrupted throughan error proess f�tgt�0, whih is assumed to be a sequene of i.i.d. Bernoulli randomvariables with parameter stritly smaller than 1=2. The observations with errors f~�tgt�0are suh that ~�t = �t if and only if �t = 0. Knowing �a and �b, an we deide a.s. if � = �aor if � = �b based on one path realization of the proess ~�? This onstitutes the senerydistinguishing problem in the ase of error- orrupted observations. The subjet of thisartile is losely related to a random oin tossing problem whih was �rst investigated byHarris and Keane in [6℄ and later by Levin, Pemantle and Peres in [21℄. The oin tossingproblem of Harris and Keane an be desribed as follows:Let X1; X2; : : : denote a sequene of Bernoulli variables where Xk is the result of thek-th oin toss. We onsider two ways of doing this.� The �rst method is to toss an unbiased oin independently eah time. In this ase



10.1. Introdution 407the variables Xk are a sequene of i.i.d. Bernoulli random variables with parameter1=2.� Let �1; �2; : : : denote a sequene of return times of a random walk to the origin. Wetoss fair oins independently at all times exept at the times �k, at whih we toss abiased oin with �xed bias ! instead.The problem investigated by Harris and Keane in [6℄ and later by Levin, Pemantleand Peres in [21℄ an now be desribed as follows: If we are only given one realization ofthe proess fXkgk�0, but do not know if it was generated by mehanism 1 or 2, an wedetermine a.s. from whih of the two proesses the observation omes? Harris and Keanewere able to show that, depending on the �niteness of the moments of the stopping times,we may or may not be able to dedue the method used to generate the observed sequene.Later, Levin, Pemantle and Peres were able to show that there is a phase transitiondepending on the size of the bias. Furthermore, they were also able to solve the problemin the ase where the stopping times halt a random walk at a �nite number of pointsinstead of just at the origin.It is evident that the Harris-Keane oin tossing problem an be viewed as a senerydistinguishing problem with errors. In partiular, take �a as the senery whih is every-where equal to zero, and �b as the senery whih is zero everywhere exept at the origin.In the ase studied by Levin, Pemantle and Peres [21℄, set the senery �a � 0 and �b tobe zero everywhere exept at a �nite number of points.There is an exellent overview of senery reonstrution and senery distinguishingby Kesten [12℄. Senery distinguishing and reonstrution belongs to the general areaof probability theory whih deals with the ergodi properties of observations made by arandom proess in a random media. An important related problem is the T; T�1 prob-lem studied by Kalikow [9℄. Several important ontributions about the properties of theobservations were made later. these inlude Keane and den Hollander [10℄, den Hollan-der [2℄,den Hollander and Steif [3℄, Heiklen, Ho�man and Rudolph [5℄, and Levin andPeres [20℄. Interest in the senery distinguishing problem was sparked when Keane andden Hollander, as well as Benjamin, asked if all non-equivalent seneries ould be distin-guished. Indentures was able to prove that there exist pairs of seneries whih an not bedistinguished [14℄. After Matzinger showed the validity of senery reonstrution in thesimple ase of error-free observations made by a one-dimensional random walk withoutjumps (see [24, 23℄), Kesten notied that Matzingers method was inadequate to solvethe reonstrution problem in the 2-dimensional ase, as well as in the ase when therandom walk is allowed to jump. Subsequently, Loewe and Matzinger [16℄ were able toprove that senery reonstrution is also possible on two-dimensional seneries with manyolors. Later, Matzinger, Merkl and Loewe [18℄ proved that with enough olors in onedimension one an do reonstrution even if the random walk is allowed to jump and thusis not a simple random walk. In general, senery reonstrution beomes more diÆult asthe number of olors dereases (exept in the trivial ase when there is only one olor).The most diÆult ase of reonstrution from observations made by a random walk withjumps on two-olor seneries was solved by Lember and Matzinger [17℄. Den Hollanderasked if it would be possible to do reonstrution if the jumps made by the random walkare not bounded. Lember, Lenstra and Matzinger [15℄ were able to answer this question.Finally, following a question of den Hollander, Loewe and Matzinger [19℄ investigated thepossibility of reonstruting seneries that are not i.i.d. but have some orrelation. The



408 Chapter 10. Markers for error-orrupted observationspossibility to reonstrut �nite piees of seneries in polynomial time following a questionof Benjamini was investigated by Rolles and Matzinger [26℄ and [25℄.In this artile, we study one of the ruial tehniques for �nding markers used insenery reonstrution and show that one an still onstrut and use markers when theobservations are error- orrupted.The paper is organized as follows. In Setion 10.2, we onsider a simpli�ed examplewithout errors. We show how in this simpli�ed ase, markers an be onstruted andused for senery reonstrution. Sine many senery reonstrution methods are veryompliated, it seems worthwhile to present this simple ase. In addition, it also serves asmotivation, demonstrating the usefulness of markers. The following setions are onernedwith how to de�ne markers in the ontext of error-orrupted observations and onstrutstopping times that tell us when the random walk has returned to suh a marker. InSetion 10.3, we onsider the likelihood of a marker being present in the senery, giventhat some tell- tale event has ourred in the error-infested observation proess. In Setion10.4, we show how to onstrut a multitude of stopping times whih tell us when therandom walk has returned to the loation of a marker. It is assumed that there is amarker lose to the random walk's starting state. Finally, in Setion 10.5, we show howto �nd a Marker for the �rst time and then onstrut a series of stopping times whih tellus when the random walk returns to that marker.10.2 An Example of Senery Reonstrution Using aSingle MarkerIn this setion, we shall illustrate the use of markers in senery reonstrution. Let usmake some speial assumptions whih will only apply within this setion:� The senery � : Z! f0; 1; 2g is a 3-olor senery, with olors from the set f0; 1; 2g.� The origin is olored with olor 2: �(0) = 2.� �1; ��1; �2; ��2; �3; ��3; : : : is a sequene of i.i.d. Bernoulli variables with parameter1=2. This means that, exepting the origin, the senery � is a two olor-senery.� The random walk fStgt2N is a simple random walk starting at the origin.The only plae where there is a 2 in the senery is the origin. We an use this \2" asa \marker": Every time we see a 2 in the observations, we are at the origin. This implies:�t = 2 =) St = 0:Let �k be the time of the k-th visit of S to the origin. Note that �k is observable sine itis also the k-th time we observe a 2 in �:�k := minft 2 N j �t = 2; t > �k�1g; k � 1:By onvention, we set �0 := 0. Consider the following sequene of binary words:w1 = 001100; w2 = 0011001100; w3 = 00110011001100; : : :



10.2. An Example of Senery Reonstrution Using a Single Marker 409Sine the senery � is i.i.d., every �nite pattern will our in � in�nitely often. Hene allthe strings wk will our in � in�nitely often. Let xk denote the losest plae to the originwhere wk ours in the senery. (If there be two suh plaes, hoose the one to the rightof the origin.) Hene xk is a point z minimizing jzj under the following onstraint:1. If z > 0, then �z�z+1 : : : �z+4k+1 = wk:2. If z < 0, then �z�z�1 : : : �z�4k�1 = wk:It is easy to see that the only way the string wk an appear in the observations � is bywalking in a straight line over a portion of the senery where wk appears. In other words,we observe the word wk at time t, that is,�t�t+1 : : : �t+4k+1 = wk;if and only if, for all i = 0; : : : ; i+ 4k + 1, we haveSt+i = St + iuand �St�St+u : : : �St+4ku+u = wk;where u = �1.Almost surely, we have that limk!1 jxkj =1and on both sides of the origin there are in�nitely many points from the sequene xk; k 2N . The shortest time after a 2 at whih we an observe the word wk is xk. It takes therandom walk jxkj steps to go from the origin to xk in minimal time. When doing so, therandom walk must walk in a straight line only taking steps towards xk. Whenever therandom walk travels in a straight line, it produes a opy of the portion of the senerywhih it has traversed. This opy is manifest and plain to see in the observations. Therandom walk goes from the origin to xk in�nitely often in the shortest possible time. Thisimplies that when we observe 2 at time t followed by wk at time t + jxkj, then we havea opy of �0�u�2u : : : �xk in the observations �. Here, we take u = xk= jxkj. Hene we anreonstrut �0�u�2u : : : �xk (10.2.1)using the following algorithm:Algorithm 10.2.1. 1. Let �s denote the �rst time we observe the word wk after time�s: �s := minft > �s j wk = �t�t+1 : : : �t+4k+1g:2. Let dk denote the minimum time at whih we an observe the �nite string wk aftera 2: dk := minf�s � �s j s 2 Ng:



410 Chapter 10. Markers for error-orrupted observations3. Let s� denote any s minimizing �s � �s. In other words, s� is suh that�s� � �s� = dk:4. The output of our algorithm is ��s���s�+1 : : : ��s� (10.2.2)For the reasons explained above, the output of the above algorithm is equal to thepiee of the senery loated between the origin and xk inlusive with probability one. Thisshould demonstrate the usefulness of markers in senery reonstrution.10.3 Existene of a MarkerIn this setion, we take the senery � : Z! f0; 1g to be a two-olor i.i.d. senery. Thus, itis a realization of the proess f�zgz2Z where the �z's are i.i.d. Bernoulli random variableswith parameter 1=2.As before, the observation of the senery � by the random walk S at time t is denotedby �t := �(St). We assume that the errors are i.i.d. with the probability P (�t = 1) = � ofan error at time t being stritly smaller than 1=2. Then, the error-orrupted observation~�t at time t is given by ~�t := (�t + �t) mod 2:We write � = (�0; �1; : : :) for the error-free observations and ~� := (~�0; ~�1; : : :) for theerror-orrupted observations. The senery �, the random walk S and the error proessf�tgt2N are all assumed to be independent of eah other.For ompleteness, the following list details all the assumptions we make in this setion.� Let S = fStgt�0 be a reurrent random walk on Z starting at the origin whih anvisit any point z 2 Z with positive probability. This means that for every z 2 Zthere exists tz � 0 suh that P (Stz = z) > 0.� The distribution of the inrements of the random walk S has bounded support.That is there exists L > 0 suh thatP (jSt+1 � Stj � L) = 1:� The proess � = f�zgz2Z is suh that the �k's are i.i.d. Bernoulli variables withparameter 1=2.� The errors �t, for t � 0, are i.i.d. Bernoulli variables with parameter � = P (�t = 1)stritly smaller than 1=2. Here � denotes the probability of an error.� The three proesses �, S and � = f�tgt�0 are independent of eah other.Next we need to de�ne a few events. Firstly, de�neAn := ( n2Xt=0 ~�t � �n2) :



10.3. Existene of a Marker 411Let Bn be the event that there exists a ontiguous blok of zeros in � of length greaterthan n0:1 in the interval [�Ln2; Ln2℄. More preisely,Bn := � 9z 2 [�Ln2; Ln2�n0:1℄ suh that�z = �z+1 = : : : = �(z+n0:1) = 0 �Let Cn be the event that the error-free observation proess reveals more than n1:7 1's inthe �rst n2 observations: Cn := ( n2Xt=0 �t � n1:7) :We shall denote the omplement of an event E by E?. Next, let us present the mainresult of this setion.Theorem 10.3.1. For n large enough,P (Bn? j An) � exp ��(1� 2�)2n1:4=3� :Hene, P (Bn j An)! 1 as n!1.Theorem 10.3.1 says that if in the �rst n2 error-orrupted observations we observe asigni�antly low number of 1's, then with very high probability there is a ontiguous blokof zero's of length n0:1 very lose to the origin in the senery �. This unbroken blok ofzeros will be used in the next setion as a marker to tell us when the random walk is baknear the origin.To prove Theorem 10.3.1, we will need a number of lemmas. The �rst two of thesewill be used numerous times throughout this and the following setion. Let us start witha large deviation result.Lemma 10.3.1. Let � > 0. Let X1; X2; : : : be a sequene of zero-mean random variablessuh that fStgt�0 is a Martingale, where S0 = 0 and St = Pti=1Xi for t � 1. Assumefurthermore that the random variables all have bounded range, that is, for some a > 0,jXij � a for all i = 1; 2; : : :. Then, for all k � 1,P  Pki=1Xik � �! � exp��k�22a2 � : (10.3.1)Proof. From Chernov's inequality, we haveP  Pki=1Xik � �!=Bell OK(n)[1Sk�k�℄�Bell OK(n)[exp(�Sk � �k�)℄; for all � > 0;=exp(��k�)Bell OK(n)[exp(�Sk)℄:Then, an appliation of the Azuma-Hoe�ding lemma yieldsP  Pki=1Xik � �! � exp(��k�) exp(k�2a2=2) = exp(��k�+ k�2a2=2):The right-hand side of this �nal expression obtains its optimal (minimum) value at � =�=a2. Substituting � = �=a2 into the equation yields the desired result.



412 Chapter 10. Markers for error-orrupted observationsLemma 10.3.2. Let S := fStgt�0 be a random walk with bounded jumps whih starts atthe origin. Then:1. There exists a onstant C 0 > 0 suh thatP ( max0�t�n2 jStj � n) � C 0for all n � 0.2. As n!1, P ( max0�t�n2� jStj � n)! 1;for any 0 <  < 2).Proof. 1. De�ne Zk := fZk(s)gs�0 where Zk(s) := 1kSsk2 and let W := fWtgt�0 denotea Brownian motion. Then, by the invariane priniple, Zn D! W as n ! 1. Inpartiular, Zn(s) D!Ws and somax0�t�n2 ����Stn ���� = maxs=0;1=n2;2=n2;:::;1 jZn(s)j D! max0�s�1 jWsjas n!1. Thus,P ( max0�t�n2 jStj � n)! P (max0�s�1 jWsj � 1) = P ( [�1;1℄ > 1) > 0;where  [�1;1℄ is the �rst exit time of the Brownian motionW from the interval [�1; 1℄.The positivity of P ( [�1;1℄ > 1) may be dedued from the analyti expressionP ( [�1;1℄ 2 dt) = 2p2�t3 1Xn=�1(4n+ 1)e� (4n+1)22t dt;whih is a speial ase of an expression derived in [?℄.Thus, sine P (max0�t�n2 jStj � n) > 0 for all n, it follows that there exists C 0 > 0suh that P (max0�t�n2 jStj � n) � C 0 for all n � 0.2. As we are assuming that S has i.i.d. inrements, let �2 denote the variane of aninrement. Then, applying the Kolmogorov inequality (for example, see Chapter14.6 of [27℄), we have P ( max0�t�n2� jStj � n)=1� P ( max0�t�n2� jStj � n+ 1)�1� n2��2(n + 1)2 � 1� �2n� ! 1;as n!1.



10.3. Existene of a Marker 413Lemma 10.3.3. there exists a onstant  > 0 not depending on n suh that, for all n � 0,P (An) � �14�n : (10.3.2)Proof. Let Dn and En be events de�ned as follows:Dn :=f8z 2 [�n; n℄; �z = 0g andEn :=f8t 2 [0; n2℄; St 2 [�n; n℄g:By Part 1 of Lemma 10.3.2, we know that there exists a onstant 0 > 0, not dependingon n, suh that P (En) � 0. Furthermore, P (Dn) = (1=2)2n+1. Sine, onditional onDn \En, Pn2t=1 ~�t =Pn2t=1 �t � Bin(n2; �), we see that P (An j Dn \En) > 0 for all n � 0.Furthermore, by the entral limit theorem, P (An j Dn \ En) �! 12 as n ! 1. Thus,there exists 00 > 0 suh that P (An j Dn \ En) � 00 for all n. Consequently,P (An) � 00P (Dn \ En) = 00P (Dn)P (En) � �12�2n ;where  = 000=2.Lemma 10.3.4. P (An j Cn) � exp��(1� 2�)2n1:42 � (10.3.3)for all n � 1.Proof. Let Z and ~Z denote the sums Z := n2Xt=0 �tand ~Z := n2Xt=0 ~�t:Conditional on �t = 1, ~�t has expetation 1 � � whilst onditional on �t = 0, ~�t hasexpetation �. Thus, ~Z onditional on Z, has the same distribution as the sum of n2independent Bernoulli variables where Z of them have expetation 1 � � and the othern2 � Z have expetation �. It follows that the onditional expetation of ~Z given Z isBell OK(n)[ ~Z j Z℄ = n2� + (1� 2�)Z. Now,P (An j Z) = P ( ~Z � �n2 j Z) = P  ~Z � (�n2 + (1� 2�)Z)n2 � �(1� 2�)Zn2 Z! :(10.3.4)Sine, onditional on Z, ~Z is distributed like a sum of n2 independent Bernoulli variables,it follows that we an apply Lemma 12.2.1. Taking k = n2, a = 1 and � = (1� 2�)Z=n2,we �nd that the expression on the right-hand side of (10.3.4) is bounded byexp��(1� 2�)2Z22n2 � :



414 Chapter 10. Markers for error-orrupted observationsHene, when Z � n1:7 is assumed given, we obtainP (An j Cn) = P (An j Z � n1:7) � exp��(1� 2�)2n1:42 �and the proof is omplete.Next, we de�ne qnx;y to be the probability that the random walk S visits the point xor y before time n0:21: qnx;y := P �9t � n0:21; St 2 fx; yg� :Let qn denote the minimum qn := min(x;y)2Gn qnx;y;where Gn := f(x; y) 2 [�n0:1; n0:1℄2 x < 0 < yg. The following lemma will be needed toprove Lemma 10.3.6.Lemma 10.3.5. limn!1 qn = 1.Proof. Let n be large and hoose two points x; y 2 [�n0:1; n0:1℄ suh that x < 0 < y. Also,let Ix and Iy denote the intervals Ix := [x�L; x+L℄ and Iy := [y�L; y+L℄ respetively.Then, we de�ne �xy to be the time of the �rst visit by S to Ix [ Iy and use Exy to denotethe event that S visits x or y before time n0:21:Exy := �9t � n0:21; St 2 fx; yg	 :Further, let Ena;xy denote the event that, within time n0:2 of the stopping time �xy,the random walk visits all the points in a neighborhood of radius L of the point S�xy .Hene, Ena;xy denotes the event that for all z satisfying ��z � S�xy�� � L, there exists t 2[�xy; �xy + n0:2℄ suh that St = z.Lastly, de�ne Enb to be the event that the random walk S is outside the interval[�n0:1; n0:1℄ at time t = n0:205:Enb := �Sn0:205 =2 [�n0:1; n0:1℄	 :Sine the random walk S starts at the origin, it must ross (but not neessarily hit)either x or y before leaving the interval [�n0:1; n0:1℄. Sine the step lengths of S arebounded by L, the random walk must visit either Ix or Iy in order to exit the interval[�n0:1; n0:1℄. Hene, when Enb holds, we have�xy � n0:205: (10.3.5)Now, whenever (10.3.5) and Ena;xy hold, the set fx; yg will be visited before timen0:205 + n0:2. For n large enough, n0:205 + n0:2 < n0:21. Hene,Ena;xy \ Enb � Enxy;for any (x; y) 2 Gn. This implies thatP (En?xy ) � P (En?a;xy) + P (En?b ):



10.3. Existene of a Marker 415Next, let Ena denote the event that the random walk visits all the points in [�L; L℄before time n0:2. By the strong Markov property of S, we see that P (En?a;xy) = P (En?a )and hene we obtain P (En?xy ) � P (En?a ) + P (En?b ): (10.3.6)Note that the bound on the right side does not depend on either x or y and that (10.3.6)holds for all (x; y) 2 Gn. Therefore,qn = minx;y P (Enxy) � 1� P (En?a ) + P (En?b ): (10.3.7)Now, by the entral limit theorem, we havelimn!1P (En?b ) = 0: (10.3.8)Also, by the assumption that S is reurrent and hene has positive probability of visitingall points in Z, we �nd that P (E1a ) = 1. Then, by ontinuity of probability,limn!1P (Ena ) = P (E1a ) = 1: (10.3.9)Then, by applying (10.3.8) and (10.3.9) to (10.3.7), we onlude thatlimn!1 qn = 1:Lemma 10.3.6. For suÆiently large n,P (Cn? j Bn?) � exp(�n1:79=8): (10.3.10)Proof. We begin by de�ning Bernoulli variables fYkgk�1 in the following way:Yk = 1Pkn0:21t=(k�1)n0:21 �t�1 = 19t2[(k�1)n0:21 ;kn0:21℄ suh that �t=1:Clearly, Yk �Pkn0:21t=(k�1)n0:21 �t and n1:79Xk=1 Yk � n2Xt=0 �t:Thus, Cn? = f n2Xt=1 �t < n1:7g � fn1:79Xk=1 Yk < n1:7gand P (Cn? j Bn?) � P (n1:79Xk=1 Yk < n1:7 j Bn?): (10.3.11)Let F := Sk=11Fk be the �-algebra de�ned by the �ltration fFkgk�1, whereFk := �(St; �z j t � kn0:21; z 2 Z):



416 Chapter 10. Markers for error-orrupted observationsThe sequene fYkgk2N is F -adapted. Furthermore,Mk =Pki=1(Yi�Bell OK(n)[Yi j Fi�1℄)is a Martingale with respet to fFkgk�1.Starting from the origin, the random walk S takes steps with lengths bounded by L.This implies that S stays in the set [�Ln0:21; Ln0:21℄ during the time interval [0; n0:21℄.When the event Bn? holds, there exists , for every point z 2 [�Ln0:21; Ln0:21℄, two randompoints x� and y� suh that z � n0:1 < x� < z < y� < z + n0:1 with �x� = �y� = 1. Bythe strong Markov property, given that the random walk is at z at time t, the probabilityof visiting x or y during the time interval (t; t + n0:21℄ is equal to qnx��z;y��z. Hene thisprobability is larger than qn. In this ase the onditional probability that we observeat least one 1 in � during the time interval [t; t + n0:21℄ is larger than or equal to qn.(Conditional on Bn? and St, where St 2 [�Ln0:21; Ln0:21℄.) This means that, when theevent Bn? holds, thenP (Yk = 1 j Fk�1) = Bell OK(n)[Yk j Fk�1℄ � qn;for all 1 � k � n1:79. Sine limn!1 qn = 1by Lemma 10.3.5, we an assume that n is large enough so that qn > 3=4. Thus,Bell OK(n)[Yk j Fk�1℄ � 34 (10.3.12)for n large enough when Bn? holds and k � n1:79. Beause of (10.3.12) and sine Bn? isF0-measurable, we �ndP  n1:79Xk=1 Yk < n1:7 j Bn?! � P  Pn1:79k=1 (Yk � Bell OK(n)[Yk j Fk�1℄)n1:79 < n1:7n1:79 � 34 Bn?!(10.3.13)for large n. Sine fMkgk�0 onstitutes a Martingale with respet to the �ltration fFkgk�0and sine Bn? is F0- measurable, Mk remains a Martingale when we ondition on Bn?.Therefore, we an apply Lemma 12.2.1 to bound the probability on the right side of(10.3.13). For this we take a = 1 and k = n1:79. For n large enough we have thatn�0:09 � 34 < �12 , whih allows us to take the value 12 for the � of lemma 12.2.1. In thisway we �nd that the right side of (10.3.13) is smaller than exp(�n1:79=8). Combininginequalities (10.3.11) and (10.3.13) with this bound ompletes the proof.Lemma 10.3.7. For n suÆiently large,P (An j Bn?) � 3 exp��(1� 2�)2n1:42 � : (10.3.14)Proof. We have P (An j Bn?) = P �(An \ Cn) [ (An \ Cn?) j Bn?�=P (An \ Cn j Bn?) + P (An \ Cn? j Bn?)�P (An j Cn)P (Bn?)�1 + P (Cn? j Bn?):



