
INFORMATION THEORY

HEINRICH MATZINGER

Georgia Tech
E-mail: matzi@math.gatech.edu

April 23, 2004

Contents

1 Notations 2

2 Introduction 2

3 Codes 2

4 The Kraft inequality and the McMillan inequality 5

5 Entropy and the independent case 9

6 Compact codes 14

7 Expected length of encoded text and entropy 17

8 Convexity of entropy 19

9 Entropy of joint variables 20

10 Markov sources 23

11 Data transmission 30

12 Conditional entropy 33

13 Mutual information 36

14 Transmission channels 36

15 Shannon’s second theorem for the binary symmetric channel 37

1

16 Random coding 41

17 Channel capacity 44

18 Differential entropy 45

1 Notations

If S is a set then Si denotes the set consisting of all finite sequences of length i of elements
of S.
We write S = {s1, s2, . . . , sq} for the set S consisting of the elements s1, s2, . . . , sq.

2 Introduction

The two primary concerns of information theory are:

• How to store information so that it takes as little space as possible. Typically we
have a file that we want to compress as much as possible and store in binary form.

• How to transmit information in the presence of random errors in the communication
channels.

3 Codes

Imagine that we want to store some genetic code. Sequences in genetics are written using
four letters:

A, T, C, G.

However, to store this information on our computer we need to “translate” it in a bi-
nary form, since all the files stored in our computer are ultimately in binary form. One
possibility could be for example:

A → 1, T → 10, C → 100, G → 1000.

In this manner, an A gives a 1 in the coded text, a T is coded as 10,... With this example,
we obtain that the string:

AATAC

gets encoded as:
11101100.

The rule which allows us to write every finite sequence of letters from {A, T, C, G} as a
binary sequence is called a code. The original alphabet {A, T, C, G} is called the source
alphabet whilst {0, 1} is called the code alphabet. In other words, a code assigns to each

2

finite sequence of letters from the source alphabet a finite binary sequence. A code is thus
a map from the set of all finite sequences of letters from the source alphabet to the set of
all finite binary sequences.

Definition 3.1 Let S = {s1, . . . , sq} be a finite alphabet (a finite set of symbols). Then a
map C from the set of all finite sequences of symbols of S into the set of all finite binary
sequences is called a code. In other words, a code is a rule which assigns to each finite
sequence of symbols of S a finite binary sequence.

We will denote the text we want to encode by:

X = X1X2 . . . Xn.

The text X consists of a sequence of n letters of the alphabet S and Xi ∈ S is the i-th
letter of the text X.
In the above example of a code, we had that each letter of the alphabet S was coded
separately into a finite binary string. This is a special situation. The codes which satisfy
this special property are called block codes. Not all codes are built in this way. A code
which would not be a block code could be constructed in the following way for example:
assign to A the digit 1, to T the digit 2, to C a 3 and to G a 4. Then write the original
text X be writing each number instead of the corresponding letter. This gives an integer
number written in basis 10. Rewrite this number in basis two. This sequence of operations
defines a code which is not a block code. For example, to code the short text AC, we
have to write the integer 13 in binary form. This gives 1101 for the encoded text.

Definition 3.2 Let C be a code:

C :
∞
⋃

i=1

Si →
∞
⋃

i=1

{0, 1}i.

Then C is called a block code if there exists a map

c : S →

∞
⋃

i=1

{0, 1}i

such that for all n ∈ N and all X = X1X2 . . .Xn ∈ Sn we have:

C(X) = c(X1)c(X2) . . . c(Xn).

An important feature a code should have is that from the encoded information we can
retrieve the original information. During the encoding process we do not want to lose
information. We can retrieve the full information iff there are no two different texts
which are encoded into the same binary text. In the opposite case, we would be unable to
tell from which original text the encoded text comes from. Thus, it would be impossible,
given only the encoded text, to retrieve the full original information.