10.3. Existene of a Marker 417Note that for n large, P (Bn?) is lose to one. Thus, let us assume that P (Bn?) > 1=2.With this assumption we obtainP (An j Bn?) � 2P (An j Cn) + P (Cn? j Bn?):We an now apply the bounds from inequalities (10.3.3) and (10.3.10) to the right-hand side of this last inequality. Note that the �rst of these two bounds is muh largerthan the seond. We therefore �nd that P (An j Bn?) is smaller than 3 times the largerbound, provided that n is large enough. In other words,P (An j Bn?) � 3 exp��(1� 2�)2n1:42 �for large n. This ompletes the proof.We an now prove Theorem 10.3.1.Proof of Theorem 10.3.1. We haveP (Bn? j An) = P (An j Bn?) � P (Bn?)P (An) � P (An j Bn?)P (An) : (10.3.15)Applying inequalities (10.3.2) and (10.3.14) to this expression, we obtainP (Bn? j An) � 3 exp (�(1� 2�)2n1:4=2)(1=4)n = exp ��(1� 2�)2n1:4=2 + n ln 4 + ln(3=)�for n suÆiently large. In the expression �(1�2�)2n1:4=2+n ln 4+ln(3=), the dominatingterm is the �rst. This implies that for n large enough, �(1� 2�)2n1:4=2 + n ln 4 + ln(3=)is smaller than �(1� 2�)2n1:4=3. This in turn implies thatP (Bn? j An) � exp ��(1� 2�)2n1:4=3�for large n and this yields the desired result. �We onlude this setion with a lemma that will be useful in the next setion.Lemma 10.3.8. For n large, P (An) � 2Ln2�12�n0:1 :Proof. Let Bnz denote the event that there is a ontiguous blok of zeros in the senerybetween z and z + n0:1 inlusive:Bnz := f�z = �z+1 = : : : = �z+n0:1 = 0g :Sine the senery is generated by i.i.d. Bernoulli random variables, P (Bnz ) = (1=2)n0:1+1.Furthermore, with this de�nition, Bn = Sz Bnz ; where the union is taken over z in[�Ln2; Ln2 � n0:1℄. The length of this interval is smaller than 2Ln2. Thus we see thatP (Bn) �Xz P (Bnz ) � 2Ln2 �12�n0:1+1 : (10.3.16)



418 Chapter 10. Markers for error-orrupted observationsNow,P (An) = P (An j Bn?)P (Bn?) + P (An j Bn)P (Bn) � P (An j Bn?) + P (Bn) (10.3.17)We an bound P (AnjBn?) using the inequality (10.3.14) and P (Bn) with the aid of(10.3.16). The bound given on the right-hand side of (10.3.16) is asymptotially muhlarger than that given in (10.3.14). Thus, for large enough n, we an bound (10.3.17) bytwie the larger of the two bounds and obtainP (An) � 2Ln2�12�n0:1 :
10.4 Returning to a MarkerThe main result of the last setion states that, given that we observe a signi�antly lownumber of 1's in the �rst n2 error-orrupted observations (the event An), there is a highprobability that the senery � has a ontiguous blok of n0:1 or more zeros in the interval[�Ln2; Ln2℄. In the ontext of seneries observed with errors, we shall all suh a blok amarker.In this setion we shall prove that, by only looking at the observations ~�, we antell exp(n0:001) times with high probability when the random walk is bak at the marker.More preisely, we shall show that we an onstrut exp(n0:001) stopping times, whih areobservable, that is, �(~�) measurable, and will stop the random walk lose to the markerin the interval [�2Ln2; 2Ln2℄. Of ourse, we need to make the assumption that there issuh a marker in the interval [�Ln2; Ln2℄. In order to do this, we will assume that theprobability distribution governing our whole world of senery, random walk and errors hasproperties similar to the measure we obtain by taking the distribution used in the previoussetion onditional on the event Bn. To simplify notation, we do not use P (� j Bn), buta measure P2(�) having very similar properties to P (� j Bn) instead. Through out thissetion, P2(�) denotes a measure whih satis�es the following onditions:� The random walk S and the senery � are independent of eah other.� The random walk S has the same distribution under P2(�) as it had in the previoussetion. Moreover, it starts at the origin.� The senery outside the interval [�Ln2; Ln2℄ is i.i.d. Bernoulli with parameter 1=2.� The portion of the senery inside the interval [�Ln2; Ln2℄ is independent of theremainder outside the interval.� The senery � P2-almost surely ontains a ontiguous blok of zeros longer than n0:1in [�Ln2; Ln2℄. We require thatP2 �9z 2 [�Ln2; Ln2 � n0:1℄ suh that �z = �z+1 = : : : = �z+n0:1 = 0� = 1:



10.4. Returning to a Marker 419� The errors under P2(�) are distributed as before and are independent of the randomwalk and the senery. In other words, the proess f�tgt�0 is P2- independent offStgt�0 and f�zgz2Z. Also, P2(�t = 1) = �. One again, for all t 2 N ,�t := �(St) and ~�t := �t + �t mod 2:Next, we de�ne an inreasing set of stopping times that are supposed to tell us whenthe random walk S is bak lose to the origin.De�nition 10.4.1. Let T denote the random integer setT := (t � 0 : t+n0:1Xs=t ~�s � �n0:1) :For k > 0, let �k denote the k-th element (under the usual ordering on N) of the set T .We an now state the prinipal result of this setion. It says that, with high P2-probability, all of the �rst exp(n0:001) stopping times �k stop the random walk in theinterval [�2Ln2; 2Ln2℄ near a ontiguous blok of more than n0:1 zeros. Furthermore,it also says that these stopping times all our prior to time exp(n0:003) with high P2-probability.Theorem 10.4.1. For large n,P2 �8k � exp(n0:001); S�k 2 [�2Ln2; 2Ln2℄ and �exp(n0:001) � exp(n0:003)��1� 3 exp(�n0:003=4):Before ontinuing, we shall de�ne a few useful intervals and a number of events thatwe shall need in the sequel.In1 := [�Ln2; Ln2℄; In2 := [�1:5Ln2; 1:5Ln2℄;In3 := [�2Ln2; 2Ln2℄; In4 := [�Ln2; Ln2 � n0:1℄;In5 := [�Ln2 � n0:005; Ln2℄; In6 := [�Ln2 + n0:1=2; Ln2 � n0:1=2℄;In7 := [�L exp(n0:003); L exp(n0:003)℄:The �rst event Enno�error says that we never see a signi�antly low average of 1's in theobservations up to time t = exp(n0:003) when we are outside In2 .Enno�error := (t+n0:1Xs=t ~�s > �n0:1; 8t � exp(n0:003) suh that St =2 In2) :We know that under P2(�) there is a blok of olor zero having length n0:1 in In1 withprobability one. Let z denote the enter of suh a blok. Thus, z 2 In6 P2-almost surelyand P2(�z = 0; 8z 2 [z � n0:1=2; z + n0:1=2℄) = 1:Note that, by assumption, z is P2-independent of fStgt�0 and f�tgt�0. Let ��l denote thel-th visit by S to the point z. Let �k denote the l = kn0:1-th stopping time ��l . Morepreisely, �k := ��kn0:1; k 2 N :



420 Chapter 10. Markers for error-orrupted observationsWe de�ne the stopping times �k in this way to ensure they are separated by time periodsof length at least n0:1.Let Envisits denote the event that there are more than exp(n0:002) visits to z before timeexp(n0:003): Envisits := ��exp(n0:002) � exp(n0:003)	 :Let Yk denote the Bernoulli variable whih is equal to one if and only if�k+n0:1Xs=�k ~�s � �n0:1:Let Enmarker�works denote the event that we observe a signi�antly low number of onesmore than 1=3 of the time after a stopping time �k; k � exp(n0:002):Enmarker�works := 8<:exp(n0:002)Xk=1 Yk � exp(n0:002)3 9=; :The �nal event we shall need is EnOK whih is the event that our stopping times workthe way we want, that is,EnOK := �8k � exp(n0:001); S�k 2 In3 and �exp(n0:001) � exp(n0:003)	 :With these de�nitions, we are ready to formulate the four intermediate results whihwe will need in order to prove Theorem 10.4.1. The �rst lemma is of a ombinatorialnature.Lemma 10.4.1. For n suÆiently large, Enno�error \ Envisits \ Enmarker�works � EnOK.Proof. When it ours, the event Enno�error guaranties that all the stopping times in T upto time exp(n0:003) stop the random walk inside the interval In2 . Sine In2 � in3 , Enno�errorimplies that S�k 2 In3 for all �k � exp(n0:003):Next, ifEnvisits and Enmarker�works both hold, then there are at least exp(n0:002)=3 stoppingtimes in T whih our prior to time exp(n0:003). In other words,�exp(n0:002)=3 � exp(n0:003):Now, when n is suÆiently large, n0:001 � n0:002=3 and so�exp(n0:001) � exp(n0:003):Consequently, the simultaneous ourrene of both Envisits and Enmarker�works implies that�k � exp(n0:003) for all k � exp(n0:001) when n is large.Finally, if Enno�error holds in addition to Envisits and Enmarker�works, then we also see thatS�k 2 In3 for all k � exp(n0:001). Thus, when all three eventsEnno�error; Envisits and Enmarker�worksour simultaneously, then EnOK must also our.



10.4. Returning to a Marker 421The next three results yield lower bounds on the quantities P2(Enno�error), P2(Envisits)and P2(Enmarker�works).Lemma 10.4.2. For n large,P2(Enno�error) � 1� (0:6)n0:005 : (10.4.1)Proof. Let �z;l denote the time of the l-th visit by the random walk S to the point z. LetEnno�error;z;l denote the event that there is no signi�antly low number of ones immediatelyfollowing the stopping time �z;l, that is,Enno�error;z;l := 8<:�z;l+n0:1Xs=�z;l ~�s > �n0:1 9=; :Up to time t = exp(n0:003), the random walk an not visit points z further away from theorigin than L exp(n0:003) nor an it visit a point more than exp(n0:003) times. Thus, allthe times whih appear in the de�nition of the event Enno�error, that is all the times t forwhih t � exp(n0:003) and St =2 In2 inlude the set of times �z;l for whih z 2 (In7 n In2 ) andl � exp(n0:003). This implies that\z;l Enno�error;z;l � Enno�error; (10.4.2)where the intersetion is taken over all z 2 (In7 � In2 ) and l � exp(n0:003).If the random walk S is outside the interval In2 at time t, then it is impossible for therandom walk to reah the interval In1 within time n0:1 . Thus if St =2 In2 then Ss annotbe in In1 for all times s 2 [t; t + n0:1℄. However, outside the interval In1 , the senery � hasthe same distribution under P (�) as it does under P2(�). Thus, for z =2 In2 ,P2(Enno�error;z;l) = P (Enno�error;z;l):Furthermore, sine the distribution of the senery under P (�) is both time and spatiallyhomogeneous, an appliation of the strong Markov property yieldsP (Enno�error;z;l) = P (Enno�error;0;0) = P  n0:1Xs=0 ~�s > �n0:1! ;for all z =2 In2 . However the event nPn0:1s=0 ~�s > �n0:1o is just the event Am? from Se-tion 10.3 with m = n0:05. Hene, from Lemma 10.3.8 we obtainP (En?no�error;z;l) = P (Am) � 2Lm2 �12�m0:1 = 2Ln0:1�12�n0:005 (10.4.3)for all z =2 In2 . By Combining this with (10.4.2), we arrive atP (En?no�error) � Xz2In7 nIn2 ;0�l�exp(n0:003)P (En?no�error;z;l) � 2L exp(2n0:003) � 2Ln0:1�12�n0:005 :



422 Chapter 10. Markers for error-orrupted observationsThe �nal inequality omes about by reognizing that there are fewer than 2L exp(2n0:003)pairs (z; l) with z 2 In7 n In2 and 0 � l � exp(n0:003).Now, the dominating term in the bound on the right-hand side of this inequalityis (1=2)n0:005 . Thus, for n big enough, the expression on the right- hand side of thelast inequality is smaller than (0:6)n0:005 . The result follows by applying this bound toEnno�error.Lemma 10.4.3. For large n,P2(Enmarker�works) � 1� exp(�0:225 exp(n0:002)): (10.4.4)Proof. Let R be a random walk with inrements idential to those of the random walk Sbut starting at the random point z. Thus, Rt := St + z. Let �Rt denote the observationmade by the random walk R at time t of the senery �, that is, �Rt := �(Rt). We shalluse ~�Rt to denote that same observation made with an error:~�Rt := �Rt + �t mod 2:Let EnR denote the event that R does not stray from z by a distane greater than n0:1=2before time n0:1: EnR := �8t � n0:1; jRt � zj � n0:1=2	 :Note that when EnR ours, the random walk R stays within the ontiguous blok of zerosin � having z at it's enter during its �rst n0:1 steps. Consequently, if EnR holds, we haven0:1Xt=0 �Rt = 0:It follows, onditional on EnR, that Pn0:1t=0 ~�Rt � Bin(n0:1; �). Then, by the entral limittheorem, as n tends to in�nity, P2 n0:1Xt=0 ~�Rt � �n0:1 j EnR!onverges to 1=2. Now,P2 n0:1Xt=0 ~�Rt � �n0:1! = P2 n0:1Xt=0 ~�Rt � �n0:1 j EnR!P2(EnR)+P2 (n0:1Xt=0 ~�Rt � �n0:1) \ En?R ! :(10.4.5)By Part 2 of Lemma 10.3.2, P2(EnR) onverges to one as n onverges to in�nity. It alsofollows that P2(fPn0:1t=0 ~�Rt � �n0:1g\En?R ) onverges to zero as n tends to in�nity. Hene,P2 n0:1Xt=0 ~�Rt � �n0:1! �! 12as n!1.Next, let us assume that n is large enough so thatP2 n0:1Xt=0 ~�Rt � �n0:1! � 0:49: (10.4.6)



10.4. Returning to a Marker 423De�ne Gk to be the �-algebraGk := �(z; �z;S0; S1; : : : ; S�k + n0:1 j z 2 Z)and let G denote the �ltration G := Sk Gk. It an be seen that the sequene of randomvariables Y1; Y2; : : : is G-adapted. Furthermore, by de�nition, the stopping times �k areat least n0:1 time steps apart from eah other. It follows that �k+1 happens no earlierthan time �k+n0:1. By the strong Markov property of the random walk S, when we stopthe proess at a point, it then ontinues on as though it were a new random walk whihwas started at that point, independent of what happened beforehand. Putting it anotherway, onditional on Gk, S is distributed after time �k+1 like R. So,P2(Yk+1 = 1 j Gk) = P20��k+1+n0:1Xs=�k+1 ~�s � �n0:1 Gk1A = P2 n0:1Xt=0 ~�Rt � �n0:1! P2-a.s.Aording to (10.4.6), the �nal expression in the equality above is greater than 0:49 for nsuÆiently large and, hene, Bell OK(n)[Yk+1℄ � 0:49. We an therefore use Lemma 12.2.1.Setting k = exp(n0:002), a = 1=p2 and � = 0:15, we obtainP2(En?marker�works)=P20�exp(n0:002)Xk=1 Yk < exp(n0:002)=31A�P2 Pexp(n0:002)k=1 (Yk � Bell OK(n)[Yk℄)exp(n0:002) < 1=3� 0:49!�P2 Pexp(n0:002)k=1 (Yk � Bell OK(n)[Yk℄)exp(n0:002) � �0:15!� exp(�0:225 exp(n0:002)):Thus, P2(Enmarker�works) � 1� exp(�0:225 exp(n0:002)) asymptotially.Lemma 10.4.4. For large n,P2(Evisits)n � 1� exp(�n0:003=4): (10.4.7)Proof. Let s := n0:1 exp(n0:002) and observe thatEnvisits = ��exp(n0:002) � exp(n0:003)	 = ���s � exp(n0:003)	 :Without loss of generality, assume that z = 0. If z is not zero, the proof is virtuallythe same sine z is at most a distane polynomial in n away from the origin, whih hasnegligible inuene on the event, sine we are onsidering exponentially long times in n.When z = 0, the event Envisits is simply the event that the random walk S visits theorigin no less than s times before time exp(n0:003). Let Zk denote the k-th interarrivaltime between onseutive visits by S to the origin. Hene, Pkl=1 Zl is the time of the k-thvisit by S to the origin. Note that the random variables Zk; k 2 N , are i.i.d. De�ne n3 to



424 Chapter 10. Markers for error-orrupted observationsbe the number n3 := exp(n0:003). Under the assumption that z = 0 (whih hanges theultimate bound we shall �nd in only a minute way), we have thatP2(En?visits) = P2 sXk=1 Zk > n3! :Now, P2 sXk=1 Zk > n3! = P2 ( sXk=1 Zk)1=3 > n4! ;where n4 := (n3)1=3. For any set of positive numbers falgj1, it is always true that(Pjl=1 al)3 �Pjl=1(al)3. Hene, Psk=1(Zk)1=3 � (Psk=1Zk)1=3 and soP2(En?visits) � P2( sXk=1(Zk)1=3 > n4):By the Markov inequality,P2(En?visits) � sBell OK(n)2[(Z1)1=3℄n4 = n0:1 exp(n0:002)Bell OK(n)2[(Z1)1=3℄exp(n0:003=3) : (10.4.8)It is known that Bell OK(n)2[(Zk)1=3℄ is �nite (see for example Durrett [4℄) and thus isa onstant not depending on n. Furthermore, the dominating fator in the bound givenin (10.4.8) is exp(�n0:003=3). It follows that, for n large enough, the right-hand side of(10.4.8) is smaller than exp(�n0:003=4).Proof of Theorem 10.4.1. Lemma 10.4.1 yieldsP2(En?OK) � P2(En?no�error) + P2(En?visits) + P2(En?marker�works): (10.4.9)For the three quantities P2(En?no�error), P2(En?visits) and P2(En?marker�works), we have the bounds(10.4.1), (10.4.7) and (10.4.4) respetively. The largest of these bounds is given by (10.4.7).Sine P2(En?OK) is asymptotially smaller than 3 times this bound, we an write P2(En?OK) �3 exp(�n0:003=4) for n large. �10.5 Reognizing Markers in Error-Corrupted Ob-servationsIn the preeding setion, we investigated the ase where we ondition on the event Bn.Unfortunately, Bn is not an observable event. So instead, we need to ondition on an eventwe are able to observe. We shall therefore hoose to ondition on An, whih is observable.From Theorem 10.3.1, we know that, whenever An is observed, there is a blok of zerosof length greater than n0:1 lose to the origin with high probability. (Here, lose to theorigin means belonging to [�Ln2; Ln2℄.) We an then use this abnormally long blok ofzeros as a marker. This enables us to onstrut a total of exp(n0:001) stopping times �kand, with high probability, these stopping times all stop the random walk S in the interval



10.5. Reognizing Markers in Error-Corrupted Observations 425[�2Ln2; 2Ln2℄. This is a situation similar to the one desribed in Setion 10.2, where wehad a 2 at the origin. When we previously onditioned on the event Bn, we \fored" thesenery to have a marker lose to the origin. We did this in order to simplify notation inthe preeding argument. In reality, we have to searh for a Marker �rst. We shall nowshow how this an be done.Let � � denote the �rst time t at whih we see a string of lenght n2 with less than �n2ones in the error-orrupted observations:� � := min(t > 0 : n2Xs=0 ~�t+s � �n2) :Sine �, S and � are mutually independent and S is a reurrent random walk, the stoppingtime � � must be almost surely �nite, that is, P (� � < 1) = 1. The neighborhood of S��is very similar to the origin under the onditional probability measure P2(�). Due to thespatial homogeneity of the senery, the theory whih we developed in the last setionholds for the point z = S�� instead of the origin. Hene, with high probability, there is ablok of more than n0:1 ontiguous zeros in the intervalI�� := [S�� � 2Ln2; S�� + 2Ln2℄:Using this blok of zeros as a marker, we an then onstrut a total of exp(n0:001)stopping times whih, with high probability, all stop the random walk S in I��. We shalldenote this sequene of stopping times by f��kgk>0. They are de�ned as follows:De�nition 10.5.1. For k > 0, let ��k denote the k-th element (under the usual orderingon N) of the set T \ [� �;1). Note that ��1 = � �.The result is that with high probability the �rst exp(n0:001) stopping times ��k stop Sin I�.Theorem 10.5.1. The probabilityP �8k � exp(n0:001); S��k 2 I�� and (��exp(n0:001) � � �) � exp(n0:003)�tends to one as n!1.Proof. The proof is analogous to that of Theorem 10.4.1.These stopping times an be used to reonstrut a little piee of the senery � in theneighborhood of the point S��. The methods whih an be used for this are similar towhat was desribed in Setion 10.2.In [17℄, Lember and Matzinger show how beeing able to reonstrut a small amountof information ontained in the neighborhood of markers implies that the whole senery �an be reonstruted almost surely. Their proof, however, only pertains to the ase ofobservations made without errors. The question as to whether or not it is possible toperform senery reonstrution from error-orrupted observations of a two-olor seneryremains open.
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Chapter 11Large deviation based upper boundsfor the LCS-problem(submitted)By Raphael Hauser, Servet Martinez and Heinrih MatzingerLet X := (X1; : : : ; Xn) and Y := (Y1; : : : ; Yn) be two �nite sequenes. Let Ln designatethe length of the longest sequene whih ours as a subsequene of X as well as of Y .We analyze and apply a large deviation and Montearlo simulation based method forthe omputation of improved upper bounds on the Chv�atal-Sanko� onstant , whihis de�ned by the limit  = limn!1 E [Ln ℄=n when X and Y are random sequenes withi.i.d. entries. Our theoretial results show that this method onverges to the exat valueof  when a ontrol parameter m onverges to in�nity. We also give upper bounds onthe omplexity for numerially omputing  to any given preision via this method. Ournumerial experiments on�rm the theory and allow us to give new upper bounds thatare orret to two digits.11.1 IntrodutionThe investigation of longest ommon subsequenes (LCS) of two �nite words is one of themain problems in the theory of pattern mathing and plays a role in DNA- and Protein-alignments, �le-omparison, speeh-reognition and so forth.Let X := (X1; : : : ; Xn) and Y := (Y1; : : : ; Yn) be two independent randomly generatedsequenes with uniform i.i.d. entries from a �nite alphabet A = f1; 2; : : : ; Cg. In the sim-plest ase the entries ofX and Y are just i.i.d. Bernoulli variables with parameter 1/2. LetLn designate the length of a longest ommon subsequene of X and Y , that is, a sequenewhih ours as a subsequene of both X and Y and whih is of maximal length among allsequenes with this property. The thus de�ned random variable Ln and several of its vari-ants have been studied intensively by probabilists, omputer-sientists and mathematialbiologists; for appliations of LCS-algorithms in biology see Waterman [26℄. The booksof Sanko�-Kruskal [23, 20℄, Capoelli [12, 13℄ and Apostolio-Crohemore-Galil-Manbar429