3

Definition 3.3 A code C:

C :
∞
⋃

i=1

Si →
∞
⋃

i=1

{0, 1}i

is called uniquely decodable iff for any two texts X ∈
⋃∞

i=1 Si and Y ∈
⋃∞

i=1 Si such that
X 6= Y we have that

C(X) 6= C(Y).

Apart from being uniquely decodable there is still another issue. Look at our first example
of a block code for the genetic alphabet:

C(A) = 1, C(T) = 10, C(C) = 100, C(G) = 1000.

This is a uniquely decodable code. Every time “ a new letter starts” in the binary code,
this is marked by a one. Given only the encoded version of a text, we can determine what
the original text was. However, if we see only part of the text, we might not be able to
decode this part correctly. For example, if we know that the text X starts with 1010010,
then we now that the original text started with an AC, but we don’t know if the next
letter is a T , a C or a G. To figure out what the last 10 means, we need to know the
subsequent digits. In many practical cases, this is a situation one tries to avoid. One
prefers a code which one can decode bit by bit without having to look at subsequent bits.
Such a code is called an instantaneous code. An example of an instantaneous block code
C would be given by:

C(A) = 1, C(T) = 01, C(C) = 001, C(G) = 0001.

For a word Y = Y1Y2 . . . Ym ∈ {0, 1}m any word Y1Y2 . . . Yk for k ≤ m is called a prefix of
the code word Y . For example the word 0001 has as prefix the following words: 0,00,000
and 0001. The word “word” has as prefix the words: “w”,”wo”,”wor” and “word”. If the
word v is a prefix of the word w, we write:

v 4 w.

Definition 3.4 A code C : ∪∞
i=1S

i → ∪∞
i=1{0, 1} is called instantaneous(also prefix code)

iff for all X, Z ∈
⋃∞

i=1 Si we have that:

C(Z) 4 C(X)

implies that
Z 4 X.

Note that a code which is instantaneous is also uniquely decodable.
For a block code the binary words that code the letters of the alphabet S are called code
words. In the example of a block code given by

C(A) = 1, C(T) = 01, C(C) = 001, C(G) = 0001

the code words are: 1,01,001 and 0001.

Lemma 3.1 A code is instantaneous iff no complete word of the code is a prefix to another
code word.

4

4 The Kraft inequality and the McMillan inequality

Let us look at the following block code:

C(A) = 1, C(T) = 01, C(C) = 001, C(G) = 0001.

Here A is coded into a word of length one, T is coded into a word of length 2, C is coded
into a word of length 3 and G is coded into a word of length 4 and this is an instantaneous
code. Now, if we where only given those lengths, is there a simple criteria to decide if
there exists an instantaneous code with these lengths for the code words? A necessary
and sufficient condition for the existence of an instantaneous code with given word lengths
is provided by the Kraft inequality (Kraft, 1945).

Lemma 4.1 Let S = {s1, s2, . . . , sq} denote an alphabet. Let l1, . . . , lq denote a sequence
of natural numbers. Then, there is an instantaneous block code for the alphabet S such
that symbol si is coded into a word of length li for all i = 1, 2, . . . , q iff

q
∑

i=1

(

1

2

)li

≤ 1

Before giving the proof of the above lemma, we describe an algorithm which constructs a
instantaneous block code with given lengths for the code words.

Algorithm 4.1 Write the symbols s1, s2, . . . , sq in an an order so that the corresponding
lengths become increasing:

l1 ≤ l2 ≤ . . . ≤ lq.

1. Choose any binary word of length l1 as code word C(s1) for s1.

2. Once the first r < q code words are chosen, choose a code word of length lr+1 for
the symbol sr+1. Choose the code word C(sr+1), so that no previously chosen code
word is a prefix to it.