430 Chapter 11. Large deviation upper bounds for the LCS-problem[3℄ present further appliations.Using a subadditivity argument, Chv�atal-Sanko� [14℄ prove that the limit := limn!1 E [Ln ℄=nexists. The exat value of  remains however unknown. Chv�atal-Sanko� [14℄ derive upperand lower bounds for , and similar upper bounds were found by Baeza-Yates, Gavalda,Navarro and Sheihing [10℄ using an entropy argument. These bounds have been im-proved by Deken [17℄, and subsequently by Danik-Paterson [15, 22℄. In this paper wepresent a Monte Carlo and large deviation based method whih allows to further improvethe upper bounds on . Our approah an be seen as a generalization of the method ofDanik-Paterson.The most widely used method for the omparison of geneti data is a generalizationof the LCS-method. For an exellent overview of this subjet see Waterman-Vingron [28℄.In this generalization a maximal sore is sought over the set of all possible alignments ofthe two sequenes, where gaps are penalized with a �xed parameter Æ > 0 and mismathesare penalized by a �xed amount � > 0: onsider for example the two words \brot" and\bat". One possible alignment A of these words isb r o tb a � tThe sore of this alignment is 1 � � � Æ + 1 = S(A ). The mathing pairs of letters \b"and \t" are eah valued with a weight of 1. The gap � in \bat" after the \a" osts �Æ.Furthermore, the mismath between \r" and \a" is penalized by adding �� to the totalsore. If M�;Æ(X; Y ) denotes the maximal sore amongst all possible alignments of twowords X and Y , and ifMn(�; Æ) is the random variable de�ned byMn(�; Æ) =M�;Æ(X; Y ),where X and Y are two i.i.d. random sequenes of length n, then the LCS-problem is aspeial ase of the investigation of Mn(�; Æ), beause Ln = Mn(1; 0). Generalizing thearguments from the LCS-problem, one an prove that the limita(�; Æ) = limn!1 E [Mn ℄nexists. Arratia-Waterman [8℄ showed that there is a phase transition phenomenon de�nedby ritial values of � and Æ. In one phase Mn is of linear order in n, whereas in the otherit is logarithmially small in n. Waterman [27℄ onjetures that the deviation of Mn fromits mean behaves like pn.As mentioned earlier, the approah we use in this paper to derive upper bounds on is inspired by the method of Danik-Paterson [15, 22℄. However, in ontrast to the latter,our method an be used in priniple to derive upper bounds on a(�; Æ) for values of � and Æthat orrespond to the linear phase. This is a subjet we plan to pursue in future researh.Let us mention a few further details on the history of these problems and the state ofknowledge about them: Waterman-Arratia [8℄ derive a law of large deviation for Ln forutuations on sales larger than pn. The order of magnitude of the deviation from the



11.2. Overview 431mean of Ln is unknown, and in fat it is not even known if these deviations are larger thana power of n. However, using �rst passage perolation methods, Alexander [2℄ proves thatE [Ln ℄=n onverges at a rate of order plogn=n.Waterman [27℄ studies the statistial signi�ane of the results produed by sequenealignment methods. An important problem that was open for deades onerns the longestinreasing subsequene (LIS) of random permutations and appears to be related to theLCS-problem. However, it is an open question to know if solutions of the LIS-probleman be used to study the LCS problem, see Johansson [11℄ and Aldous-Diaonis [1℄.Another problem related to the LCS-problem is that of omparing sequenes X and Yby looking for longest ommon words that appear both in X and Y , and generalizationsof this problem where the word does not need to appear in exatly the same form inthe two sequenes. The distributions that appear in this ontext have been studied byArratia-Gordon-Goldstein-Waterman [4℄ and Neuhauser [21℄. A ruial role is played bythe Chen-Stein Method for the Poisson-Approximation. Arratia-Gordon-Waterman [5, 6℄shed some light on the relation between the Erd�os-R�enyi law for random oin tossing andthe above mentioned problem. In [7℄ the same authors also developed an extreme valuetheory for this problem.11.2 OverviewAs mentioned above, Danik-Paterson [15, 22℄ derived the best deterministi bounds onthe Chv�atal-Sanko� onstant , that is, the numbers they derive are analytially provento be lower and upper bounds on  respetively.The results presented here are fundamentally di�erent: we will derive a randomizedalgorithm that produes an upper bound q̂ on  at a given on�dene level. For example,on the 95% level this means that P[q̂ > ℄ � 0:95. Thus, q̂ is a random variable and abound that is not deterministi but probabilisti. Moreover, q̂ depends on the number l0of simulations and on a ontrol parameter m whose role is further desribed below. Fornow it suÆes to know that in eah of the l0 simulations we need to evaluate the lengthof the LCS of two random sequenes of length O(m) via the Wagner-Fisher algorithm[24℄ and ollet ertain information that is obtained \for free" from intermediate resultsduring the omputation. In our theoretial analysis we then show that q̂ is a onsistentestimator of , that is, limm;l0!1 q̂ =  almost surely. In fat, we show that asymptoti-ally P[ < q̂ <  + �℄ � � where � = O(m��2 ) and � = 1� O(l�10 ), where � 2 (0; 1) isa onstant.Ours are not the �rst results on simulated bounds that are onsistent estimators of: Alexander [2℄ desribed a method that turns Montearlo estimates �Ln=n of E [Ln ℄=ninto onsistent upper and lower bounds of . Again, these bounds depend on the numberl0 of simulations and on the ontrol parameter n, and it is the ase that limn;l0!1 q̂ = almost surely. Moreover, the midpoint ̂n between the upper and lower bounds deter-mined by this method satis�es P[ĵn � j < �℄ � � where � = O(n�1=2) + O(l�1=20 ) and� = 1� exp��(O(n) +O(l0))�.



432 Chapter 11. Large deviation upper bounds for the LCS-problem>From a big-piture viewpoint the two methods thus appear to have similar proper-ties. Note however that the above-mentioned onvergene rates are asymptoti worst-asebounds obtained by analyti means and do not neessarily aurately desribe the prati-al onvergene behavior. There are therefore at least two strong motivations for analyzingthe new approah:(i) The new method is oneptually very di�erent from Alexander's approah. Thisopens up a new lass of algorithms with possible extensions to other related prob-lems, in partiular those appearing in onnetion with soring funtions in bioinfor-matis.(ii) Pratial versions of our algorithm onverge orders of magnitude faster than thetheoretial analysis predits: with m = 1000 our method �nds substantially tighterupper bounds on  than Alexander's approah yields with n = 50000. Sine thedominant work per simulation is due to an appliation of the Wagner-Fisher al-gorithm, the per-simulation omplexity of our algorithm is O(m2) whereas that ofAlexander's method is O(n2). Thus, from a pratial point of view our methodonstitutes a onsiderable improvement.11.3 Some Useful Notation and a Key InequalityLet A be a �nite alphabet and A� = Sn2N An be the set of �nite words. We denote byjAj the ardinal number of A, that is the number of symbols of the alphabet. For a 2 A�denote by jaj its length, that is, the number of letters in a. Trivially, jabj = jaj + jbj forevery pair (a; b) 2 A� � A�, where ab denotes the onatenation of a and b, that is, thestring onsisting of the letters of a followed by those of b.Let �n be the lass of inreasing sequenes of f1; : : : ; ng. We denote the ardinalityof any � 2 �n by j�j, and its onseutive omponents by �(i) (i = 0; : : : ; j�j. For a 2 A�and � 2 �jaj we use the notation a� := (a�(i) : i = 1; : : : ; j�j). The main objet of studyin this paper is the quantityL(a; b) = maxfk : 9� 2 �jaj; � 2 �jbj; j�j = k = j�j; a� = b�g;that is, L(a; b) is the length of a longest ommon subsequene of a and b.For the analyis it is onvenient to use the set of elementary events 
 = AN � ANendowed with the anonial produt �-algebra. We will also sometimes identify 
 with(A � A)N , and we denote the points of 
 by ! = (x; y), where x = (xn : n 2 N) andy = (yn : n 2 N). We use the following notation for the anonial projetions de�ned on
: X(!) = x, Xi(!) = xi, Y (!) = y and Yj(!) = yj.We endow 
 with a probability measure P = P�P, where P is a Bernoulli measureon AN, that is, P = �N where � is a probability distribution on the �nite alphabet Awith �(a) > 0 for all a 2 A. In other words yet, all entries in X and Y are i.i.d. randomvariables with values in A and distribution �.



11.3. Some Useful Notation and a Key Inequality 433Remark 11.3.1. It is interesting to note that some of the results presented in this paperextend to the situation where P is a ergodi shift-invariant measure on 
. For example,the proof of relation (11.3.1) below goes through unhanged, and the argument we willpresent in (11.3.3) extends to the more general probability model if Birkho�'s ErgodiTheorem is invoked. However, sine most of the results we present in this paper rely onP being a Bernoulli measure, and sine this is the model of interest in the vast majorityof appliations, we deided keep to this slightly more restritive framework.Let x[i; j℄ = (xk : i � j) be the word formed by the letters between i-th and j-thoordinate on x. We use the same notation for words in y and for random vetors, thatis, we write for example X[i; j℄ = (Xk : i � k � j). Any pair of words (a; b) 2 A� � A�de�nes a measurable set as follows,[[a; b℄℄ = f(x; y) 2 
 : x[1; jaj℄ = a; y[1; jbj℄ = bg:Extending this notation, we write [[S℄℄ = [(a;b)2S [[a; b℄℄ for all S � A� � A�.Let �Lij : 
! N ji; j 2 N	 be the family of random variablesLij = (L(X[i; j℄; Y [i; j℄) if i � j;0 otherwise:For ease of notation we will write Lj for L1j . Then fLijg satis�es the hypotheses ofKingman's subadditive ergodi theorem, whih implies thatinfn�1 Lnn = limn!1 Lnn = limn!1 E [Ln ℄n :=  (11.3.1)holds P almost everywhere on 
 for some real number , see e.g. [19℄. The limit ,trivially seen to be lying in the interval (0; 1), is alled the Chv�atal-Sanko� onstantassoiated with the law P. It follows from (11.3.1) that for any q <  it is true thatlimn!1 PfLn � qng = 1. Therefore, for all q 2 (0; 1),limn!1PfLn � qng < 1) q � : (11.3.2)We write Sn1 (q) := f(a; b) 2 An � An : L(a; b) � qng. Note thatfLn � qng = [[Sn1 (q)℄℄ = [(a;b)2Sn1 (q)[[a; b℄℄:This notation will be useful in the proof of Lemma 11.3.1.It will sometimes be neessary to have a lower bound for . An elementary relation isobtained as follows, a.s.= limn!1 Lnn � limn!1 1n nXk=1 1Xk=Yk a.s.= Xa2AP([[a℄℄)2 � jAj�1: (11.3.3)



434 Chapter 11. Large deviation upper bounds for the LCS-problem
The following de�nition introdues one of the key onepts upon whih our methodsrely:De�nition 11.3.1. For any word a 2 A� of length jaj � 1 let a� := (a1; ::; ajaj�1) bethe word obtained by removing the last letter from a. For m 2 N we say that a pair(a; b) 2 A� � A� is a m-math if L(a; b) = m;L(a�; b) = m� 1L(a; b�) = m� 1:We writeMm for the set of m-mathes in A� � A�.It follows immediately from De�nition 11.3.1 that(a; b) 2 Mm ) minfjaj; jbjg � m; (11.3.4)(X[1; i℄; Y [1; j℄) 2 Mm; k 6= j ) (X[1; i℄; Y [1; k℄) =2 Mm: (11.3.5)The last relation holds point-wise on 
 and says that, for a given i 2 N there is at mostone index j suh that (X[1; i℄; Y [1; j℄) is a m-math.The following family of random variables will play an important role throughout allparts of this paper: Li;j = L(X[1; i℄; Y [1; j℄);Z [m℄i;j = Zi;j = 1Mm(X[1; i℄; Y [1; j℄);Z [m℄k = Zk = X(i;j):i+j=kZi;j:We will often use the simpli�ed notation Zi;j; Zk in ontexts where we treat m as a �xedparameter. It follows immediately from (11.3.4) and (11.3.5) that 0 � Zk � (k � 2m)+,that is, Zk = 0 everywhere on 
 for k < 2m. Assoiated with the variables Zk is thefollowing measure on N whih will play a key role throughout our analysis: we set�[m℄(k) = �(k) = E [Zk ℄ (11.3.6)for all k 2 N , and � is then extended to N by �-additivity. Note that the de�nitionsof Zi;j; Zk and � all depend on the hoie of the parameter m. In order to avoid indexluttering we hose not to aount for this dependene expliitly in the notation. Thisshould not lead to onfusion, but the reader should bear the dependene on m in mind.Let us mention that, although we annot exlude at this point that � be an in�nitemeasure, we will later prove that it is �nite beause �(N) � jAjm, see Lemma 11.4.3.However, � is of ourse generally not a probability measure. A trivial identity whih issometimes useful is the following,�(k) = Xi+j=kPfLi;j = mg: (11.3.7)



11.3. Some Useful Notation and a Key Inequality 435
We are ready to prove one of a key inequality that drives our approah:Lemma 11.3.1. Let m 2 N, q 2 [0; 1℄, and let ��bqn=m be the measure �, de�ned in(11.3.6), onvoluted bqn=m times with itself. ThenPfLn�1 � qng � Xl1+���+lbqn=m�2n �(l1) � � � � � �(lbqn=m) = ��bqn=m�[0; 2n℄�: (11.3.8)

Proof. Let us onsider the lass of wordsSn2 (q) = [(i;j):i+j=2nf(a; b) 2 Ai � Aj : L(a; b) � qng:It is learly the ase that Sn1 (q) � Sn2 (q). LetSn;m3 (q) := n�a1 : : : abqn=m1; b1 : : : bbqn=m2� : (ak; bk) 2 Mm(k = 1; : : : ; bqn=m);1; 2 2 A�; bqn=mXk=1 jakbkj+ j12j = 2no:We laim that Sn2 (q) � Sn;m3 (q). In fat, for any pair (a; b) 2 Sn2 (q), there existtwo stritly inreasing maps � : [1; dqne℄ ! [1; jaj℄ and � : [1; dqne℄ ! [1; jbj℄ suh thata� = b�, and it is possible to hoose � and � minimal in the sense that for eah pair(�̂; �̂) 2 �jaj � �jbj that satis�esj�j = j�j = dqne;a�̂ = b�̂;�̂(k) � �(k) (k = 1; : : : ; dqne);�̂(k) � �(k) (k = 1; : : : ; dqne);we have �̂ = � and �̂ = �. It is easy to see that when � and � are minimal in this sense,then (ak; bk) := �a�(m(k�1)+1) : : : a�(mk); b�(m(k�1)+1) : : : b�(mk)� 2 Mmfor k = 1; : : : ; bqn=m. Therefore, �a1 : : : abqn=m1; b1 : : : bbqn=m2� 2 Sn3 (q), where 1 :=a�(bqn=m+1) : : : ajaj and 2 := b�(bqn=m+1) : : : b�(jbj). This shows that Sn2 (q) � Sn;m3 (q), aslaimed.It is now useful to introdue the index setI(q; n;m) = n~l := (l1; : : : ; lbqn=m) 2 Nbqn=m : bqn=mXk=1 lk � 2no: (11.3.9)



436 Chapter 11. Large deviation upper bounds for the LCS-problemWith any element ~l 2 I(q; n;m) we assoiate the setSn;m3 (q;~l) := n�a1 : : : abqn=m1;b1 : : : bbqn=m2� 2 Sn;m3 (q) :jakbkj = lk; (k = 1; : : : ; bqn=m)o:It is then learly the ase thatSn;m3 (q) = [~l2I(q;n;m)Sn;m3 (q;~l);and hene that P([[Sn;m3 (q)℄℄) � X~l2I(q;n;m)P([[Sn;m3 (q;~l)℄℄)whih in turn impliesP([[Sn;m3 (q)℄℄) � X~l2I(q;n;m) XSn3 (q;~l)P([[(a1 : : : abqn=m1; b1 : : : bbqn=m; 2)℄℄)� X~l2I(q;n;m) X(ak;bk)2Mm: jakbkj=lk;(k=1;:::;bqn=m) bqn=mYk=1 P([[ak; bk℄℄);where the last inequality follows from the assumption that P is a Bernoulli measure andfrom the trivial inequality P([[1; 2℄℄) � 1. Now, sine��bqn=m([0; 2n℄) = X~l2I(q;n;m) bqn=mYk=1 �(lk); (11.3.10)and bqn=mYk=1 �(lk) = X(ak ;bk)2Mm: jakbk j=lk;(k=1;:::;bqn=m) bqn=mYk=1 P([[ak; bk℄℄);we an onlude that P([[Sn;m3 (q)℄℄) � ��bqn=m([0; 2n℄): (11.3.11)Finally, sine fLn � qng = [[Sn1 (q)℄℄ � [[Sn2 (q)℄℄ � [[Sn;m3 (q)℄℄, the proof is omplete.11.4 A Large Deviation Based Upper Bound on In this setion we will apply large deviation tehniques to �nd the exponential rate ofthe bound on the right hand side of (11.3.11). Sine � is not a probability measure ingeneral, we will derive the relevant inequalities without using the lassial results statedfor probability distributions. Using the usual measure theoreti notation, we have�ZN et� 2mq �x�d�(x)�bqn=m = X(l1;:::;lbqn=m)2Nbqn=m etPbqn=mk=1 � 2mq �lk� bqn=mYk=1 �(lk):



11.4. A Large Deviation Based Upper Bound on  437Sine every (l1; : : : ; lbqn=m) 2 I(q; n;m) satis�es Pbqn=mk=1 (2m=q� lk) � �2m=q, (11.3.10)implies ��bqn=m�[0; 2n℄� � �ZN et� 2mq �x�d�(x)�bqn=me 2mtq : (11.4.1)This leads to the following theorem, providing the main tool for the onstrution of ourupper bounds on :Theorem 11.4.1. Let t > 0 and q 2 [0; 1℄. IfXk2N et� 2mq �k��(k) < 1 (11.4.2)then  < q.Proof. If (11.4.2) holds then for all n large enough the right hand side of (11.4.1) is < 1.The result then follows from (11.3.2) and (11.3.8).Let us now de�neq1(m) := infnq 2 [0; 1℄ : 9t > 0 s.t. Xk2N et� 2mq �k��(k) < 1o: (11.4.3)By Theorem (11.4.1) we it is then true that  � q1(m) for all m 2 N . In the remainder ofthis setion, ulminating in Theorem 11.4.3 below, we will show that limm!1 q1(m) = .The analysis that leads to this result also sets the stage for understanding the pratialMontearlo methods to ompute q1(m) devised in Setion 11.5. We start by realling thefollowing large-deviation inequality:Lemma 11.4.1 (Azuma-Hoe�ding). Let t 2 N, F = [s2N0Fs a �ltration and V0; V1; : : : ; Vta F-adapted martingale suh that V0 = 0. Let a > 0 and � > 0, and let us assume thatfor all s 2 [0; t � 1℄ it is the ase that jVt � Vt+1j � a a.s. Then the following inequalityholds true, P�Vt � �t	 � e� t�22a2
Proof. This result is due to Azuma [9℄ and Hoe�ding [18℄. A modern proof an be foundfor example in [25℄, Setion 11.1.4.We will now use Lemma 11.4.1 to show that Li;j deays exponentially:



438 Chapter 11. Large deviation upper bounds for the LCS-problemLemma 11.4.2. For all � � 0 it is true that P�Li;j � i+j2 ( +�)	 � e�(i+j)�2=8.Proof. We have Li+j;j+i � Li;j + Lj;i Æ (�iX ; �jY ), where �X and �Y denote the left-shiftoperators on the X and Y omponents of (X; Y ) respetively. Sine P is a Bernoullimeasure, Li;j and Lj;i Æ (�iX ; �jY ) are identially distributed, so that E [Li+j;j+i ℄ � 2E [Li;j ℄.It follows from subadditivity that E [Li+j;j+i℄ � (i+ j), implying E [Li;j ℄ � (i+ j)=2 andhene, PnLi;j � i + j2 ( +�)o � PnLi;j � E [Li;j ℄ + (i+ j)2 �o: (11.4.4)Let us next onsider a �xed path � : f0; : : : ; i+ jg ! Z2 that leads from �(0) = (0; 0)to �(i + j) = (i; j) by moving one unit in the positive diretion of either oordinate ineah step. Let r(k) and s(k) be de�ned by G(k) = �r(k); s(k)�, let F0 = fR;?g be thetrivial �-algebra on R, and letFk = � (Xu; Yv : u = 1; : : : ; r(k); v = 1; ::; s(k)) ; (k = 1; : : : ; i+ j):(Here and elsewhere the notation extends in a natural way to the ase where an index setis empty. For example, if r(k) = 0 then Fk = ��Y1; : : : ; Ys(k)�.) For k 2 f0; : : : ; i+ jg letus de�ne Vk := E�Li;j � E [Li;j ℄Fk�.The sequene V0; V1; : : : ; Vi+j is then a martingale that satis�es the onditions ofLemma 11.4.1 with a = 1. Applying the lemma, we obtain the inequalityP�Li;j � E [Li;j ℄ � (i + j)2 �� � e�(i+j)�2=8:Combined with (11.4.4) this yields the result.
Remark 11.4.1. Applying the Azuma-Hoe�ding Lemma to the martingale (�V0; : : : ;�Vi+j),where Vk is as in the proof of Lemma 11.4.2, one �nds the inequalityP�Li;j � E [Li;j ℄ � �(i + j)2 �� � e�(i+j)�2=8: (11.4.5)

As a onsequene of Lemma 11.4.2 we an now bound �(k) for small k:Corollary 11.4.1. Let k � 2m= and �0k = (2m=k)� . Then�(k) � 2mjAje�(�0k)2k=8:



11.4. A Large Deviation Based Upper Bound on  439Proof. Let us onsider a pair (i; j) suh that k := i + j � 2m=. Then �0k � 0, and wean apply Lemma 11.4.2 to �nd thatP(Li;j = m) � P(Li;j � m) � e�(�0k)2k=8:Together with (11.3.7) and (11.3.3) this proves the laim.As promised in Setion 11.3, we will next prove that � is a �nite measure. Reall againthat the de�nitions of Zi;j, Zk and � depend on the value of the ontrol parameter m.Lemma 11.4.3. For every m 2 N, it is true thatXk�1 �(k) = E "Xi;j>0Zi;j# � jAjm:Proof. The sequene (Zm : m 2 N) of random variablesZm := minfk � 0 : Z [m℄m;k = 1gis stritly inreasing in m. Moreover, we have Z1 = minfk � 1 : Yk = X1g. Hene,PfZ1 = kg =Xa2A �(a)(1� �(a))k�1�(a); (11.4.6)and we �nd that E [Z1℄ = jAj.Next, let us set Y0 = 0 and Yk = minfl > Yk�1 : Yl = Xkg for k � 1. Then Y1 = Z1and Yk � Zk holds true for all k 2 N . Beause P is a Bernoulli measure, Yk+1 � Yk isindependent of �Yl : l < k� and is identially distributed as Y1. Therefore, we haveE [Zm℄ � E [Ym℄ � mE [Z1℄ = mjAj: (11.4.7)Let us now onsider the random index setMm = f(i; j) 2 N : (X[1; i℄; Y [1; j℄) 2 Mmgorresponding to the m-mathes ourring in X and Y . Sine (m;Zm) 2Mm, it followsfrom (11.3.4), (11.3.5) and the de�nition of an m-math thatjMmj = Xi;j>0Zi;j � Zm �m < mXk=1Wk; (11.4.8)where Wk = Yk � Yk�1 (k = 1; : : : ; m) are i.i.d. random variables distributed aordingto (11.4.6). Therefore, by virtue of (11.4.7) we obtainE �Xi;j>0Zi;j� � E [Zm �m℄ � jAj(m� 1);proving the laim.
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Corollary 11.4.2. For all a 2 A let �(a) = (1 � �(a))1=m. Then for all k 2 N thefollowing holds true,�(k) � �maxa2A �(a)�k�2Xa2Am�(a)k � (k � 1)�(a)�1� �(a)�2 :
Proof. We use the notation and fats derived in the proof of Lemma 11.4.3. Note thatZ [m℄k > 0 implies that k � Zm. Therefore,�(k) = � [m℄(k) = E�Z [m℄k � = 1Xr=1 P�Z [m℄k � r�= 1Xs=m sXr=1 P�Z [m℄k � rkZm = s� � P�Zm = s�� 1Xs=k sP� 1Xl=1 Wl � s� � 1Xs=k s mXl=1 P�Wl > s� 1m �= 1Xs=k smXa2A �(a)�1� �(a)�b s�1m  �Xa2A m�(a)�(a) 1Xs=k s�(a)s�1=Xa2A �(a)k�2 �m�(a) � k � (k � 1)�(a)�1� �(a)�2 :

Our next result is instrumental in proving the onsisteny of the estimator q1(m):Theorem 11.4.2. Let � > 0 be suh that q = �+  � 1, and let 0 < t � �8jAj2 . Then1Xk=1 et(2m=q�k)�(k) � �mjAj+ 4m2jAj2� e�t�m (11.4.9)
Proof. It follows from the hypotheses that 1= = �=(q) + 1=q. Thus, 1= � � + 1=qand a := 2mq +m� < 2m < 2mjAj; (11.4.10)where the last inequality follows from (11.3.3). We split the left hand side of (11.4.9) asfollows, 1Xk=1 et(2m=q�k)�(k) =Xk<a et(2m=q�k)�(k) +Xk�a et(2m=q�k)�(k); (11.4.11)



11.4. A Large Deviation Based Upper Bound on  441and we derive bounds on both right-hand terms separately.To bound the seond term, note that for k � a we have 2m=q�k � 2m=q�a = ��m.Therefore, Xk�a et(2m=q�k)�(k) � e�t�mXk�a �(k) � mjAje�t�m; (11.4.12)where the seond inequality follows from the fat that Lemma 11.4.3 implies thatPk�a �(k) �Pk�1 �(k) � mjAj.To bound the �rst term in (11.4.11), note that (11.3.4) implies �(k) = 0 for k < 2m.Using this in onjuntion with (11.4.10) and Corollary 11.4.1 we �ndXk<a et(2m=q�k)�(k) � 2mjAj a�1Xk=2m et(2m=q�k)e�(�0k)2k=8� 2mjAj a�1Xk=2m et(2m=q�k)e�(�0k)2m=4; (11.4.13)where �0k := 2m=k � , and where the last inequality holds beause k � 2m. If we nowuse the hange of variables �k := a� k, thena�1Xk=2m et(2m=q�k)e�(�0k)2m=4 = e�tm� a�2mX�k=1 et�ke�(�00�k)2m=4; (11.4.14)where �00�k := 2ma� �k �  = 2ma 1(1� �k=a) �  � 2ma �  + 2m�ka2 :Note that2ma �  = 11q + �2 �  = q1 + �q2 �  � q�1� �q2 ��  � �� �q22 � �2 :Together with (11.4.10) this yields(�0�k)2 � ��2 + �k2mjAj2�2 > ��k2mjAj2 : (11.4.15)Substituting (11.4.15) into (11.4.14), we geta�1Xk=2m et(2m=q�k)e�(�0k)2m=4 (11.4.15)� e�tm� a�2mX̂k=1 et�k� ��k8jAj2 � e�tm�(a� 2m)(11.4.10)< 2mjAje�tm�; (11.4.16)where the seond inequality is a onsequene of the hypothesis on t. The result nowfollows from (11.4.11), (11.4.12), (11.4.13) and (11.4.16).
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We are �nally ready to prove that q1(m) is onsistent in m:Theorem 11.4.3. If q1(m) is de�ned as in (11.4.3), thenlimm!1 q1(m) = :

Proof. Beause of Theorem 11.4.1 we already know that q1(m) �  for all m 2 N . Theresult will thus be shown if we an prove thatlim supm!1 q1(m) � : (11.4.17)Let � > 0 be �xed, and let us hoose � and t as a funtion of m as follows: � := m�1=(2+�)and t =: �=(8jAj2). Then for all m large enough, the onditions of Theorem 11.4.2 aresatis�ed. Moreover, we have e�t�m = e��2m8jAj2 = e�m �2+�8jAj2 ;so that, again form large enough, �2m+4m2jAj2�e�t�m < 1. Theorem 11.4.2 thus impliesthat there exists m0 2 N suh that for all m � m0,1Xk=1 et(2m=q�k)�(k) < 1; (11.4.18)and then q1(m) �  + � =  + m�1=(2+�) by (11.4.3), showing that (11.4.17) is indeedtrue.11.5 Montearlo SimulationTheorem 11.4.1 revealed that whenever 0 � q � 1 and t > 0 are suh thatXk2N et(2m=q�k)�(k) < 1; (11.5.1)then q is an upper bound on the Chv�atal-Sanko� onstant . When using this theoreti-al tool in pratial alulations one faes the problem that one annot evaluate (11.5.1)expliitly, beause �(k) is not known exept for very small values of k. A pratial wayto get around this problem is to evaluate (11.5.1) via Montearlo simulation.Reall that we assumed that fXigN[fYjgN is a family of i.i.d. random variables whihtake values in the �nite alphabet A aording to a probability law �. Reall also that inSetion 11.3 we introdued the notationZi;j = 1Mm�X[1; i℄; Y [1; j℄�; Zk = Xi+j=kZi;j; and �(k) = E [Zk ℄:



11.5. Montearlo Simulation 443Let us now de�ne the random variableW = W (t; q) :=Xk>0 et(2m=q�k)Zk; (11.5.2)so that E [W ℄ =Pk>0 et(2m=q�k)�(k) is the expression of interest in (11.5.1).For the purposes of Montearlo simulation, we onsider (X li : i; l 2 N) and (Y lj : j; l 2N), two independent olletions of i.i.d. random variables with distribution � on A. Letus de�ne Z li;j := 1Mm�X l[1; i℄; Y l[1; j℄�;Z lk := Xi+j=kZ li;j; andW l = W l(t; q) :=Xk>0 et(2m=q�k)Z lk:Thus, Z lk ounts the number of m-mathes of length k observed in the l-th realization(X l; Y l) of the pair of random sequenes. Then�̂k := 1l0 l0Xl=1 Z lkis an unbiased estimator of �(k) and1l0 l0Xl=1 W l =Xk>0 et(2m=q�k)�̂k (11.5.3)is an unbiased estimator of the left hand side of (11.5.1).In Setion 11.5.1 we will show how the estimator (11.5.3) an be used in theory toobtain an upper bound on  to any given preision and at any given on�dene level. InSetion 11.5.2 we will also derive an upper bound on the number of elementary omputeroperations neessary to ompute suh a bound as a funtion of the required preision andon�dene level. The theoretial analysis is based on estimates whih are unneessarilyonservative in pratie. Pratial implementations are therefore based on a slightlydi�erent approah, leading to a number of issues that need areful attention. We disussthese in Setion 11.5.3.11.5.1 Montearlo Simulation in TheoryThe main result of this setion is the following theorem, whih gives a tool to deter-mine the value of the ontrol parameter m and the number l0 of simulations neessaryto obtain an estimator q̂1 of  to within a spei� preision and on a given on�dene level:



444 Chapter 11. Large deviation upper bounds for the LCS-problemTheorem 11.5.1. Let �; Æ 2 (0; 1) be onstants and l0 2 N. Let us hoose � and t asfuntions of m as follows: � = m��=2 and t1 = �=(16jAj2). Let us �nally onsiderq̂1 = �+ infnq > 0 : 1Xk=1 et1(2m=q�k)�̂k < 1o (11.5.4)as an estimator for q1. Then there exists a numberm0 = m0(�; �; Æ) < max�O�� 21� � 2�� ; O��jAj4 log 2Æ� 1+�1�� �1� logmina2A �(a)��� ;where � is a small number, suh that for all m � m0 it is true thatP� � q̂1 �  + 2�� � 1� e�l0(1�Æ)2=2 � 8l0 : (11.5.5)Note that the right hand side of (11.5.5) determines the on�dene level that the om-puted estimator q̂1 is an upper bound and approximates  to within preision 2�. Theon�dene level inreases if the number l0 of simulations is inreased. The preision on theother hand inreases with m. � and Æ merely play the role of ontrol parameters. Theseould be �xed at given values, but treating them as parameters reveals how their valuesa�et the omplexity estimates of Setion 11.5.2. The same pertains to the dependeneof m0 on the distribution � on A. Note �nally that  and jAj are funtions of �, whih iswhy no extra variables are neessary in m0(�; �; Æ).Before we an prove Theorem 11.5.1 we need three preliminary results. The �rstlemma shows that when m is large enough, then with high probability there will be am-math of length not muh larger than what  predits:Lemma 11.5.1. Let � and � be as in Theorem 11.5.1 and let us onsider the eventB := �9i; j s.t. Zi;j = 1 and i + j � 2�m + �m2 �� : (11.5.6)Then there exists a number m1 = m1(�; �) suh that for all m � m1,P(B) � 1� exp��m1��jAj�4256 �: (11.5.7)Proof. Alexander [2℄ showed that there exists a onstant C > 0,independent of � and A,suh that for all n � 1, 0 �  � E [Ln ℄n � Cr lognn :Amore expliitly quantitative version of this result an be obtained as follows: by hoosing� = 2, � = 3 in Proposition 2.4 of [2℄, a relaxation of Equation (2.13) in [2℄ shows that0 <  � E [Ln ℄n < 7r lognn 8n � 16: (11.5.8)



11.5. Montearlo Simulation 445Let k0 = m= +�m=2 and n0 = dk0e. Then m � 16 impliesn0 � k0 > m � 16: (11.5.9)Moreover, if m � m2(�; �) := infny > 0 : x1��2 � 562jAj3 > log x; 8x � yothen (11.3.3) implies logm < m1��32 � 562 : (11.5.10)Finally, if m � m3(�; jAj) := �2 � 562jAj3 log(jAj+ 1=2)� 11��then (11.3.3) implies m1��32 � 562 > log�1 + 12�: (11.5.11)Now, for m � m4(�; jAj) := max�m2(�; jAj); m3(�; jAj)�;(11.5.10) and (11.5.11) show thatlog k0 = log�m + �m2 � < logm + log�1 + 12�(11.5.10);(11.5.11)< m1��3562< m��4562 �m + m��2m2 �= ��28 �2 k072 ; (11.5.12)and then (11.5.8), (11.5.9) and (11.5.12) show that form � m5(�; �) := max�16; m4�the following holds, 0 <  � E [Ln0 ℄n0 < 7r logn0n0 � 7r log k0k0 < �28 : (11.5.13)Using the notation n0 := E [Ln0 ℄=n0, (11.5.13) and (11.3.3) imply � n0 � �24 � ��28 � ��jAj�28 (11.5.14)Now note that when the event D := �Ln0 � m	 holds, then a m-math of total lengthless than or equal to n0 must have ourred within �X[1; n0℄; Y [1; n0℄�. Hene, D � B,and it follows that P(
 nB) � P(
 nD): (11.5.15)



446 Chapter 11. Large deviation upper bounds for the LCS-problemWe have 
 nD = fLn0 < mg = nLn0n0 � n0 < mn0 � n0o: (11.5.16)Moreover, if m � m1(�; �) := max�m5; 2 2� �;then �=2 < m��2 =2 < 1=4. Observe that for x 2 [0; 1=4℄ it is true that 1=(1 + x) �1� x=2. Applying this inequality to x = �=2, we �ndmn0 � n0 � mk0 � n0 = 1 + �2 � n0 �  � n0 � �24 :Substituting this into (11.5.16) yieldsP(
 nD) � P�Ln0n0 � n0 �  � n0 � �24 �: (11.5.17)Combining the last inequality with (11.5.14), we �nd thatP(
 nD) � P�Ln0n0 � E [Ln0 ℄n0 � ��jAj�28 � � e�n0�2jAj�4256 ; (11.5.18)where the last inequality follows from (11.4.5). Sine n0 > m, we �nd that the boundon the right hand side of (11.5.18) is smaller than exp(�m�2jAj�4=256). Finally, using� = m��=2, (11.5.15) and (11.5.18), we �nd that for all m � m1(�; jAj),P(
 nB) � exp(�m1��jAj�4=256);whih is of ourse equivalent to the laimed inequality (11.5.7).Our seond lemma shows that if m is large enough then the probability of �nding anestimator value q̂1 signi�antly below  is very small:Lemma 11.5.2. Let �, Æ and � be as in Theorem 11.5.1, and let �̂k := Pl0l=1 Z lk=l0for all k 2 N. Then there exists a number m6 = m6(�; �; Æ) suh that for all m � m6,t � �=(16jAj2) and q 2 (0;  ��), it is true thatP� 1Xk=1 et(2m=q�k)�̂k < 1� � e�l0(1�Æ)2=2: (11.5.19)
Proof. Note that j� qj � � implies j2m=� 2m=qj � 2�m. Thus, when q �  ��, we�nd that 2m=q � k � �m� 1 for every k � d2m= +�me. Hene,1Xk=1 et(2m=q�k)Zk � d2m=+�meXk=1 et(2m=q�k)Zk � et(�m�1) d2m=+�meXk=1 Zk � et(�m�1)1B;(11.5.20)



11.5. Montearlo Simulation 447where 1B denotes the indiator funtion of the event B de�ned in (11.5.6). By de�nition,1Xk=1 et(2m=q�k)�̂k = 1Xk=1 et(2m=q�k)� 1l0 l0Xl=1 Z lk� = 1l0 l0Xl=1 1Xk=1 et(2m=q�k)Z lk:It follows therefore from (11.5.20) thatP� 1Xk=1 et(2m=q�k)�̂k < 1� � P� 1l0 l0Xl=1 et(�m�1)1lB < 1�: (11.5.21)Here, �1lB : l 2 N� denotes an i.i.d. sequene of opies of the random variable 1B.Now, for all m � m7, wherem7 = m7(�; �; Æ) = �1 + 16jAj2 log(2=Æ)� 11�� ;we have t(�m� 1) � m1�� �m��216jAj2 > m1�� � 116jAj2 � log(2=Æ);and hene, et(�m�1) > 2=Æ. Moreover, it follows from Lemma 11.5.1 that if m � m8,where m8 = m8(�; �; Æ) = max�m1; �256jAj4 log(2=Æ)� 11���;then E �1lB� = P(B) � 1� exp��m1��jAj�4256 � � 1� Æ2 :Therefore, for m � m6 := max(m7; m8) we have� 1l0 l0Xl=1 et(�m�1)1lB < 1�) � 1l0 l0Xl=1 1lB < Æ2�) � 1l0 l0Xl=1 �1lB � E [1lB ℄� � �(1� Æ)�:(11.5.22)Applying Lemma 11.4.1 with a = 1 to the martingale de�ned byV0 = 0; F0 = f?;Rg;Vk = kXl=1 �E [1lB ℄� 1lB�; Fk = �(V1; : : : ; Vk); (k = 1; : : : ; l0);we have P� 1l0 l0Xl=1 �E [1lB ℄� 1lB� � 1� Æ� � e�l0(1�Æ)2=2:Together with (11.5.21) and (11.5.22) this �nishes the proof.The third lemma allows us to give a bound on V AR(W ) that will be needed in theproof of Theorem 11.5.1:



448 Chapter 11. Large deviation upper bounds for the LCS-problemLemma 11.5.3. Let � and � be as in Theorem 11.5.1, and let q = q(m) = +�. Thenfor all m � m9(�; �) := (1� )� 2� and for all t 2 (0;�=(16jAj2)℄ it is true thatE "� 1Xk=1 et1(2m=q�k)Zk�2# � �161m4jAj4 + 2mjAjmina2A �(a)� e�2t�m: (11.5.23)
Proof. Let a = a(m) := 2m=q +m. (11.3.3) shows that q >  � jAj�1, and hene,a < 2m�jAj+ 1�: (11.5.24)We will use the splittingE "� 1Xk=1 et1(2m=q�k)Zk�2# � 2E "�Xk�a et1(2m=q�k)Zk�2#+ 2E "�Xk>a et1(2m=q�k)Zk�2#(11.5.25)and bound both terms on the right hand side separately.When k > a, we have 2m=q � k < �m < ��m, and hene,Xk>a et(2m=q�k)Zk � e�t�mXk>0 Zk (11.4.8)� e�t�m mXk=1Wk;where fWk : k = 1; : : : ; mg are the i.i.d. random variables de�ned in the proof of Lemma11.4.3 and whose distribution has the moment generating funtion�(s) =Xa2A �(a)s1� s�1� �(a)� :This implies thatE "�Xk>a et(2m=q�k)Zk�2# � e�2t�mE "� mXk=1Wk�2#= e�2t�m �mE [W21 ℄ + 2�m2 �E [W1 ℄2�= e�t�m�m�00(1)�m�0(1) +m(m� 1)�0(1)2�= e�t�m�2mXa2A 1�(a) � 3mjAj+m(m� 1)jAj2�: (11.5.26)Note that t�m is a positive power of m with our hoie of t and m.On the other hand,�Xk�a et(2m=q�k)Zk�2 � �Xk�q Zk��Xk�a e2t(2m=q�k)Zk�� a2Xk>0 e2t(2m=q�k)Zk; (11.5.27)



11.5. Montearlo Simulation 449where the last inequality follows from Zk � (k�2m)+ � a. Sine 2t 2 (0;�=8jAj℄ satis�esthe onditions of Theorem 11.4.2, and sine q =  +� � 1 for all m � m9, wherem9 = m9(�; �) := (1� )� 2� ;(11.4.9),(11.5.24) and (11.5.27) implyE "�Xk�a et(2m=q�k)Zk�2# � 4m3jAj�jAj+ 1�2�1 + 4jAjm�e�2t�m: (11.5.28)Using (11.5.25), (11.5.26) and (11.5.28), the result readily follows.We are �nally ready to give a proof of Theorem 11.5.1:Proof. Consider the eventsEm;1 := n 1Xk=1 et1(2m=q�k)�̂k � 1; 8q 2 (0;  ��)o; andEm;2 := n 1Xk=1 et1(2m=(+�)�k)�̂k < 1o:Then (11.5.4) shows Em;1 � f � q̂1g and Em;2 � fq̂1 �  + 2�g, whih implies that1� P ( � q̂1 �  + 2�) � P (
 n Em;1) + P (
 n Em;2) : (11.5.29)Lemma 11.5.2 provides a bound on the �rst term on the right hand side of this in-equality, beause it shows that for m � m6,P (
 n Em;1) � e�l0(1�Æ)2=2: (11.5.30)To bound the seond term on the right hand side of (11.5.29), letW (t; q) be de�ned asin (11.5.2). Then E [W (t;  +�℄ =P1k=1 et1(2m=(+�)�k)�(k). By Chebyhev's inequality,P ��� 1Xk=1 et1(2m=(+�)�k)�̂k � E [W (t1 ;  +�)℄��� � 12!= P ��� 1l0 l0Xl=1 W l(t1;  +�)� E [W (t1 ;  +�)℄��� � 12! � 4E [W (t1 ;  +�)2℄l0 : (11.5.31)Note that for all m � m9, t1 and � satisfy the onditions of Theorem 11.4.2 whih showsthat for all m � max(m9; m10) withm10 = m10(�; �) := infny > 0 : �xjAj+ 4x2jAj2�e� x1��16jAj2 � 12 ; 8x � yo



450 Chapter 11. Large deviation upper bounds for the LCS-problemit is true that E [W (t1 ;  + �)℄ � 1=2. Likewise, Lemma 11.5.3 shows that for all m �max(m9; m11) withm11 = m11(�; �) := inf �y > 0 : �161x4jAj4 + 2xjAjmina2A �(a)� e� x1��16jAj2 � 12 ; 8x � y�it is the ase that E [W (t1 ;  +�)2℄ � 1=2. But then (11.5.31) yieldsP (
 n Em;2) � 8l0 : (11.5.32)The inequalities (11.5.29), (11.5.30) and (11.5.32) show that the theorem holds true form0(�; �; Æ) = max�m6; m9; m10; m11�. The laim on the order of m0 as a funtion of �; �and Æ is easy to hek diretly.11.5.2 Theoretial Complexity of Montearlo SimulationIn this paragraph we will briey disuss the omputational omplexity for simulating anupper bound to a given preision and at a given on�dene level. The analysis has alreadybeen done in Setion 11.5.1, all that remains to do is to extrat the information from theresults we developed there.Let � 2 (0; 1) be a given on�dene level and let � 2 (0; 1) be a given maximumpermissible error. If we wish to simulate an estimate q̂1 that is an upper bound on and anapproximation of the Chv�atal-Sanko� onstant  to within preision � at the on�denelevel �, then how large do the ontrol parameters m and l0 have to be hosen to guaranteesuh an outome? Theorem 11.5.1 shows that ifm � max � 2�� 2� ; m0(�; �; Æ)! ; l0 � 161� � ; Æ = l� 140 ; (11.5.33)thenP ( � q̂1 �  + �) � P ( � q̂1 �  + 2�) � 1� e�l0(1�Æ)2=2 � 8l0 � 1� 16l0 � �;that is to say, (11.5.33) guarantees that q̂1 has the desired properties. Sine �; � and Æ are�xed, it is the �rst part of the term de�ning m that beomes dominant for small �. Thevalue of � that minimizes the required size of m depends on � but is bounded away bothfrom 0 and 1. Thus, if one works with the lower bounds on m and l0 derived in (11.5.33),then m = O ��� 2�� and l0 = O� 11� �� (11.5.34)is required to ompute an upper bound estimate q̂1 on the levels of auray � and on-�dene �. This on�rms what we have mentioned earlier: inreasing m leads to betterpreision whereas inreasing l0 leads to a higher on�dene level.Let us now determine an estimate on the number of elementary omputer operationsrequired to perform the simulation of q̂1 with values of m and l0 as given in (11.5.34): to



11.5. Montearlo Simulation 451onstrut q̂1, one needs to generate l0 independent opies �X l; Y l� of (X; Y ) = �(X1; X2; : : : ); (Y1; Y2; : : : )�.In fat, eah pair has to be generated only up to the �nite random length that ontainsthe full set of m-mathes de�ned by �X l; Y l�. Lemma 11.4.3 and equation (11.4.8) showthat we an expet that only aboutmjAj terms have to be generated for eah pair (X l; Y l)to aount for all m-mathes ontained in it, and Corollary 11.4.2 implies that it is expo-nentially rare in m that more than O(m) terms need to be generated. Computing the setof all m-mathes ontained in a pair (X l; Y l) takes therefore O(m2) omputer operationswhen the Wagner-Fisher algorithm [24℄ is applied. Thus, generating all the m-mathesthat our in the l0 independent opies of (X; Y ) takes O(l0m2) time. Sine eah pair�X l; Y l� ontains at most 3m m-mathes, omputing �̂ and q̂1 from the generated datatakes O(l0m) time. The overall omplexity for the simulation of q̂1 is therefore O�l0m2)operations. Beause of (11.5.34), the omplexity of omputing an upper bound on  atthe preision level � and on�dene level � is thereforeO 1(1� �) � � 4� ! (11.5.35)operations.Note that the omplexity estimate (11.5.35) is an upper bound that orresponds tothe worst ase senario. The pratial omplexity is lower, as we will see in Setion 11.5.3.Note also that we did not speify what we mean by a \omputer operation". In fat, ourarguments are based on the assumption that a omputer an perform operations withreal numbers. We do not enter a disussion of round-o� and �nite-preision issues here,but taking these into aount it is not diÆult to see that (11.5.35) is also a omplexitybound in terms of oating-point operations.11.5.3 Montearlo Simulation in PratieUnfortunately, the omplexity bound (11.5.35) is valid only asymptotially for very largevalues of m, beause it is assumed that m � m0(�; �; Æ): in fat, if A = f0; 1g with � thestandard Bernoulli measure haraterized by �(0) = 1=2 = �(1) (i.e., this is oin ipping),and if � = 0:1 and Æ = 0:1 for example, then the omplexity bound (11.5.35) only holdsform � mm0 = O(106), whih is beyond reah in pratial omputations. Thus, while theomplexity analysis of this setion is interesting on theoretial grounds, pratial methodsannot rely on it. In this setion we will disuss pratial methods that an ahieve abouttwo orret digits of auray with m = 1000 for the oin ipping example mentionedabove. We will see that suh pratial methods pose a new set of hallenges that needareful attention in the implementations.Our theoretial analysis of Setion 11.5.1 ruially depended on the fat that q̂ � +�,where � ' O(m��=2). In essene, what we proved is that for m large enough andq̂ �  +�, the expression inft>0 Xk>0 et(2m=q̂�k)�̂k (11.5.36)is exponentially small in m and thus very lose to zero, and that the probability that q̂1lies in this range is exponentially small in the number l0 of Montearlo simulations.