Next we need to prove that when Kraft’s inequality holds, that is when:

q
∑

i=1

(

1

2

)li

≤ 1,

the above algorithm always works. This means, that at each step r where r < q, there
exists a binary word w which satisfies the two following conditions:

1. None of the preciously chosen code words is prefix to w.

2. The length of w is lr+1.

5

It is obvious that if at each step of our algorithm we can find a binary word satisfying the
two above conditions, then the resulting block code will be instantaneous. Thus, we only
need to prove that when Kraft’s inequality holds then at each step one can find such a
binary word. This is what we do next:
Proof. We proceed by induction on r. For s1 it is clear that we can find a word of the
right length since there is no other conditions then length.
Assume now that r < q − 1 and that for the symbols s1, s2, . . . , sr we have found code
words C(s1), C(s2), . . . , C(sr) of the right lengths which are not prefix to each other.
Kraft’s inequality

q
∑

i=1

(

1

2

)li

≤ 1,

implies
r
∑

i=1

(

1

2

)li

< 1.

Multiplying both sides of the above inequality by 2lr+1 yields:

r
∑

i=1

2(lr+1−li) < 2(lr+1). (4.1)

Note that 2lr+1 is the number of binary words of length lr+1. For a word w of length
s < lr+1, we have that the number of words of length lr+1 having w as prefix is equal to:

2lr−s.

Thus, the sum:
r
∑

i=1

2lr+1−li

is equal to the number of binary words of length lr+1 having as prefix one of the code
words:

C(s1), . . . , C(sr).

In other words, inequality 4.1 tells us that there are strictly more binary words of length
lr+1, than there are binary words of that length with a one of the words

C(s1), . . . , C(sr)

as prefix. This implies that our algorithm manages to find a suitable code word for sr+1.

The next lemma says that Kraft’s inequality does not only hold for a instantaneous codes,
but also for uniquely decodable codes.

6

Lemma 4.2 Let S = {s1, s2, . . . , sq} denote an alphabet. Let l1, . . . , lq denote a sequence
of natural numbers. Then, there is a uniquely decodable block code for the alphabet S,
such that symbol si is coded into a word of length li for all i = 1, 2, . . . , q iff

q
∑

i=1

(

1

2

)li

≤ 1

Proof. An instantaneous code is automatically also uniquely decodable. Thus, if the
Kraft inequality holds, there exists a instantaneous code such that |C(si)| = li for all
i = 1, 2, . . . , q. Thus, there exists also a uniquely decodable code such that |C(si)| = li
for all i = 1, 2, . . . , q.
So, we only need to prove the reverse side. That is we need to prove that if there exist a
uniquely decodable block code C with |C(si)| = li for all i = 1, 2, . . . , q then also

q
∑

i=1

(

1

2

)li

≤ 1.

Let us proceed by the absurd. Suppose on the contrary that there exists c > 1 such that

q
∑

i=1

(

1

2

)li

> c.

Then, for n ≥ 1 we have:
(

q
∑

i=1

(

1

2

)li
)n

> cn. (4.2)

Let Q designate the set of natural numbers: Q := {1, 2, . . . , q}. Inequality 4.2 implies:

∑

k1,...,kn∈Q

(

1

2

)lk1
+lk2

+...+lkn

≥ cn. (4.3)

Let Y1, Y2, . . . be a sequence of i.i.d. Bernoulli variables such that

P (Y1 = 1) = 0.5, P (Y1 = 0) = 0.5.

Let w be a binary word w = w1w2 . . . wr. Let Aw designate the event that the sequence
Y1Y2 . . . starts with w that is

Aw := {Y1 = w1, Y2 = w2, . . . , Yr = wr}.

Note that if |w| designates the length of the word w, then

P (Aw) =

(

1

2

)|w|

.

7

Thus,
(

1

2

)lk1
+lk2

+...+lkn

= P (Aw)

where w is the binary word:

w = C(sk1
sk2

. . . skn
) = C(sk1

)C(sk2
) . . . C(skn

).