452 Chapter 11. Large deviation upper bounds for the LCS-problemUnfortunately, for � = 0:5 and m = 1000 for example, this means that q̂1 � +0:1778,whih leads to an upper bound that is not satisfatorily lose to the true value of .Therefore, in the pratial use of the method, we would like to onsider estimator valuesq̂ that are allowed to lie in the interval (;  +�). In this ase the expression (11.5.36) issmaller than 1 only by a small amount.Setting the Stage for a Pratial AlgorithmSine (11.5.36) is a random variable, the basi problem of the pratial approah is todeide whether the sample of this variable obtained in a Montearlo simulation lies signif-iantly below 1 or not. An answer to this question is of ourse provided by Chebyhev'sinequality: we would like to design an estimator q̂ suh that the probability of wronglydeiding that q̂ is an upper bound on  is smaller than 1��, that is, for the spei� valueof t > 0 used in the deision, we require thatP�q̂ < ; l0Xl=1 et(2m=q̂�k)�̂k < 1� � 1� � (11.5.37)But Chebyhev's inequality implies thatP�q̂ < ; l0Xl=1 et(2m=q̂�k)�̂k < 1� � P�E�W (t; q̂)� > 1; 1l0 l0Xl=1 W l(t; q̂) < 1�� P���� 1l0 l0Xl=1 W l(t; q̂)� E �W (t; q̂)���� > 1� 1l0 l0Xl=1 W l(t; q̂)�� V AR�W (t; q̂)�l0�1� 1l0 Pl0l=1W l(t; q̂)�2Therefore, (11.5.37) is satis�ed if1l0 l0Xl=1 W l(t; q̂) � 1�s v̂(t; q̂)(1� �)l0 ; (11.5.38)where v̂(t; q̂) is an upper bound on V AR�W (t; q̂)�.This leads to the problem of determining suh an upper bound v̂(t; q̂). Note that(11.5.23) only applies for q �  + � and hene is not useful in the pratial ontext. Away out of this dilemma is to hoose v̂(t; q̂) as a statistial estimator, de�ned in terms ofthe data fZ lk : k � 1; 1 � l � l0g, suh thatP �V AR�W (t; q̂)� � bv(t; q̂)� � 1� � � (1� �) (11.5.39)for some � 2 (0; 1), and to aept q̂ as an upper bound on  if1l0 l0Xl=1 W l(t; q̂) � 1�s v̂(t; q̂)(1� �)(1� �)l0 ; (11.5.40)



11.5. Montearlo Simulation 453is satis�ed. This proedure yields an upper bound on  at the on�dene level at least �:the probability of wrongly deiding that q̂ is an upper bound on  is bounded as follows,P�q̂ < ; l0Xl=1 et(2m=q̂�k)�̂k < 1�� P�q̂ < ; l0Xl=1 et(2m=q̂�k)�̂k < 1; V AR�W l(t; q̂)� � bv(t; q̂)� + P�V AR�W l(t; q̂)� > bv(t; q̂)�� (1� �)(1� �) + �(1� �) = 1� �:Thus, the hallenge is to design the estimators q̂ and v̂(t; q̂) so that (11.5.39) and(11.5.40) are satis�ed and q̂ is as lose to  as possible, that is, as small as possible. Letus assume for a moment that the hoie of v̂(t; q) has been �xed. Then a good hoie forq̂ is the solution of the following nonlinear optimization problem,q̂ = min(t;q)2R2 q (11.5.41)subjet to 1l0 l0Xl=1 W l(t; q) � 1�s v̂(t; q)(1� �)(1� �)l0q � 0; t � 0:Note that �;m; l0 and the simulated data fZ lk : k � 1; 1 � l � l0g are all parametersthat de�ne (11.5.41), but when omputing q̂ we are interested in the situation wherethese parameters are �xed. Of ourse, the resulting value of q̂ beomes a funtion of theparameters.Let us now disuss how to de�ne the estimator v̂(t; q). It follows from Corollary 11.4.2that �(k) is exponentially small in k for large k. Sine moreover �(k) = 0 for k < 2m,this implies that E [W (t; q)℄, V AR(W (t; q)) and moments of all orders of W (t; q) exist,suggesting the following approah: the empirial variane[V ARl0�W (t; q)� = 1l0 � 1 l0Xk=1�W k(t; q)� 1l0 l0Xl=1 W l(t; q)�2; (11.5.42)is an unbiased estimator of V AR�W (t; q)�. Thus, if reasonable assumptions an be madeabout the distribution of the empirial variane (11.5.42) or a similar expression, thenusing a on�dene interval argument one an de�ne v̂ so that it satis�es (11.5.39).The Pitfalls of Variane EstimationBefore we put the outlined approah into pratie, let us explain the pitfalls that need tobe avoided. If 2m= � k > 0 or, in other words, if k is small in omparison to the typialtotal length of a m-math, then Corollary 11.4.1 shows that�(k) � 2mjAje� 18� 2m �k�2 2k :
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Figure 11.1: �̂ and its lower tail end for m = 100 and l0 = 80000. Data1 represent thefuntion �log��(1=y)� and data2 the funtion 35000y � 142:6.This behavior is qualitatively orret: the �rst plot of Figure 11.1 shows the empirial dis-tribution �̂ obtained in l0 = 80000 simulations for the oin ipping example and m = 100.The seond plot shows that for k in the lower tail end 230 � k � 240 the expression�log��(1=y)� as a funtion of y = k�1 nearly oinides with the funtion 35000y� 142:6.That is, for small k the measure � nearly behaves like �(k) ' exp(a=k+b) with a = �35000and b = 142:6. This leads to the following dilemma:On the one hand, sine P(Z lk > 0) � E [Z lk ℄ = �(k), the event fZ lk > 0g is exponentiallyrare in 1=k for 2m � k < 2m=, and hene this ours rarely in simulations.On the other hand, when Z lk > 0 does our then for q '  the term exp(t(2m=q � k)) isexponentially large in t > 0 for the same range of k, so that exp(t(2m=q� k))�(k) makesa nonnegligible ontribution to W l(t; q).To make matters worse, when Z lk > 0 for some k 2 [2m; 2m=) then generally Z lk > 0 forother nearby values of k beause the random variables fZ lk : k 2 Ng are not independent.Thus, unless t is very small, it ould our that most samples of W l(t; q) lie around
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456 Chapter 11. Large deviation upper bounds for the LCS-problemfor some onstants a > 0, b 2 R. Figure 11.3 shows that this is indeed the ase in theabove disussed example. The plots show the funtiony 7! log�P�W (t; q) > ey��for q = 0:825 and t = 0:3; 0:4 respetively. It an be seen from the data that asymptotiallythe graph behaves like �ay+b, where (a; b) = (2:22; 1:3) for t = 0:3 and (a; b) = (1:6; 0:31)for t = 0:4. The value of a dereases with t.For a reliable estimate of V AR(W ) via (11.5.42) the value of a would have to besubstantially larger than 2, sine for any distribution whose tail deay is governed by(11.5.43) we have E (W (t; q)) < +1 if and only if a > 1 and V AR(W (t; q)) < +1 if andonly if a > 2. Although for very large � the tail deay of W (t; q) is exponential, the fatthat (11.5.43) holds for intermediate to large values of � renders the variane estimationvia (11.5.42) unreliable.Therefore, useful information about the distribution of (11.5.42) is not available, at leastfor reasonably small values of l0 and reasonably large values of t.To further illustrate this point, Figure 11.3 also shows the histograms of 500 samples of[V AR100�W (t; q)� for q = 0:825 and t = 0:3; 0:4 respetively, for the oin ipping examplewithm = 100. The ordinate of the seond histogram, orresponding to t = 0:4, is reportedon a logarithmi sale. Heavy tails of the distribution of [V AR100�W (t; q)� are apparentbeause of the ourrene of massive outliers. The tails beome lighter only very slowlywith inreasing l0. For example, the tails of [V AR1000(W (t; q)) are heavier than thoseof the variable dvarp;1000;1 whih is de�ned below and whose histogram appears in Figure11.4.Avoiding the PitfallsIn the previous paragraph we argued that the evaluating the empirial variane (11.5.42)is unreliable for ertain values of (t; q). How an this problem be overome?On the one hand, one ould impose an upper bound on t, depending on the value ofm,so as to guarantee that (11.5.42) does not have major outliers. In fat, one an argue thatin the typial range of t where (11.5.41) takes its optimum the distribution of (11.5.42)usually does not have too heavy tails. This observation forms the basis of a pratialversion of our method and implementations in Visual C++ undertaken in the reent MSthesis [16℄. A drawbak of this approah is that ertain assumptions about the distributionof (11.5.42) observed for moderately small values of m and l0 an not be veri�ed experi-mentally in reasonable time for the typial values ofm and l0 used in atual omputations.We are therefore going to pursue a di�erent approah: reall that we are interested inthe empirial variane (11.5.42) only beause it is an unbiased estimator of V AR�W (t; q)�.But likewise, so is 1r rXj=1  �1s sXk=1W li;j;k(t; q)�� E [W (t; q)℄!2
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458 Chapter 11. Large deviation upper bounds for the LCS-problemfor eah (i = 1; : : : ; p) when W li;j;k(t; q) (i = 1; : : : ; p; j = 1; : : : ; r; k = 1; : : : ; s) are i.i.d.opies of W (t; q). Choosing l0 = prs large enough, E [W (t; q)℄ ' 1prsPi;j;kW li;j;k(t; q), sothatdvarip;r;s(t; q) := 1r � 1 r�1Xj=1  �1s sXk=1W li;j;k(t; q)�� 1prsXi;j;kW li;j;k(t; q)!2 (11.5.44)is approximately an unbiased estimator of V AR�W (t; q)�.Note that (11.5.44) is an improved version of the empirial variane of 1sPsk=1W li;j;k(t; q),(j = 1; : : : ; r) for a �xed i, the only di�erene being that 1rsPj;kW li;j;k has been replaedby 1prsPi;j;kW li;j;k(t; q) whih an be expeted to have better onverged to E [W (t; q)℄.This replaement ahieves a slight lightening of the distribution tails, and it also intro-dues a small bias in the diretion of overestimating, whih we don't mind, beause ouraim is to derive an upper bound on V AR(W (t; q)).The really powerful advantage of the new variane estimator is the fat that it isomputed on the basis of the averaged data 1sPsk=1W li;j;k(t; q), whih still have algebraiempirial deay but with a rate that beomes faster with inreasing s. Indeed, Figure11.4 shows that (11.5.44) has muh lighter distribution tails than (11.5.42). In order tomake the advantages of averaging apparent, we omputed these histograms using the dataunderlying the �rst histogram of Figure 11.3. In the �rst row of Figure 11.4 we hose(q; r; s) = (50; 1000; 1), that is, no averaging was applied. In the seond row (q; r; s) =(50; 200; 5), and in the third row (q; r; s) = (50; 10; 100) was hosen. The plots in the lefthand olumn show logP 1s sXk=1W li;j;k(0:3; 0:825) > ey!as a funtion of y for s = 1; 5; 100 respetively. Note that the asymptotes of the graphshave dereasing gradient with inreasing s, orresponding to a faster algebrai deay ofthe empirial distribution tails of the averaged data. Not surprisingly, when the deay rateof the averaged data beomes suÆiently fast the distribution of (11.5.44) inreasinglyresembles a Gaussian: a Lilliefors test applied to the data of the third histogram doesnot rejet the hypothesis that the data is Gaussian with a p-value of 17:9%. The seondhistogram shows that even averaging of only 5 independent opies of W (t; q) ahievesa remarkable derease in the heaviness of distribution tails and renders the distributionmuh more symmetri.A Pratial AlgorithmNote that if the distribution of a random variable X is perfetly symmetri, then theprobability that 8 out of 10 independent opies X1; : : : ; X10 of X lie below E [X℄ equalsP�jfi : Xi � E [X℄gj � 8� = 0:0107: (11.5.45)We will assume that if a Lilliefors test on the 5% level does not rejet the hypothesis thatdvar10;r;s is Gaussian, then the distribution is suÆiently symmetri for (11.5.45) to hold
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460 Chapter 11. Large deviation upper bounds for the LCS-problemapproximately for X = dvar10;r;s. Sine we know moreover that E�dvar10;r;s� > V AR(W ),we are on�dent that in this aseP�V AR�W (t; q)� >dvar[8℄10;r;s(t; q)� � 0:0107 = � � (1� �); (11.5.46)with � = 0:214 and � = 0:95, and where dvar[8℄10;r;s denotes the 8-th order statisti ofdvari10;r;s (i = 1; : : : ; 10).Our pratial algorithm for �nding an upper bound on the Chv�atal-Sanko� onstant on the on�dene level � = 95% is thus as follows:1. For given input A and �, set � = 95%, � = 0:214, p = 10 and hoose m, r and s.2. Generate the data vetors Z l (l = 1 : : : ; l0 = p � r � s) using variant of the Wagner-Fisher algorithm.3. For t > 0, q 2 (0; 1), evaluate v̂(t; q) =dvar[8℄10;r;s(t; q).4. Determine (t̂; q̂) by solving the optimization problem (11.5.41).5. If a Lilliefors test on the 5% level rejets the hypothesis that dvari10;r;s(t̂; q̂) (i =1; : : : ; 10) are Gaussian data, then inrease s and/or r and return to Step 2. Other-wise aept q̂ as an upper bound on  on the 95% on�dene level.The last step provides a tool for automatially determining the number of simulationsl0 neessary for the results to be reliable on the 95% on�dene level: it guarantees thatthe assumption on the symmetry of the distribution of dvar10; r; s holds reasonably wellat the optimal values of t and q. Of ourse, the method an be adapted to other valuesof p and �, but we found that our hoie are reasonable values for the limited omputingpower of a desktop mahine.11.6 Implementation and Numerial ResultsA straightforward adaptation of the Wagner-Fisher algorithm [24℄, whih is based ondynami programming, an ompute the set of all m-mathes ontained in a pair of in-�nite random sequenes (X; Y ) in O(m2) time. A areful implementation whih avoidsomputing unneessary matrix entries ahieves a pratial omplexity whih is in e�etloser to O(m logm). Moreover, the method an be implemented in suh a way that onlyO(m) storage of information is needed at any time point during a run of the algorithm.This is important beause implementations based on O(m2) storage quikly spend mostof the exeution time moving information between di�erent hierarhies of memory. Thenontrivial onstraint in the optimization problem (11.5.41) was stritly onvex in all ex-amples we attempted. Therefore, it is easy to �nd the global minimizer using standardsoftware tools. We hose the Sequential Quadrati Programming solver of the MatlabOptimization Toolbox whih ould solve all examples to a preision of 10�8 within a few



11.6. Implementation and Numerial Results 461jAj DLB ALB BLB q̂ DUP AUP P s l02 0.7739 0.8079 0.8118 0.8182 0.8376 0.8607 0.0675 400 80003 0.6338 { 0.7172 0.7235 0.7658 { >0.2 400 120004 0.5528 { 0.6537 0.6601 0.7082 { >0.2 200 8000Table 11.1: New upper bounds q̂ on the 95% on�dene level are omputed withm = 1000.A omparison with BLB shows that q̂ approximates the true value of  to about 5 � 10�3.iterations. The Lilliefors test is implemented in standard software pakages. We hoseto use the Matlab Statistis Toolbox in whih the test an be performed using a simpleMatlab ommand.The method was implemented in Matlab 6.1 and experiments were run on a SunBlade100 workstation. Our aim was numerial auray and reliability rather than speed, andthere remains onsiderable room for optimizing the ode from the latter perspetive, forexample by removing multiple loops and by working with sparse matrix data strutures.In our experiments we onsidered the LCS problems in whih A has jAj = 2; : : : ; 4haraters and where � is the uniform measure. Eah of the experiments reported in Table11.6 took a few days to omplete. The value of q̂ did not hange signi�antly after a fewhundred simulations, but we ontinued simulating until the variane data dvari10;r;s(t̂; q̂)did not rejet the Lilliefors test on the P = 5% level and hene was suÆiently symmet-ri. In all four experiments we hose m = 1000, p = 10 and � = 0:95, that is, q̂ is anupper bound on  at the 95% on�dene level. The p-value P of the Lilliefors test andthe number s of independent opies of Z used in averaging the raw data are listed inthe last two olumns. For omparison we also list the best deterministi lower and upperbounds for these examples, denoted by DLB and DUP respetively, whih were derived byDanik-Paterson [15, 22℄, as well as the best known probabilisti lower and upper boundsat the 95% on�dene level, denoted by ALB and AUP respetively, whih were derivedby Alexander [2℄ on the basis of two simulations of E[L50000℄. Finally, we list the bestknown probabilisti lower bounds BLB without on�dene guarantee whih were obtainedby Baeza-Yates, Gavalda, Navarro and Sheihing [10℄ on the basis of ten simulations ofE[L100000℄.Although for muh larger m roundo� errors might play a signi�ant role, suh e�etsare minimal for m = 1000. For example, in the ase jAj = 2 it is easy to see that theworst-ase round-o� error for the nontrivial onstraint funtion(t; q) := 1l0 l0Xl=1 W l(t; q) +s v̂(t; q)(1� �)(1� �)l0 � 1of (11.5.41) an be bounded by 10�9. On the other hand, at the optimal values (t̂; q̂) one�nds that �� ��q(t̂; q̂)�� > 10�2. Therefore, the bakward error �q̂ satis�es 102 ��q̂ < 10�9,that is �q̂ < 10�11. However, sine q̂ approximates  only to about 5 � 10�3, we haveq̂ �  > 10�4 � �q̂. This shows that rounding errors neither wrongly indiate that q̂ isan upper bound on  nor interfere with its approximating quality.
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Chapter 12Deviation from mean in sequeneomparison with a periodi sequene(submitted)Clement Durringer, J�uri Lember and Heinrih Matzinger
Abstrat. Let Ln denote the length of the longest ommon subsequene of two se-quenes of length n. We draw one of the sequenes i.i.d. whilst the other is non-randomand periodi. We study the asymptoti deviation of the mean of Ln when n tends toin�nity. We �nd that Ln � E[Ln℄ is typially of order pn. This on�rms the onjetureof Waterman [7℄ in the speial ase when one sequene is periodi.12.1 IntrodutionLet fXigi2N and fYigi2N be two ergodi proesses independent of eah other. We assumethat the variables Xi; and Yi have a ommon state spae. Let Ln denote the length ofthe longest ommon subsequene of the two �nite sequenes X1; : : : ; Xn and Y1; : : : ; Yn:A ommon subsequene is a subsequene of X1; : : : ; Xn whih is also a subsequene ofY1; : : : ; Yn: Any ommon subsequene with maximal possible length is a longest ommonsubsequene (for a formal de�nition, see Setion 12.4).The investigation of the longest ommon subsequenes (LCS) of two �nite words is oneof the main problems in the theory of pattern mathing. The LCS-problem plays arole for DNA- and Protein-alignments, �le-omparison, speeh-reognition and so forth.The random variable Ln and several of its variants have been studied intensively byprobabilists, omputer-sientists and mathematial biologists; for appliations of LCS-algorithms in biology see Waterman [6℄.One an show by a simple sub-additivity argument, that the limitlimn!1 E[Ln℄n465



466 Chapter 12. Deviation from mean in periodi aseexists (see [5℄). An interesting question is: what is the asymptoti behavior of the devia-tion from its mean of Ln? (Hene, what is the order magnitude of Ln�E[Ln℄ for large n?)In [7℄, Waterman onjetures that in many ases the deviation from the mean of Ln is oforder pn. In [3℄, Bonetto and Matzinger onsider the ase where the Xi's and the Yi's arei.i.d.. They prove that in ertain ases the utuation is of order pn, indeed. However,the ase where the variables Xi and Yi are i.i.d. Bernoulli variables with parameter 1=2,the order pn seems to be an exeption: The simulations of Bonetto and Matzinger [4℄suggests that in that ase the utuation is of order n1=3.In reality, the models like a language or a geneti ode are often more ompliated thanan i.i.d. sequene. Therefore, in order to understand what determines the size of theutuations of Ln, it beomes essential to investigate di�erent kind of models. Everymodel might apture one aspet of a ompliated real life system. This is why, through aseries of papers, we analyze the order of magnitude of the utuations of Ln for di�erentases.In this paper, we show that when one of the sequene is non-random and periodi with ashort period, then the deviation from the mean of Ln has order pn.Let us mention a little bit more about the history of this �eld. The most widely usedmethod for the omparison of geneti data is a generalization of the LCS-method. (Foran exellent overview of this subjet see Waterman-Vingron [8℄.) In this generalizationa maximal sore is sought over the set of all possible alignments of the two sequenes,where gaps are penalized with a �xed parameter Æ > 0 and mismathes are penalized by a�xed amount � > 0: onsider for example the two words \brot" and \bat". One possiblealignment A of these words is b r o tb a � tThe sore of this alignment is 1 � � � Æ + 1 = S(A ). The mathing pairs of letters \b"and \t" are eah valued with a weight of 1. The gap � in \bat" after the \a" osts �Æ.Furthermore, the mismath between \r" and \a" is penalized by adding �� to the totalsore. IfM�;Æ(X; Y ) denotes the maximal sore amongst all possible alignments of the twowords X and Y , and ifMn(�; Æ) is the random variable de�ned byMn(�; Æ) =M�;Æ(X; Y ),where X and Y are two i.i.d. random sequenes of length n, then the LCS-problem is aspeial ase of the investigation of Mn(�; Æ), beause Ln = Mn(1; 0). Generalizing thearguments from the LCS-problem, one an prove that the limita(�; Æ) = limn!1 E [Mn ℄nexists. Arratia-Waterman [2℄ showed that there is a phase transition phenomenon de�nedby ritial values of � and Æ. In one phase Mn is of linear order in n, whereas in the otherit is logarithmially small in n. Waterman [7℄ onjetures that the deviation of Mn fromits mean behaves like pn.Let us mention a few further details on the history of these problems and the state ofknowledge about them: Waterman-Arriata [2℄ derive a law of large deviation for Ln forutuations on sales larger than pn. Using �rst passage perolation methods, Alexander[1℄ proves that E [Ln ℄=n onverges at a rate of order plogn=n.



12.2. Main result 46712.2 Main resultLet X1; X2; : : : be an i.i.d. sequene of Bernoulli variable with parameter 1=2. LetY1; Y2; : : : be a non-random periodi sequene with period p, that is �xed throughoutthe paper. This means that p > 1 is the smallest natural number suh that: Yp+n = Ynfor all n 2 N . Let Ln be the length of the longest ommon subsequene of the two �nitesequenes, X1; X2; : : : ; Xn and Y1; Y2; : : : ; Yn: A similar argument as in [5℄ implies thatLnn ! Y ; a:s:;where Y is an unknown onstant. Of ourse, Y depends on the periodi senery Y . Inthis paper, we study the asymptoti deviation from the mean of the random variable Ln.Let Dn be de�ned as follows: Dn := Ln � E[Ln℄pn (12.2.1)The main result of this paper is Theorem 12.2.1, whih states that Ln�E[Ln℄ is typiallyof order pn. To prove theorem 12.2.1, we show in Lemma 12.2.2 that the standarddeviation of Ln is of order pn.We need the following large deviation result, (whih is similar to a result of Arriata andWaterman [2℄):Lemma 12.2.1. There exists a onstant b > 0 not depending on n and � > 0 suh thatfor all n large enough, we have:P (jLn � ELnj � n�) � e�bn�2 (12.2.2)Proof. The inequality (12.2.2) is a straightforward appliation of the MDiarmid inequal-ity: Let X1; : : : ; Xn independent A-valued random variables. Let f : An 7! R be afuntion that satis�essupx1;:::;xn;x0i2Ajf(x1; : : : ; xn)� f(x1; : : : ; xi�1; x0i; xi+1; : : : ; xn)j � i; i = 1; : : : ; n:Then for any � > 0P�jf(X1; : : : ; Xn)� Ef(X1; : : : ; Xn)j � �� � 2 exp�� 2�2Pni=1 2i �: (12.2.3)Take f : f0; 1gn ! R to be the length of the longest ommon subsequene betweeni.i.d. random variables X1; : : : ; Xn and non-random Y1; : : : ; Yn. So Ln = f(X1; : : : ; Xn).Clearly the following holds: by hanging an element in a binary sequene (x1; : : : ; xn) 2f0; 1gn, the length of a longest ommon subsequene of x1; : : : ; xn and Y1; : : : ; Yn hangesat most by one. Thus, the assumptions of MDiarmid inequality are satis�ed with i = 1,i = 1; : : : ; n. Hene, the inequality (12.2.3) holds, and (12.2.2) trivially follows.Our main Lemma about the variane is:Lemma 12.2.2. There exist 0 < k < K < 1 not depending on n, suh that for all nlarge enough: Kn � VAR [Ln℄ � kn:



468 Chapter 12. Deviation from mean in periodi aseThe proof of Lemma 12.2.2 is presented at the end of Setion 12.3.Our main theorem studies the sequene fDng as de�ned in (12.2.1).Theorem 12.2.1. The sequene fDng is tight. Moreover, the limit of any weakly on-vergent subsequene of fDng is not a Dira measure.Proof. For s > 0, the inequality (12.2.2) with � = spn impliesP (jDnj � s) = P (jDnj � pn spn) � exp[�ns2n ℄ = exp[�s2℄:The last inequality implies that for any r � 1, the sequene fDng is uniformly boundedin Lr, i.e.supnEjDnjr = supn Z 10 P (jDnjr � s)ds � Z 10 exp[�s 2r ℄ds <1: (12.2.4)Hene, the sequene fDng is uniformly integrable and, therefore, tight.Let Dni ) Q be a weakly onverging subsequene of fDng. Suppose Q = Æ, for a 2 (�1;1). By the ontinuous mapping theorem, D2ni ) Æ2 or, equivalently, thesequene D2ni onverges to the onstant 2 in probability. Sine supnEjDnj3 < 1, thesequene fD2ng is uniformly integrable, as well. Hene, the weak onvergene impliesthat: ED2ni = VARDni ! 0, whih ontradits Lemma 12.2.2.12.3 Proof of Lemma 12.2.2This setion is dediated to the proof of Lemma 12.2.2.12.3.1 Main idea and numerial exampleLemma 12.2.2 states that the variane of Ln is of order n. To prove this, we show thatLn an be written as the sum of two independent parts: Z~T and L~Tn (see 12.3.7). Thevariane of Z~T is of order n, and so is the variane of Ln.Let us present a simple numerial example: Let the periodi sequene Y have period 2,suh that: Y1Y2Y3Y4Y5Y6 : : : = 010101 : : :Let l 2 12N. ( Here the number 12 orresponds to 4p2). Assume that in the neighborhoodof l, the sequene X is equal to the periodi sequene Y (exept possibly in l). Morepreisely, assume that we observe:Yl�12Yl�11Yl�10 : : : Yl+9Yl+10Yl+11 = 010101010101a101010101010;where a an be equal to either zero or one. A point l satisfying the last equality above isalled a replia point. If a oinides with the periodi pattern, we say that the replia pointl mathes. In this numerial example, this would happen if a = 0. We all [l�4p2; l+2p2℄the interval of the replia point l. The main ombinatorial idea in this artile is ontainedin Lemma 12.3.1. It states that for a replia point l, the sore Ln is inreased by one



12.3. Proof of Lemma 12.2.2 469when l mathes. Furthermore, this not inuened by the sequene X outside the intervalof the replia point l. This fat is intuitively lear and it is simple to �nd a heuristiproof. However, the formal proof of Lemma 12.3.1 is diÆult. The whole Setion 12.4 isdediated to it.The variable Z~T is de�ned to be the number of replia points (among the �rst n repliapoints, where  > 0 is a onstant not depending on n). From Lemma 12.3.1, it followsdiretly that Ln an be written as a sum of Z~T and a term whih depends only on thesequene X \outside the replia points intervals". This leads diretly to the independeneZ~T and L~Tn .12.3.2 Replia pointsWe an assume without restrition that Y0 = 1. For l 2 N we de�ne the integer interval:Jl := [l � 4p2; l + 4p2 � 1℄:Let Il designate Jl minus its enter: Il := Jl � flg:De�nition 12.3.1. Let l 2 N, with l > 4p2. We say that l is a replia point if thefollowing ondition holds: Yz = Xz; 8z 2 Il:If l is a replia point and Xl = Yl, then we say that the replia point l mathes.We need some more notation. We denote by Al the event that l is a replia point anddenote by Zl the Bernoulli variable whih is equal to one if and only if l is a replia pointwhih mathes. Thus, Zl = 1 if Al and Xl = Yl both hold, otherwise Zl = 0.We denote by Xjl the �nite sequene obtained from X1; : : : ; Xn by removing Xl, i.e.Xjl := (X1; X2; : : : ; Xl�2; Xl�1; Xl+1; Xl+2; : : : ; Xn):We denote by �l the �-algebra generated by Xjl, i.e.�l := �(Xij1 � i � n; i 6= l):Let Lln designate the length of the longest ommon subsequene of Xjl and Y1; : : : ; Yn.The next Lemma is the fundamental ombinatorial idea for replia points. It says thatwhen l is a replia point, then the length of the longest ommon subsequene an bedeomposed as Ln = Zl + Lln, where Zl omes from the replia point and Lln depends onXjl, only. Suh a deomposition is useful, beause Al 2 �l, i.e. whether l is a repliapoint or not does not depend on Xl. The proof of Lemma 12.3.1 is given in Setion 12.4.Lemma 12.3.1. Let l 2 N so that 4p2 < l � n� 4p2 � 1. If Al holds, thenLn = Zl + Lln: (12.3.1)



470 Chapter 12. Deviation from mean in periodi ase12.3.3 Several replia pointsIn the following,  > 0 is a onstant not depending on n suh that n 2 N . (We hoose > 0 to be small enough, so that with high probability there are at least n replia pointsin [0; n℄. By Lemma 12.3.4, it is enough to take  suh that: 0 <  < (0:5)8p2�1.) LetKn � N n designate the set of all integer vetors~k = (k1; k2; : : : ; kn)suh that ki + 8p2 � ki+1,8i = 1; : : : ; n� 1 and 4p2 < k1 and kn < n� 4p2.Let ~k = (k1; k2; : : : ; kn) 2 Kn: We de�ne the �-algebra:�~k := � (Xij i 2 [0; n℄ and i 6= kj; 8j 2 [1; n℄) :We denote by A~k the event that ki is a replia point for all i = 1; : : : ; n. Clearly A~k 2 �~k.Suppose A~k holds. Let Z~k designate the number of replia points among k1; k2; : : : ; knwhih are mathes. So, if A~k holds, and ~k = (k1; : : : ; kn) 2 Kn, thenZ~k := nXi=1 Zki:Let Xj~k designate the �nite sequene one obtains by removing from X the bits Xki; i =1; : : : ; n. Hene, for ~k = (k1; : : : ; kn) 2 Kn,Xj~k := fXij i 2 [0; n℄ and i 6= kj; 8j 2 [1; n℄g :Finally, let L~kn designate the length of the longest ommon subsequene of Xj~k and Y .Lemma 12.3.2. Let ~k 2 Kn. When A~k holds, thenLn = Z~k + L~kn: (12.3.2)Proof. The proof follows from Lemma 12.3.1 by indution.Let n = 2, i.e. ~k = (l1; l2). Let Zi = Zli, i = 1; 2. Let us show thatLn = L~kn + Z1 + Z2: (12.3.3)Let L1+n be length of the longest ommon subsequene of Xjl1 and Y1; : : : ; Yn providedthat Z2 = 1. Let L1�n be length of the longest ommon subsequene of Xjl1 and Y1; : : : ; Ynprovided that Z2 = 0. Finally, let L1n := Ll1n , so L1n is either L1+n or L1�n .At �rst note, L1�n + 1 = L1+n : (12.3.4)Let L+n and L�n denote the length of the longest ommon subsequene of X1; : : : ; Xn andY1; : : : ; Yn provided that Z2 = 1 and Z2 = 0, respetively. From Lemma 12.3.1 followsthat L+n = L�n + 1 as well as L1+n + Z1 = L+n and L1�n + Z1 = L�n . Hene, (12.3.4) holds.Clearly, L1n � L~kn � L1n� 1. Hene, L~kn is equal to L1+n or L1+n � 1 = L1�n . If L~kn = L1+n , we



12.3. Proof of Lemma 12.2.2 471would have that L~kn > L1�n , a ontradition. Hene L~kn = L1+n � 1 = L1�n : Suppose Z2 = 1.Then Ln = L+n = L1+n + Z1, soL~kn + Z1 + Z2 = L~kn + Z1 + 1 = L1+n + Z1 = L+n = Ln:Suppose Z2 = 0. Then Ln = L�n = L1�n + Z1, soL~kn + Z1 + Z2 = L~kn + Z1 = L1�n + Z1 = L�n = Ln:Let n = m + 1, i.e. ~k = (l1; l2; : : : ; lm+1). Let ~m := (l1; l2; : : : ; lm), Zm = Pmi=1 Zli,Zm+1 := Zlm+1. Suppose (12.3.2) holds for n = m, i.e.Ln = L~mn + Zm: (12.3.5)Let us show that Ln = L~kn + Zm + Zm+1:The argument is similar to the ase m = 2. Let Lm+n be equal to L~mn provided thatZm+1 = 1. Let Lm�n be equal to L~mn provided that Zm+1 = 0. At the �rst, we prove thatLm�n + 1 = Lm+n : (12.3.6)Let L+n and L�n denote the length of the longest ommon subsequene of X1; : : : ; Xn andY1; : : : ; Yn provided that Zm+1 = 1 and Zm+1 = 0, respetively. From Lemma 12.3.1follows that L+n = L�n + 1. From (12.3.5) follows Lm+n +Zm = L+n and Lm�n +Zm = L�n =L+n � 1. Hene, (12.3.6) holds.Clearly, L~mn � L~kn � L~mn � 1. Hene, L~kn is equal to Lm+n or Lm+n � 1 = Lm�n . If L~kn = Lm+n ,we would have that L~kn > Lm�n , a ontradition. Hene L~kn = Lm+n � 1 = Lm�n :Suppose Zm+1 = 1. Then by (12.3.5), Ln = L+n = Lm+n + Zm, soL~kn + Zm + Zm+1 = L~kn + Zm + 1 = Lm+n + Zm = L+n = Ln:Suppose Zm+1 = 0. Then by (12.3.5), Ln = L�n = Lm�n + Zm, soL~kn + Zm + Zm+1 = L~kn + Zm = Lm�n + Zm = L�n = Ln:12.3.4 IntervalsLet Ui, i = 1; 2; : : : be the disjoint onseutive intervals with length 8p2, i.e. (reall thede�nition of Jl) Ui := Ji4p2+1 = [(i� 1)8p2 + 1; i8p2℄; i = 1; 2; : : : :Let ui := i4p2+1. Whether ui is a replia point or not, depends on fXz : z 2 Ui; z 6= uig.Let Ti designate the i-th replia point. Formally, we de�ne Ti by indution on i. Fori = 1, we put: T1 := minfujjuj is a replia point; j > 0g:



472 Chapter 12. Deviation from mean in periodi aseOne, Ti is de�ned, we de�ne Ti+1 in the following way:Ti+1 := minfuj > Tijuj is a replia point ; j > 0g:Let  > 0 be a onstant not depending on n. We de�ne the eventEn := fTn � ngwhih guarantees that there are at least n replia points in [0; n℄.Let ~T := ((T1; T2; : : : ; Tn); if En holds;0; otherwise ;Xj~T := (Xj~k; if ~T = ~k;X; if ~T = 0: Z~T := (Z~T := Z~k; if ~T = ~k:0; if ~T = 0:In other words, when En holds, Xj~T is the sequene obtained by removing the bitsXT1 ; XT2; : : : ; XTn from the sequene X and Z~T is the number of mathing replia pointsin ~T .With L0n := Ln, we obviously have Ln = Z~T + L~Tn : (12.3.7)Finally, let � := �(~T ;Xj~T ):Clearly, L~Tn is �-measurable and En 2 �:Lemma 12.3.3. Conditional on � and En, Z~T has binomial distribution with parameters1=2 and n: L�Z~T ��~T = ~k;Xj~k�= B(1=2; n);for all ~k 2 Kn.Proof. By interval onstrution, it holds that f~T = ~kg 2 �(Xj~k). The vetor ~Z :=(Zk1; : : : Zkn) is �(Xk1 ; : : : ; Xkn)-measurable. Those �-algebras are independent, hene ~Zis independent of �(Xj~k). By interval-onstrution, ~Z onsists of independent omponents.Sine Xi is a Bernoulli 1=2-random variable, the statement holds.The next Lemma shows that we an hoose  > 0 so that for big n, there are typiallyat least n replia points in [0; n℄.Lemma 12.3.4. If  < (0:5)8p2�1; then limn!+1 P (En) = 1:



12.4. Combinatoris 473Proof. Let �i be a Bernoulli random variable that is 1 if and only if ui is a replia point.Clearly, P (�i = 1) = (0:5)8p2�1 =: q andEn = n nXi=1 �i � no:Then, by Hoe�ding inequality,P (En) = P� nXi=1 �i < n� = P� nXi=1 �i � qn < (� q)n� � exp[�2(� q)2n℄! 0:
12.3.5 Proof of Lemma 12.2.2From (12.2.4) it follows: 9K <1 suh thatsupnED2n = supnVAR[Ln℄n < K:We now prove the existene of k > 0.Clearly VAR[Ln℄ = E ( VAR[Lnj�℄ ) + VAR ( E[Lnj�℄ ) � E ( VAR[Lnj�℄ ) :By (12.3.7), Ln = Z~T + L~Tn . Sine L~Tn is �-measurable, it holds that:VAR[Lnj�℄ = VAR[Z~T j�℄: (12.3.8)By Lemma 12.3.3, on En = fT 6= 0g, the onditional distribution of Z~T is binomial. OnEn, Z~T = 0 and hene E(IEnVAR[Z~T j�℄) = 0. Therefore:E(VAR[Lnj�℄) = E(VAR[Z~T j�℄) = E(IEnVAR[Z~T j�℄)+E(IEnVAR[Z~T j�℄) = 0:25n�P (En):By Lemma 12.3.4, for all n large enough we have:0:25n � P (En) � kn;for any k > 0 not depending on n, suh that k < 0:25.12.4 CombinatorisThe rest of this paper is devoted to the proof of Lemma 12.3.1.12.4.1 PreliminariesBloksWe need to introdue some neessary formalism. In the present Setion, we onsider thenon-random sequenes, only. At �rst, we formalize the ommon subsequene.



474 Chapter 12. Deviation from mean in periodi aseLet x1; : : : ; xn and y1; : : : ; ym be two �xed �nite sequenes. A ommon subsequene ofx1; : : : ; xn and y1; : : : ; ym is a stritly inreasing mappingv : f1; : : : ; ng ,! f1; : : : ; mg: (12.4.1)Notation (12.4.1) means: There exists I � f1; : : : ; ng and a mappingv : I ! f1; : : : ; mgsuh that yv(i) = xi; 8i 2 Iand v is stritly inreasing: v(i2) > v(i1), if i2 > i1.Let x1; : : : ; xn and y1; : : : ; ym be two sequenes and let v be a ommon subsequene.Sine v is de�ned as a mapping (12.4.1), in what follows, we would like to distinguishthe sequene on whih v is de�ned from the image sequene of v. Therefore, we say: v isa ommon subsequene between x1; : : : ; xn and y1; : : : ; ym, implying that v is de�ned as(12.4.1), i.e. from the sequene x1; : : : ; xn into y1; : : : ; ym.The set I in (12.4.1) shall be denoted byDom(v):The length of v, denoted as jvj, is jDom(v)j.With J � f1; : : : ; ng, we denote by vjJ the restrition of v to J . The restrition as asubsequene of the ommon sequene v is de�ned even when J is not a subset of Dom(v).For a 2 f1; : : : ; ng, we de�nev(a) = v(maxfi 2 Dom(v) : i < ag) + 1; �v(a) = v(minfi 2 Dom(v) : i > ag)� 1:Our analysis is based on the optimality priniple: If v is a longest ommon subsequene,then for any [a; b℄ � f1; : : : ; ng, the subsequenes:vj[1;a�1℄ : f1; : : : ; a� 1g ,! f1; : : : ; �v(a� 1)gvj[a;b℄ : fa; : : : ; bg ,! fv(a); : : : ; �v(b)gvj[b+1;a℄ : fb+ 1; : : : ; ng ,! fv(b+ 1); : : : ; mgare all with the longest possible length.Note: [v(a); �v(b)℄ an also be empty. Moreover, the intervals [1; �v(a� 1)℄ and [v(a); �v(b)℄as well as [v(a); �v(b)℄ and [v(b+1); m℄ an be overlapping, but the overlapping region doesnot ontain any elements of ommon subsequene v.Let v be a ommon subsequene, i.e. a mapping satisfying (12.4.1). Let fA1; : : : ; Algbe a partition of Dom(v) that satis�es:



12.4. Combinatoris 475i) Ai is an integer interval for every i, i.e. Ai = fj; j + 1; : : : ; j + sg for some s � 0.ii) v is linear on Ai, i.e.v(j + 1) = v(j) + 1; for every j 2 Ai suh that j + 1 2 Ai:Clearly there exists at least one partition that satis�es i) and ii): the partition, whereAi = fig for every i 2 Dom(v). This is the maximal partition. Let B�(v) = B� =fB1; � � � ; Brg be the minimal partition that satis�es i) and ii), i.e. every other partitionis a sub-partition of B�. Clearly B� exists and is unique. We all the elements of B� thebloks of v. By i), every blok is an interval, the length of B is the number of the elementsin B.Proposition 12.4.1. Let fB1; : : : ; Brg be the bloks ofv : f1; : : : ; ng ,! f1; : : : ; mg:Then maxfn;mg � br � 12  + rXi jBij = br � 12 + jDom(v)j: (12.4.2)Proof. Let nj := maxBj; j = 1; 2; : : : ; r: From the de�nition of bloks, it follows: n2 �jB1j+ jB2j+ 1 or v(n2) � jB1j+ jB2j+ 1, i.e by hanging the blok, v "loses" an elementeither in the set on whih v is de�ned or in the image set of v. Similarly, n4 � jB1j+jB2j+2or v(n4) � jB1j+ jB2j+ 2. Hene, for an even r,maxfnr; v(nr)g � rXi jBij+ r2 :Sine maxfn;mg � maxfnr; v(nr)g, (12.4.2) follows.The bloks between two subsequenes of a periodi sequeneIn the following, we investigate ommon subsequenes between �nite periodi sequenes.We start with a simple but yet useful observation, proved in the Appendix.Proposition 12.4.2. Let x1; x2; : : : be a periodi sequene with period p. If k � p is anonnegative integer suh that xj = xk+j; 8j = 1; : : : ; p; (12.4.3)then k = p.Assume now that x1; : : : ; xn and xm+1; : : : ; xm+n are two subsequenes of a peri-odi sequene fxng with period p. Let v be a ommon subsequene of x1; : : : ; xn andy1; : : : ; yn = xm+1; : : : ; xm+n, i.e.v : f1; : : : ; ng ,! f1; : : : ; ng:Let B be a blok of v. The di�erene v(i) +m� i; where i 2 B is alled the bias of B.



476 Chapter 12. Deviation from mean in periodi aseWhat is the meaning of the bias? Suppose v is a ommon subsequene, B = fj; : : : ; j+sgis a blok of v with the bias 2. This means that the ommon subsequene v inludesthe elements xj; : : : ; xj+s of x1; : : : ; xn. We also know, how these elements are mathedwith the elements of y1; : : : ; yn: xj = yj+2�m, xj+1 = yj+3�m; : : : ; xj+s = yj+s+2�m. Sineyj = xj+m, we get xj = xj+2, xj+1 = xj+3; : : : ; xj+s = xj+s+2. Moreover, for xj�1 (xj+m+1),it holds: xj�1 (xj+m+1) either does not belong to the ommon subsequene or it is mathedwith an element not equal to xj+1 (xj+m+3).Hene, the bias 0 means that every element of B is mathed with itself { the identitymathing. By periodiity, the bias np means essentially the same. We say that B isunbiased, if the bias of B is np for a n 2 N . Otherwise B is biased. Proposition 12.4.2an be restated:Proposition 12.4.3. Let B be a biased blok. Then the length of B is at most p� 1.Example 12.4.1. Let us give a numerial example. Let(x1; : : : ; x20) = (00111001110011100111);(y1; : : : ; y20) := (x2; : : : ; x21) = (01110011100111001110):So, we onsider the subsequenes of a periodi sequene with the period p = 5. Letv : f1; : : : ; 20g ,! f1; : : : ; 20g;with v(1) = 1; v(3) = 3; v(4) = 4; v(5) = 7; v(6) = 10; v(7) = 11; v(8) = 12v(14) = 13; v(15) = 14; v(16) = 15; v(17) = 16; v(18) = 17; v(19) = 18be a ommon subsequene. Obviously,Dom(v) = f1; 3; 4; 5; 6; 7; 8; 14; 15; 16; 17; 18; 19gand v has 5 bloks:B1 = f1g; B2 = f3; 4g; B3 = f5g; B4 = f6; 7; 8g; B5 = f14; 15; 16; 17; 18; 19g:Sine m = 1, the orresponding biases areb(B1) = 1� 1 + 1 = 1; b(B2) = 1; b(B3) = 7� 5 + 1 = 3; b(B4) = 5; b(B5) = 0:Hene, the bloks B4 and B5 are unbiased. The lengths of the bloks are, respetively,1,2,1,3,6. The length of v, is jvj = jB1j+ jB2j+ jB3j+ jB4j+ jB5j = 1+2+1+3+6 = 13.Sometimes we regard v as a subsequene between(x1; : : : ; x20) = (00111001110011100111);(x2; : : : ; x21) = (01110011100111001110);i.e. v is a mapping v : f1; : : : ; 20g ,! f2; : : : ; 21g:with v(1) = 2; v(3) = 4; v(4) = 5; v(5) = 8; v(6) = 11; v(7) = 12; v(8) = 13v(14) = 14; v(15) = 15; v(16) = 16; v(17) = 17; v(18) = 18; v(19) = 19:With this notation, the bloks and their biases remain unhanged, the bias of a blokB = fi; : : : ; jg is just de�ned as v(i)� i.



12.4. Combinatoris 47712.4.2 The struture of a ommon subsequene between peri-odi subsequenesThe struture of a ommon subsequene between periodi subsequenes withlength 8p2In the present Subsetion, we onsider the subsequenes of a periodi sequene with length8p2, i.e. we onsider the sequenes x1; : : : ; x8p2 and xm+1; : : : ; xm+8p2 . We are interestedin the length and the struture of (any) longest ommon subsequene of these two subse-quenes. Of ourse, when m is a multiple of p, then the longest ommon subsequene isjust the identity mathing. Hene, we assume that m is not a multiple of p. Without lossof generality, we assume that 0 < m < p. Moreover, it is easy to see that without loss ofgenerality we an (and we do) assume that0 < m � p2 :Obviously, there exists a ommon subsequene v with length 8p2�m: the identity math-ing. Suh a v has only one blok with bias 0.Proposition 12.4.4. Let x1; : : : ; x8p2 and xm+1; : : : ; xm+8p2 be the subsequenes of a peri-odi sequene, 0 � m � p2 : Then the length of the longest ommon subsequene is 8p2�m.Proof. Let v be a longest ommon subsequene, let fB1; : : : ; Brg be the bloks of v. Note:if v has an unbiased blok, then the length of v is at most 8p2 � m. Indeed: supposethat the bias of Bj = fij; ij + 1; : : : ; ij + sg s � 0 is 0. Let nj�1 = maxBj�1. Sinev(nj�1) � v(ij) � 1 = ij � 1 � m, we have that the length of vjB1[���[Bj�1 is at mostv(nj�1) = ij � m � 1. Similarly, the length of vjBj+1[���[Br is at most 8p2 � (ij + s). Sothe length of v is at most (ij �m� 1) + (s+ 1) + (8p2 � (ij + s)) = 8p2 �m.If the bias of Bj is kp for a k 2 N ; k 6= 0 the same argument holds.Hene, if the length of v is bigger than 8p2 � m, then all bloks fB1; : : : ; Brg must bebiased. By Proposition 12.4.3, the length of a biased blok is at most p � 1. Thus, thenumber of bloks is bounded below r � 8p2�m+1p andbr � 12  � b8p2 �m+ 1� p2p  � b4p� m� 12p � 12 � 4p� 1 > m+ 1: (12.4.4)From Proposition 12.4.1, it follows jDom(v)j < 8p2�m�1 that ontradits the assumptionthat the length of v is at least 8p2 �m + 1.Corollary 12.4.1. Let v be a longest ommon subsequene, and let fB1; : : : ; Brg be itsbloks. Then there exists one and only one blok Bj that is unbiased. Moreover, the biasof Bj is 0 or p, and it an be p only, when m = p2 .Proof. From (12.4.4) follows that v has at least one unbiased blok. Sine v is the longest,Proposition 12.4.1 implies that v has only one unbiased blok, say Bj. If m < p2 , theargument used in the beginning of the proof of Proposition 12.4.4 yields that the bias ofBj is 0. If m = p2 , then the bias of Bj an be p as well.Corollary 12.4.2. Let v be a longest ommon subsequene, let fB1; : : : ; Brg be its bloks.Let Bj = fij; : : : ; ij + sg be its unbiased blok. Let b 2 f0; pg be the bias of Bj. Then thelength of vjB1[���[Bj�1 is ij �m� 1+ b2 and the length of vjBj+1[���[Br is 8p2� (ij + s)� b2 .



478 Chapter 12. Deviation from mean in periodi aseProposition 12.4.5. Let v be a longest ommon subsequene, let Bj = fij; : : : ; ij + sgbe the unbiased blok of v. Let b 2 f0; pg be the bias of Bj. Then the integer interval[mp + 1� b2 ; 8p2 �m(p� 1)� b2 ℄ � Bj. In partiular, [mp+ 1; 8p2 �mp℄ � Bj.Proof. Let us �rst onsider the ase b = 0. By Corollary 12.4.2, the length of vjB1[���[Bj�1is ij �m� 1. SinevjB1[���[Bj�1 : f1; : : : ; ij � 1g ,! f1; : : : ; ij �m� 1g;it holds that: vjB1[���[Bj�1(f1; : : : ; ij � 1g) = f1; : : : ; ij �m� 1g:This means that v(nj�1) = ij �m� 1 = jB1j+ � � �+ jBj�1j; (12.4.5)where nj�1 = maxBj�1. Hene, by hanging the bloks, v loses only the elements on theset where it is de�ned. Up to the blok Bj there are j� 1 hanges. Hene, v loses at leastj � 1 elements, so that: ij > jB1j+ � � �+ jBj�1j+ j � 1:On the other hand, by (12.4.5):ij = jB1j+ � � �+ jBj�1j+ (m+ 1);and thus j � 1 < m + 1 or j � 1 � m. Sine the bloks B1; : : : ; Bj�1 are biased, theirlength is at most p� 1. Therefore, ij � m(p� 1) + (m+ 1) = mp+ 1:By Corollary 12.4.2, the length of vjBj+1[���[Br is at most 8p2 � (ij + s). SinevjBj+1[���[Br : fij + s+ 1; : : : ; 8p2g ,! fij + s�m + 1; : : : ; 8p2g;it holds: Dom(vjBj+1[���[Br) = fij + s+ 1; : : : ; 8p2g:The last equality implies that:8p2 � (ij + s) = jBj+1j+ � � �+ jBrj: (12.4.6)Hene, after Bj, by hanging the bloks, v loses the elements on the image set, only. FromBj to Br there are r � j hanges, so that:v(ij + s) + (r � j) + jBj+1j+ � � �+ jBrj � 8p2:Hene, with v(ij + s) = ij + s�m, we have that:(r � j) � 8p2 � (jBj+1j+ � � �+ jBrj)� v(ij + s) = ij + s� v(ij + s) = m:Therefore, (12.4.6) implies 8p2 � (ij + s) � m(p� 1), so ij + s � 8p2 �m(p� 1):Finally, let us onsider the ase b = p. This an happen only, when m = p2 . ThenvjB1[���[Bj�1 : f1; : : : ; ij � 1g ,! f1; : : : ; ij +m� 1g;vjBj+1[���[Br : fij + s+ 1; : : : ; 8p2g ,! fij + s+m+ 1; : : : ; 8p2gand the arguments used before yield ij � (p� 1)m+ 1 and 8p2 � (ij + s) � mp.



12.4. Combinatoris 479Proposition 12.4.5 states that a ertain neighborhood of (4p2 + 1) belongs to theunbiased blok. This means that, for every longest ommon subsequene, the elementsx(4p2+1)�p2 ; x(4p2+1)�p2+1; : : : ; x4p2+1; : : : ; x(4p2+1)+p2are inluded and diretly mathed. In partiular, the element x4p2+1 belongs to the sameblok and are diretly mathed. Similarly, x2p2+1+m is diretly mathed. This impliesthat we an de�ne x1; : : : ; xn = xm+1; : : : ; xm+n and y1; : : : ; yn = x1; : : : ; xn. Then, forevery longest ommon subsequene, the element x2p2+1 is diretly mathed.The struture of a ommon subsequene between periodi subsequenes withunequal lengthIn the previous Subsetion, we analyzed the longest ommon subsequenes of two periodisubsequenes with length 8p2 in detail. We now onsider the longest ommon subsequenesbetween two �nite periodi subsequene with unequal length. We study the ase, whenone sequene is still with length 8p2 and length of the other sequene di�ers from 8p2 byat most 2(p� 1). Our aim is still to show that any longest ommon subsequene ontainsa unbiased blok that is loated in the enter.The proofs used in the present Subsetion are essentially the same as the ones in theprevious Subsetion, but for a few additional tehnialities. Therefore, we leave the proofsfor the Appendix.Proposition 12.4.6. Let x1; : : : ; x8p2 and xl�m1+1; : : : ; xl+8p2+m2 be the subsequenes ofa periodi sequene, with 0 � m1 � p � 1, �m1 � m2 � p � 1 and l = jp, for a j 2 Z.Let t1 = (p � m1) mod p, t2 = maxf�m2; 0g. Then the length of the longest ommonsubsequene is 8p2�minft1; t2g and any longest ommon subsequene between x1; : : : ; x8p2and xl�m1+1; : : : ; xl+8p2�1 inludes an unbiased blok whih ontains x4p2+1.Proposition 12.4.7. Let x1; : : : ; x8p2 and xl+m1+1; : : : ; xl�m2+8p2 be the subsequenes ofa periodi sequene, 0 � m1 � p � 1, �m1 � m2 � p � 1 and l = jp, for a j 2 Z.Let t1 = (p � m1) mod p, t2 = maxf�m2; 0g. Then the length of the longest ommonsubsequene is 8p2�m1�m2, if m2 � 0 and 8p2�minfm1; p+m2g; else. Moreover, anylongest ommon subsequene between x1; : : : ; x8p2 and xl+m1+1; : : : ; xl�m2+8p2 inludes anunbiased blok whih ontains x4p2+1.The struture of a ommon subsequene between periodi subsequenes withmismathIn the present Subsetion, we onsider the subsequenes of a periodi sequene withthe length 8p2. The only di�erene is that sequene x1; : : : ; x8p2 has a mismath : theelement x4p2+1 has been hanged. So, formally, we onsider the sequenes z1; : : : ; z8p2 andxm+1; : : : ; xm+8p2 , where zi = xi, i = 1; : : : ; 4p2; 4p2 + 2; : : : ; 8p2 and z4p2+1 6= x4p2+1.Proposition 12.4.8. Let z1; : : : ; z8p2 and xt+1; : : : ; xt+8p2+h be the subsequenes of a pe-riodi sequene with mismath, 0 � t � p2 ; 0 � h � p� 2t. Then the length of the longestommon subsequene is 8p2 � t� 1.



480 Chapter 12. Deviation from mean in periodi aseProof. Let v be a longest ommon subsequene of z1; : : : ; z8p2 and xt+1; : : : ; xt+8p2+h. Thelength of v is learly at least 8p2 �m� 1.Let us show that both subsequenes vj[1;4p2℄ and vj[4p2+2;8p2℄ have an unbiased blok. By(12.4.4), v has at least one unbiased blok Bj = fij; : : : ; njg. Assume ij > 4p2 + 1. Itholds that: vj[1;ij�1℄ : f1; : : : ; ij � 1g ,! f1; : : : ; ij � 1�m+ bg;where b 2 f0; 2tg is the bias of Bj. Clearly the length of vj[1;ij�1℄ is at least ij � 1� t+ b2 .Let B1; : : : ; Br1 be the bloks of vj[1;ij�1℄. Suppose they all are biased. Then, with u =ij � (4p2 + 2), we �nd:r1 � 12 � ij � 1� (p� 1)� t+ b22(p� 1) = 4p(p� 1) + 2 + 3p+ u� t+ b22(p� 1) > 2p:By Proposition 12.4.1, ij � 1+ b2 � 2p+ jvj[1;ij�1℄j or jvj[1;ij�1℄j � ij � 1 + b2 � 2p, whih isa ontradition. Sine the argument holds for any u, the unbiased blok is ontained inf1; : : : ; 4p2g.Hene, B1; : : : ; Br1 ontain at least one unbiased blok.Suppose the unbiased blok Bj is ontained in f1; : : : ; 4p2g. It holds that:vj[nj+1;8p2℄ : fnj + 1; : : : ; 8p2g ,! fnj + 1 + b; : : : ; t+ 8p2 + hg;where h = 0, if b = 2t. Then jvj[nj+1;8p2℄j � 8p2�nj � 1� b2 : Let C1; : : : ; Cr2 be the bloksof vj[nj+1;8p2℄. Suppose they all are biased, hene, with u = 4p2 � nj,r2 � 12 � 4p(p� 1) + 3p+ u� b22(p� 1) > 2p:By Proposition 12.4.1,h + t+ 8p2 � nj � 1 � jvj[nj+1;8p2℄j+ 2p � 8p2 � nj � 1 + 2p� b2 ;whih is a ontradition. Sine the argument holds for any u, the unbiased blok is on-tained in f4p2 + 1; : : : ; 8p2g.Let l > j and Bj,Bl be unbiased bloks: Bi � f1; : : : ; 4p2g, Bl � f4p2 + 2; : : : ; 8p2g.If t < p2 , then the bias of both bloks is 0. Sine v is the longest ommon subsequene, itfollows that jvj = 8p2 � t� 1 and the bloks are onseutive: l = j + 1 andBj = fij; : : : ; 4p2g; Bl = Bj+1 = f4p2 + 2; : : : ; 4p2 + sg: (12.4.7)If t2 ; p > 2, then the bias of both bloks an be p as well. However, the length of v is still8p2 � t� 1 and (12.4.7) holds. In both ases, the element z4p2+1 is not inluded in v.Finally, if t = 1 and p = 2, it might be that the bias of Bj is 0, the bias of Bj+1 is 2 andthe element z4p2+1 is inluded in v. The length of v is still however equal to 8p2� t�1Proposition 12.4.9. Let z1; : : : ; z8p2 and xm+1; : : : ; xm+8p2�h be the subsequenes of aperiodi sequene with mismath, 0 � 2m � p + h; 0 � h � m. Then the length of thelongest ommon subsequene is 8p2 �m� 1.



12.4. Combinatoris 481Proof. The proof of Proposition 12.4.8 holds without hanges.Proposition 12.4.10. Let z1; : : : ; z8p2 and xl�m1+1; : : : ; xl+8p2+m2 be the subsequenes ofa periodi sequene with mismath, where m1 � p� 1, �m1 � m2 � p� 1 and l = jp, fora j 2 Z. Let t1 = (p � m1) mod p, t2 = maxf�m2; 0g. Then the length of the longestommon subsequene is 8p2 �minft1; t2g � 1.Proposition 12.4.11. Let z1; : : : ; z8p2 and xl+m1+1; : : : ; xl�m2+8p2 be the subsequenes ofa periodi sequene with mismath, m1 � p � 1, �m1 � m2 � p � 1 and l = jp, for aj 2 Z. Let t1 = (p � m1) mod p, t2 = maxf�m2; 0g. Then the length of the longestommon subsequene is 8p2 � m1 � m2 � 1, if m2 � 0 and 8p2 � minfm1; p +m2g � 1;else.12.4.3 Sequenes with periodi pieesSequene with a periodi pieeLet y1; : : : ; yn be a periodi sequene. Let x1; : : : ; xn be a sequene with property:9k � n� 8p2 suh that xk+1 = yk+1; xk+2 = yk+2; : : : ; xk+8p2 = yk+8p2: (12.4.8)So, the sequene x1; : : : ; xn ontains a periodi piee of length 8p2.Let v be a longest ommon subsequene between x1; : : : ; xn and y1; : : : ; yn. We onsiderthe integer interval [v(k+1); �v(k+8p2)℄, and we show that the length of [v(k+1); �v(k+8p2)℄is about 8p2. The proofs of the following two propositions an be found in the Appendix.Proposition 12.4.12. Suppose the length of [v(k + 1); �v(k + 8p2)℄ is not smaller than8p2. Then there exist integers l; m1; m2 suh that[v(k + 1); �v(k + 8p2)℄ = [l + 1�m1; l + 8p2 +m2℄; (12.4.9)where jk� lj = jp, for a non-negative j 2 N, 0 � m1 � p� 1 and �m1 � m2 � p� 1. Inpartiular, the length of [v(k + 1); �v(k + 8p2)℄ is at most 8p2 + 2(p� 1).Proposition 12.4.13. Suppose the length of [v(k+1); �v(k+8p2)℄ is not bigger than 8p2.Then there exist integers l; m1; m2 suh that[v(k + 1); �v(k + 8p2)℄ = [l + 1 +m1; l + 8p2 �m2℄; (12.4.10)where jk� lj = jp, for a non-negative j 2 N and 0 � m1 � p� 1, �m1 � m1 � p� 1. Inpartiular, the length of [v(k + 1); �v(k + 8p2)℄ is at least 8p2 � 2(p� 1).Subsequene with a periodi piee and mismathLet y1; : : : ; yn be a periodi sequene. Let z1; : : : ; zn be a sequene with property: 9k �n� 8p2 suh thatzk+1 = yk+1; : : : ; zk+4p2 = yk+4p2; zk+4p2+1 6= yk+4p2+1; zk+4p2+2 = yk+4p2+2; : : : ; zk+8p2 = yk+8p2:(12.4.11)Hene, the sequene z1; : : : ; zn ontains a periodi piee of length 8p2 with mismath. Fromthe proofs of Propositions 12.4.12 and 12.4.13, the following orollaries an be dedued.Corollary 12.4.3. There exists a longest ommon subsequene v between z1; : : : ; zn andy1; : : : ; yn suh that either (12.4.9) or (12.4.10) holds.



482 Chapter 12. Deviation from mean in periodi ase12.4.4 Proof of Lemma 12.3.1Corollary 12.4.4. Let y1; : : : ; yn be a periodi sequene. Let x1; : : : ; xn be a sequenewith property (12.4.8). Then any longest ommon subsequene between x1; : : : ; xn andy1; : : : ; yn has an unbiased blok that ontains the element xk+4p2+1.Proof. Let v be a longest ommon subsequene between x1; : : : ; xn and y1; : : : ; yn. Weonsider [v(k + 1); �v(k + 8p2)℄. By optimality priniple,vj[k+1;k+8p2℄ : fk + 1; : : : ; k + 8p2g ,! fv(k + 1); : : : ; �v(k + 8p2)gmust be the longest ommon subsequene.Suppose that the length of [v(k + 1); �v(k + 8p2)℄ is bigger than 8p2. Then Proposition12.4.12 and Proposition 12.4.6 apply.Suppose that the length of [v(k + 1); �v(k + 8p2)℄ is smaller than 8p2. Then Proposition12.4.13 and Proposition 12.4.7 apply.Corollary 12.4.5. Let Ln be the length of the longest ommon subsequene of a periodisequene y1; : : : ; yn and a sequene x1; : : : ; xn with the property (12.4.8). Let z1; : : : ; zn be asequene with the property (12.4.11). Then the length of the longest ommon subsequeneof y1; : : : ; yn and z1; : : : ; zn is Ln � 1.Proof. Let v be a longest ommon subsequene between z1; : : : ; zn and y1; : : : ; yn thatsatis�es (12.4.9) ((12.4.10), resp.). By Corollary 12.4.3, suh a v exists. Reall thatjLn � jvjj � 1. The length of v is the sum of the length of restritions:vj[1;k℄ :f1; : : : ; kg ,! f1; : : : ; v(k + 1)� 1gvj[k+1;k+8p2℄ :fk + 1; : : : ; k + 8p2g ,! fv(k + 1); : : : ; �v(k + 8p2)gvj[k+8p2+1;n℄ :fk + 8p2 + 1; : : : ; ng ,! fv(k + 8p2 + 1); : : : ; �v(n)g:In this ase, Proposition 12.4.10 (Proposition 12.4.11 resp.) spei�es the length of vj[k+1;k+8p2℄.Proposition 12.4.6 ( Proposition 12.4.7 resp.) states: if zk+1; : : : ; zk+8p2 is replaed withxk+1; : : : ; xk+8p2, i.e. the mismath has been removed, then there exists a ommon subse-quene v0 : fk + 1; : : : ; k + 8p2g ,! fv(k + 1); : : : ; �v(k + 8p2)gwith length jvj[k+1;k+8p2℄j + 1: Hene, the sequene v� between x1; : : : ; xn and y1; : : : ; yn,de�ned as v�j[1;k℄ = vj[1;k℄; v�j[k+1;k+8p2℄ = v0; v�j[k+8p2+1;n℄ = vj[k+8p2+1;n℄has length jvj + 1 and is, therefore, the longest ommon subsequene of x1; : : : ; xn andy1; : : : ; yn. This proves the statement.Proof of Lemma 12.3.1. Let x1; : : : ; xn be a realization of X1; : : : ; Xn suh that lis a replia point. Denote y1; : : : ; yn := Y1; : : : ; Yn. Reall that Ln is the length of thelongest ommon subsequene of x1; : : : ; xn and y1; : : : ; yn, and Lln is the length of thelongest ommon subsequene of x1; : : : ; xl�1; xl+1; : : : xn and y1; : : : ; yn. ReallLn � 1 � Lln � Ln: (12.4.12)



12.5. Appendix 483Assume that Al holds, i.e. l is a replia point. If the replia point mathes, thenx1; : : : ; xn is a sequene satisfying (12.4.8) with xk+4p2+1 = xl being the replia point.Let L+n be the length of the longest ommon subsequene of x1; : : : ; xn and y1; : : : ; ynwith mathing replia point. Suppose L+n = Lln. Then any longest ommon subse-quene of s x1; : : : ; xl�1; xl+1; : : : xn and y1; : : : ; yn would also be a longest ommon sub-sequene of x1; : : : ; xn and y1; : : : ; yn. This ontradits Corollary 12.4.4 whih statesthat any longest ommon subsequene of x1; : : : ; xn and y1; : : : ; yn ontains xl. Hene,L+n = Lln + 1 = Lln + Zn.Suppose that the replia point does not math. Then x1; : : : ; xn is a sequene as in(12.4.11) with xk+4p2+1 = xl being the mismathing replia point. Let L�n be the lengthof the longest ommon subsequene of x1; : : : ; xn and y1; : : : ; yn with mismathing repliapoint. By Corollary 12.4.5, L�n = L+n � 1. By (12.4.12), Lln � L�n = L+n � 1 � Lln, i.e.L�n = Lln.12.5 AppendixProof of Proposition 12.4.2. Assume that there exists k < p suh that (12.4.3) hold.Then xmk+j = xj 8m � 1; j = 1; : : : ; p: (12.5.1)The latter implies xk+n = xn 8n � 1:that ontradits the de�nition of p.Let us proof (12.5.1). Use indution: For m = 1, (12.5.1) is equivalent to (12.4.3).Suppose that (12.5.1) holds form. Let k+j � p. Then x(m+1)k+j = xmk+(k+j) = xk+j = xj:If k + j > p, then x(m+1)k+j = xmk+(k+j) = xmk+k+j�p = xk+j�p = xk+j = xj; To get thethird inequality note that from j � p follows k + j � p < p, and use (12.5.1).12.5.1 Proofs of Propositions 12.4.6 and 12.4.7Proposition 12.5.1. Let x1; : : : ; x8p2 and xt+1; : : : ; xt+8p2+h be the subsequenes of a pe-riodi sequene, 0 � t � p2 , 0 � h � p � 2t. Then the length of the longest ommonsubsequene is 8p2� t. Moreover, any longest ommon subsequene has an unbiased blokBj that ontains the integer-interval [tp+ 1; 7p2℄ � Bj.Proof. Sine h � p� 2t, we have p� (t+h) � t, so t is the minimal bias between the twosubsequenes. In the proof of Proposition 12.4.4, replae the inequalities (12.4.4) withbr � 12  � b8p2 � t+ 1� p2p  � b4p� t� 12p � 12 � 4p� 1 � t+ h; (12.5.2)where the last inequality holds, beause t � p2 and h � p.Let assume b = 0. Then the �rst half of the proof of Proposition 12.4.5 holds with anyhanges. For the seond half, replae 8p2 by 8p2+h: Then 8p2� (ij+s) � (t+h)(p�1) �p(p� 1) implying (ij + s) � 7p2 + p. For t = p2 , h = 0.Proposition 12.5.2. Let x1; : : : ; x8p2 and xm+1; : : : ; xm+8p2�h be the subsequenes of aperiodi sequene, 0 � 2m � p + h, 0 � h � m. Then the length of the longest ommon



484 Chapter 12. Deviation from mean in periodi asesubsequene is 8p2�m. Moreover, any longest ommon subsequene has an unbiased blokBj that ontains the integer-interval [mp+ 1; 8p2 �mp℄ � Bj.Proof. By assumption, 2m � p + h � m + p, i.e., m � p. It holds, p �m + h � m, i.e.m is the minimal bias between the two subsequenes. But it might be that m > p2 . Theproof of Proposition 12.4.4 holds without any hanges. Sine 0 � h � m, Proposition12.4.5 holds, the only formal hange isvjBj+1[���[Br : fij + s+ 1; : : : ; 8p2g ,! fij + s�m+ 1; : : : ; 8p2 � hg: (12.5.3)Proposition 12.5.3. Let xm1+1; : : : ; xm1+8p2 and x1; : : : ; xm1+8p2+m2 be the subsequenesof a periodi sequene, 0 � m1; m2 � p�1. The length of the longest ommon subsequeneis 8p2 and eah suh subsequene of xm1+1; : : : ; xm1+8p2 and x1; : : : ; xm1+8p2+m2 inludesan unbiased blok whih ontains the interval [p2; 7p2℄.Proof. Let v : [1; 8p2℄ ,! [1; 8p2+m1+m2℄ be a longest ommon subsequene, the lengthof v is learly 8p2. Let fB1; : : : ; Brg be the bloks of v. Suppose that all bloks areunbiased. Then r � 8p2p�1 . Sine all the elements of the smallest subsequene are inludedin the longest ommon subsequene, by hanging the bloks, v loses the elements on thebigger subsequene, only. Thus,8p2 + (r � 1) = rXi jBij+ (r � 1) � 8p2 +m1 +m2;implying that r � 1 � m1 +m2 � 2(p� 1). This ontradits the lower bound for r.Hene, there exists one and only one unbiased blok Bj = fij; : : : ; ij + sg. The bias of Bjan only be 0. Before the unbiased blok, there are at most m1 biased bloks, implying:ij � m1(p� 1) < p2: Similarly, ij + s � 7p2:Proposition 12.5.4. Let x1; : : : ; x8p2 and xm1+1; : : : ; x8p2�m2 be the subsequenes of aperiodi sequene, 0 � m1; m2 � p � 1. The length of a longest ommon subsequeneis 8p2 � (m1 +m2) and every suh a subsequene of x1; : : : ; x8p2 and xm1+1; : : : ; x8p2�m2inludes an unbiased blok whih ontains the interval [p2; 7p2℄.Proof. Let v be a longest ommon subsequene, the length of v is learly 8p2�m1�m2. LetfB1; : : : ; Brg be the bloks of v. Suppose that all bloks are unbiased. Then r � 8p2�2pp�1 .Sine all the elements of the smallest subsequene are inluded in the longest ommonsubsequene, by hanging the bloks, v loses the elements on the bigger subsequene,hene. Thus, 8p2 � (m1 +m2) + (r � 1) = rXi jBij+ (r � 1) � 8p2;implying that r � 1 � m1 +m2 � 2p. This ontradits with the lower bound of r.So, there exists one and only one unbiased blok Bj = fij; : : : ; ij + sg. The bias ofBj is 0. Sine before the unbiased blok, there are at most t1 biased bloks, we have:ij � m1(p� 1) +m1 � p2: Similarly, ij + s+m2(p� 1) +m2 � 8p2, so ij + s � 7p2:



12.5. Appendix 485Proof of Proposition 12.4.6. Suppose t2 = 0. Then Proposition 12.5.3 applies.If t1 = 0, then m1 = 0 and t2 = 0, Proposition 12.5.3 applies again.Suppose t1 > 0; t2 > 0. Assume t1 � t2. Note that t1 � p2 . If not, then m1 = p� t1 � p2 ,a ontradition with the assumption m1 � t2.Sine l �m1 = (l � 1)p+ t1 = l� + t1, we havexl�m1+1; : : : ; xl�m1+m1+8p2+m2 = xl�+t1+1; : : : ; xl�+t1+8p2+m2+m1 :Let h = m2 +m1. Clearly, h = m2 +m1 � 0 and h = m2 +m1 = p � t1 � t2 � p � 2t1sine �t2 � �t1. Hene Proposition 12.5.1 applies.Assume t1 � t2. Then t2 > 12 would imply that m1 > 12 and t1 � 12 , a ontradition. Wereverse the sequenes, i.e we de�nex01 = x8p2; x02 = x8p2�1; : : : ; x08p2 = x1:Then x0t2+1 = x08p2+m2 ; x0t2+2 = x08p2+m2�1; : : : ; x0t2+8p2 = xm2+1; : : : ; x0t2+8p2+m1�t2 = x�m1+1:Take h = m1 � t2 = m1 +m2 � 0. It holds: p � 2t2 � p � t1 � t2 = m1 � t2 = h. Nowapply Proposition 12.5.1 to the reversed sequenes. The reversing does not hange thelongest ommon subsequenes (exept reversing them). The element x4p2+1 in the originalsequene is the element x04p2 . By Proposition 12.5.1, it belongs to the unbiased blok ofany longest ommon subsequene.Proof of Proposition 12.4.7. If t1 = 0 then m2 � 0. If m2 � 0, then apply Proposition12.5.4.Let 0 < m1 � p + m2. De�ne h = m1 + m2 � 0. Sine 2m1 � p + m2 + m1 = p + h,Proposition 12.5.2 applies.Let 0 < m2 + p � m1. Then reverse the sequenes as in the proof of Proposition 12.4.6and apply Proposition 12.5.2.12.5.2 Proofs of Proposition 12.4.10 and 12.4.11Proposition 12.5.5. Let zm1+1; : : : ; zm1+8p2 and m1; : : : ; xm1+8p2+t2 be the subsequenesof a periodi sequene with mismath, 0 � m1; m2 � p � 1. The length of the longestommon subsequene is 8p2 � 1.Proof. Let v be a longest ommon subsequene of zm1+1; : : : ; zm1+8p2 and x1; : : : ; xm1+8p2+m2 .By the argument used in the proof of Proposition 12.5.3, v has at least one unbiased blok.The same argument, applied again, yields that the subsequenes vj[1;4p2℄ and vj[4p2+1;8p2℄both have an unbiased blok. If p > 2, then the bias of the unbiased bloks is 0, implyingthat the length of the longest ommon subsequene is 8p2 � 1.When p = 2, the statement is easy to see.Proposition 12.5.6. Let zm1+1; : : : ; zm1+8p2 and x1; : : : ; x8p2�m2 be the subsequenes of aperiodi sequene with mismath, 0 � m1; m2 � p� 1. The length of the longest ommonsubsequene is 8p2 � 1� (m1 +m2).Proof. Let v be a longest ommon subsequene of zm1+1; : : : ; zm1+8p2 and x1; : : : ; xm1+8p2�m2 .By the argument used in the proof of Proposition 12.5.4, v has at least one unbiased blok,by the same argument, vj[1;4p2℄ and vj[4p2+1;8p2℄ both have an unbiased blok. If p > 2,



486 Chapter 12. Deviation from mean in periodi asethen the bias of the unbiased bloks is 0, implying that the length of the longest ommonsubsequene is 8p2 � (m1 +m2)� 1.When p = 2, the statement is easy to see.Proof of Proposition 12.4.10. Suppose t2 = 0, i.e. m2 � 0. If t1 = 0, then m1 = 0and t2 = 0. For m2 � 0, Proposition 12.5.5 applies.Suppose t1 > 0; t2 > 0. Assume t1 � t2. Then t1 � p2 .Sine l �m1 = (l � 1)p+ t1 = l� + t1, we havexl�m1+1; : : : ; xl�m1+m1+8p2+m2 = xl�+t1+1; : : : ; xl�+t1+8p2+m2+m1 :Let h = m2 +m1. Clearly, h = m2 +m1 � 0 and h = m2 +m1 = p � t1 � t2 � p � 2t1sine �t2 � �t1. Hene Proposition 12.4.8 applies.Assume t1 � t2. Then t2 � 12 . Reverse the sequenes as in the proof of Proposition 12.4.6,i.e. we de�ne z01 = z8p2 ; z02 = z8p2�1; : : : ; z08p2 = z1:Note that in the reversed sequene, the mismathing element is z04p2 instead of z04p2+1.However, it is easy to see that the proof of Propositions 12.4.8 holds also in this ase.Proof of Proposition 12.4.11. If t1 = 0 then m2 � 0. If m2 � 0, then applyProposition 12.5.6.Let 0 < m1 � p + m2. De�ne h = m1 + m2 � 0. Sine 2m1 � p + m2 + m1 = p + h,Proposition 12.4.8 applies.Let 0 < m2 + p � m1. Then reverse the sequenes as in the proof of Proposition 12.4.10and apply Proposition 12.4.8.12.5.3 Proofs of Propositions 12.4.12 and 12.4.13Proof of Proposition 12.4.12. If j[v(k + 1); �v(k + 8p2)℄j = 8p2, the statement learlyholds. Suppose j[v(k + 1); �v(k + 8p2)℄j > 8p2. Then it holds: either k + 1 > v(k + 1) or�v(k + 8p2) > (k + 8p2). Without loss of generality assumev(k + 1) < k + 1: (12.5.4)There 9l � 0 suh that jk � lj = jp; for a non-negative j 2 N andv(k + 1) = l � ip�m1 + 1; �v(k + 8p2) = l + 8p2 +m2;where 0 � m1 � p � 1 and �m1 � m2 � p � 1, when i = 0 and 0 � m � p � 1, wheni � 1.The proposition is proven, if we show that i = 0. Suppose not. Then 0 � m � p� 1.By the optimality priniple, the subsequenevj[k+1;k+8p2℄ : fk + 1; : : : ; k + 8p2g ,! fl � ip�m1 + 1; : : : ; l + 8p2 +m2gis the longest possible and its length is therefore equal to 8p2. Letv0 : fk + 1; : : : ; k + 8p2g ,! fl + 1; : : : ; l + 8p2g



12.5. Appendix 487be a ommon subsequene that onsists of a diret math:v0(k + 1) = l + 1; : : : ; v0(k + 8p2) = l + 8p2:The length of v0 is also 8p2.Let w : f1; : : : ; ng ,! f1; : : : ; ngbe a ommon subsequene of x1; : : : ; xn and y1; : : : ; yn that is de�ned as follows:wj[1;k℄ = vj[1;k℄wj[k+1;k+8p2℄ = v0wj[k+8p2+1;n℄ = vj[k+8p2+1;n℄Hene, w is a modi�ation of v obtained by vj[k+1;k+8p2℄ replaed by a diret mathing v0.Of ourse, the length of w is the same as the length of v, hene, w is the longest ommonsubsequene.The subsequene w has the following property: [1; �w(k)℄ = [1; l℄; butw(k + 1) = w(maxfi � k : i 2 Dom(w)g) + 1= v(maxfi � k : i 2 Dom(v)g) + 1 = v(k + 1) = l � ip�m1 + 1:Hene, the interval [l � ip � m1 + 1; l℄ does not ontain any element of w. This meansthat the subsequene wj[1;k℄ : f1; : : : ; kg ,! f1; : : : ; lg (12.5.5)is atually a subsequenewj[1;k℄ : f1; : : : ; kg ,! f1; : : : ; l � ip�m1g:We shall show that this property ontradits the optimality priniple.By (12.5.4), k > l �m1 � ip. Lett = maxfi � k : i 62 Dom(v)g:We have: w(t+ 1); : : : ; w(k) � l � ip�m1. De�ne w0 : f1; : : : ; kg ,! f1; : : : ; lg;w0j[1;t℄ = wj[1;t℄w0(t + 1) = w(t+ 1) + p; : : : ; w0(k) = w(k) + p:Sine w(k) � l, the sequene w0 is well de�ned and has the length as (12.5.5). Let s bethe last element of w before t, i.e. s = maxfi < t : i 2 Dom(w)g. By de�nition of w0,w0(t + 1) = w(t + 1) + p � w0(s) + 1 + p, so the interval [w0(s) + 1; w0(s) + p℄ does notontain any elements of w0. By periodiity, the interval [yw0(s)+1; yw0(s)+p℄ ontains at leastone 0 and at least one 1. On the other hand, the unonneted element xt is either 0 or1. Therefore, we an onnet the element xt with an element of [yw0(s)+1; yw0(s)+p℄. Thepossibility of suh a onnetion shows that w0 is not the longest ommon subsequene.This, in turn, implies that (12.5.5) an not be the longest ommon subsequene. By theoptimality priniple, the latter implies that w and, hene, v annot be the longest om-mon subsequenes as well. This is a ontradition. The reason for the ontradition is



488 Chapter 12. Deviation from mean in periodi asethe assumption i � 1.Proof of Proposition 12.4.13. If j[v(k + 1); �v(k + 8p2)℄j = 8p2, the statement learlyholds. Suppose j[v(k + 1); �v(k + 8p2)℄j < 8p2. Then it holds: either k + 1 < v(k + 1) or�v(k + 8p2) < (k + 8p2). Without loss of generality assume�v(k + 8p2) < (k + 8p2): (12.5.6)There 9l � 0 suh that jk � lj = jp; for a non-negative j 2 N andv(k + 1) = l +m1 + 1; �v(k + 8p2) = l � ip+ 8p2 �m2 =: ul;where 0 � m1 � p � 1 and �m1 � m2 � p � 1, when i = 0, and 0 � m � p � 1, wheni � 1. Proposition is proved, if we show that i = 0. Suppose i > 0. Then 0 � m1 � p� 1.By the optimality priniple, the subsequenevj[k+1;k+8p2℄ : fk + 1; : : : ; k + 8p2g ,! fl +m1 + 1; : : : ; ulgis the longest possible, the length of it is, therefore, L := 8p2 � (m1 +m2 + ip). Letv0 : fk + 1; : : : ; k + 8p2g ,! fl +m1 + 1; : : : ; ulgbe a ommon subsequene that onsists of a diret math:v0(k + 1 +m1) = l +m1 + 1; : : : ; v0(k + 8p2 � ip�m2) = l � ip + 8p2 �m2 = ul:The length of v0 is also L.Let w : f1; : : : ; ng ,! f1; : : : ; ngbe a ommon subsequene of x1; : : : ; xn and y1; : : : ; yn that is de�ned as follows:wj[1;k℄ = vj[1;k℄wj[k+1;k+8p2℄ = v0wj[k+8p2+1;n℄ = vj[k+8p2+1;n℄Of ourse, the length of w is the same as the length of v, hene, w is the longest ommonsubsequene of x1; : : : ; xn and y1; : : : ; yn.The subsequene w has the following property: uk := k + 8p2 � ip�m2 2 Dom(w), andthe next element in Dom(w) is not earlier as k + 8p2 + 1: minfi � uk : i 2 Dom(w)g �k + 8p2 + 1. In partiular, this implies: w(k + 8p2 + 1) = ul + 1 orjwj[uk+1;n℄j = jwj[k+8p2+1;n℄j: (12.5.7)Note: wj[k+8p2+1;n℄ : fk + 8p2 + 1; : : : ; ng ,! ful + 1; : : : ; ng:By (12.5.6), k + 8p2 + 1 < ul + 1, so there exists at least one element j 2 [ul + 1; n℄ suhthat yj does not belong to the subsequene wj[k+8p2+1;n℄. Lett = minfj � ul + 1 : j 62 w([k + 8p2 + 1; n℄)g: (12.5.8)



12.5. Appendix 489Suppose t 2 [ul + 1; l + 8p2℄. Let r be suh that w(r) = t � 1, i.e. r = w�1(t � 1).Obviously, r 2 [k + 8p2 + 1; n℄. De�nev00 : fk + 1; : : : ; uk + (t� ul)g ,! fl +m1 + 1; : : : ; tgbe a ommon subsequene that onsists of a diret math:v00(k+1+m1) = l+m1+1; : : : ; v00(uk) = ul; v00(uk+1) = ul+1; : : : ; v00(uk+(t�ul)) = t:The de�nition of v00 is possible, sine t� ul � ip+m2 and (t� ul) � k + 8p2.The length of v00 is L+ (t� ul). De�ne w0 : fk + 1; : : : ; ng ,! fl +m1 + 1; : : : ; ng;w0j[k+1;uk+(t�ul)℄ = v00 (12.5.9)w0j[uk+(t�ul)+1;n℄ = vj[r+1;n℄:By the de�nition of t and r, jvj[k+8p2+1;n℄j�jvj[r+1;n℄j = jvj[k+8p2+1;r℄j = (t�ur)�1. Hene,the length of w0 is L + (t � ul) + jvj[k+8p2+1;n℄j � (t � ur) + 1 = L + jvj[k+8p2+1;n℄j + 1 =jwj[k+1;n℄j+1 whih ontradits the assumption that w is a longest ommon subsequene.Suppose t 2 [l + 8p2 + 1; n℄. Then t � p � ul + 1 and by the de�nition of t, the ele-ments yul+1; : : : ; yt�1 all belong to the ommon subsequene w. Letv00 : fuk + 1; : : : ; w�1(t� p)g ,! ful + 1; : : : ; tgbe de�ned as follows:v00(uk+1) = ul+1; : : : ; v00(uk+p) = ul+p; v00(w�1(ul+1)) = ul+1+p; : : : ; v00(w�1(t�p)) = t:The de�nition of v00 is possible, beause w�1(ul + 1) � k + 8p2 + 1. The length of v00 isjwj[k+8p2+1;w�1(t�p)℄j+ p. Notejwj[w�1(t�p)+1;w�1(t�1)℄ = jwj[k+8p2+1;w�1(t�1)℄j � jwj[k+8p2+1;w�1(t�p)℄j = p� 1:We de�ne w0 : fuk + 1; : : : ; ng ,! ful + 1; : : : ; ng; wherew0j[uk+1;w�1(t�p)℄ = v00;w0j[w�1(t�p)+1;n℄ = wj[w�1(t�1)+1;n℄:The de�nition of w0 is orret, beause w(w�1(t� 1) + 1) > t. The length of w0 isjwj[k+8p2+1;w�1(t�p)℄j+ p+ jwj[w�1(t�1)+1;n℄j = jwj[k+8p2+1;w�1(t�1)℄j+ jwj[w�1(t�1)+1;n℄j+ 1 == jwj[k+8p2+1;n℄j+ 1:By (12.5.7), the length of w0 is stritly bigger than that ofwj[uk+1;n℄ : fuk + 1; : : : ; ng ,! ful + 1; : : : ; ng:This ontradits the assumption that w is a longest ommon subsequene.Proof of Corollary 12.4.3 Let v be a longest ommon subsequene of z1; : : : ; zn and



490 Chapter 12. Deviation from mean in periodi asey1; : : : ; yn. Suppose [v(k + 1); �v(k + 1)℄ is bigger than 8p2 but does not satisfy (12.4.9).Then there exists 0 � m1; m2 � p� 1, i > 0, suh thatvj[k+1;k+8p2℄ : fk + 1; : : : ; k + 8p2g ,! fl � ip�m1 + 1; : : : ; l + 8p2 +m2g: (12.5.10)Suppose i � 2. Then, assuming (12.5.4), it holds v(k + 1) + 2 < k + 1. The lengthof jvj[k+1;k+8p2℄j is 8p2. De�ne the ommon subsequene w as in the proof of Proposition12.4.12. The length of w is jvj�1, but the length of the empty interval [l�ip�m1+1; l℄ isat least 2p. Sine there are at least two elements in [1; k℄, say t1 and t2, not inluded intoDom(v), by rearranging the elements of wj[1;k℄ as in the proof of Proposition 12.4.12, bothzt1 = xt1 and zt2 = xt2 an be mathed with an empty period. So, the length of wj[1;k℄an be inreased by 2. This ontradits the assumption that v is the longest ommonsubsequene.This means that in (12.5.10), i = 1. Now, again, use the argument of Proposition 12.4.12:De�ne the ommon subsequene w and note that the length of w is jvj�1. Then rearrangethe elements of wj[t;k℄ by de�ning w0(t + 1) = w(t + 1) + p; : : : ; w0(k) = w(k) + p =l�p�m1+p = l�m1 and onnet the element xt with some element on [yw0(s)+1; yw0(s)+p℄.Let w� : f1; : : : ; kg ,! f1; : : : ; l �m1g;be modi�ation of w0 with onneted xt so the length of w� is jwj[1;k℄j + 1. Hene, thesequene v� with v�j[1;k℄ = w�v�j[k+1;k+8p2℄ = wv�j[k+8p2+1;n℄ = wj[k+8p2+1;n℄has length jwj+ 1, whih is the same as the length of v. Sine v�(k) = w�(k) = w0(k) =l �m1, the sequene v� satis�es (12.4.9).Suppose [v(k + 1); �v(k + 1)℄ is bigger than 8p2 but does not satisfy (12.4.10). The proofis similar: as in the proof of Proposition 12.4.13, de�ne the subsequene w and note thatthe length of w is jvj � 1. De�ne t as in (12.5.8), and w0 as in (12.5.9). With the helpof w0, onstrut the ommon subsequene v� with v�j[1;k℄ = vj[1;k℄ and v�j[k+1;n℄ = w0: Thelength of v� is the same as the length of v. If v� does not satisfy (12.4.10), then use theproof of Proposition 12.4.13 to see that w� satis�es (12.4.10).Referenes[1℄ Kenneth S. Alexander. The rate of onvergene of the mean length of the longestommon subsequene. Ann. Appl. Probab., 4(4):1074{1082, 1994.[2℄ Rihard Arratia and Mihael S. Waterman. A phase transition for the sore in math-ing random sequenes allowing deletions. Ann. Appl. Probab., 4(1):200{225, 1994.[3℄ Federio Bonetto and Heinrih Matzinger. Flutuations of the longest ommon sub-sequene in the ase of 2- and 3-letter alphabets. in preparation, 2004.
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