Let Ak1,...,kn
denote the event Aw for w = C(sk1

sk2
. . . skn

). With this notation, inequality
4.3 can be written as:

∑

k1,...,kn∈Q

P (Ak1,...,kn
) ≥ cn.

Ordering the terms of the sum on the left side of the last inequality according to the
length of C(sk1

sk2
. . . skn

), we get:

∑

t

∑

k∈Qn,|C(s)|=t

P (Ak1,...,kn
) ≥ cn. (4.4)

where k := (k1, . . . , kn) and s := sk1
sk2

. . . skn
. Let l denote the maximum length:

l := max
i∈Q

li.

Then, |C(s)| can not be longer than n·l. This implies that inequality 4.4 can be rewritten:

nl
∑

t=1

∑

k∈Qn,|C(s)|=t

P (Ak1,...,kn
) ≥ cn. (4.5)

Note that since the code C is uniquely decodable, we have that if s and z are different
strings with n letters of the alphabet S such that |C(s)| = |C(z)| then C(s) 6= C(z). Thus,
if s is different from z, then Aw and Av can not hold at the same time, where w := C(s)
and v := C(z). In this case, Aw and Av are disjoint events. This implies that for fix t,
the events Ak1,...,kn

for which |C(sk1
) . . . C(skn

)| = t are disjoint events. The probability
of the union of disjoint events is equal to the sum of their probabilities. This gives:

∑

k∈Qn,|C(s)|=t

P (Ak1,...,kn
) = P





⋃

k∈Qn,|C(s)|=t

Ak1,...,kn



 . (4.6)

Let At be the event:
At :=

⋃

k∈Qn,|C(s)|=t

Ak1,...,kn
.

(Note that At is the event that the binary string:

Y1Y2 . . . Yt

8

is exactly equal to an encoded text with n symbols from S.) Using 4.6 with 4.5, we find:

nl
∑

t=1

P (At) ≥ cn. (4.7)

The probability of an event is always smaller equal to one, and thus:

P (At) ≤ 1.

Using this in 4.7, yields:
nl
∑

t=1

1 = l · n ≥ cn.

For large n however the last inequality does not hold, since cn grows much faster than l ·n.
This finishes the proof and shows that if C is uniquely decodable, the Kraft inequality
must hold.

5 Entropy and the independent case

In this section, the letters of the text we want to encode are random and independent
of each other. We also assume that all the letters in the text have the same probability
distribution. Thus, X1, X2, . . . are random letters chosen from an alphabet S each having
the same probability distribution and independent of each other. The text we wish to
encode is denoted by X := X1X2 . . .Xn.
Let E be an event. If we are told that the event E has happened, we say that we received
a quantity of information equal to

log2

(

1

P (E)

)

.

Let R ⊂ S be a subset of letters from the alphabet S. If we are told that the letter Xi is
in R, we receive a quantity

I(R) := log2

(

1

P (Xi ∈ R)

)

of information. For s ∈ S, let ps designate the probability of letter s, that is ps = P (X1 =
s). When we are told that the i-th letter of our text Xi is equal to s, we thus receive an
amount of information equal to

log2

(

1

ps

)

.

On the long run, a proportion ps of letters are equal to s in the text X. Hence the average
amount of information receive per letter when we send the message X = X1X2, . . .Xn is
equal to:

∑

s∈S

ps log2

(

1

ps

)

.

The above quantity is called entropy of the random variable X1.

9

Definition 5.1 Let Z be a random variable taking on values from a set S. Then, the
number:

∑

s∈S

P (Z = s) log2

(

1

P (Z = s)

)

is called entropy of the random variable Z.

Next we show that the entropy of two independent random variables is the sum of their
entropy.

Lemma 5.1 Let X, Y be two independent random variables taking values in S. Let Z
denote the random pair Z = (X, Y) which takes values in S × S. Then, the entropy
H(Z) = H(X, Y) of Z is equal to:

H(X) + H(Y).

Proof. For (x, y) ∈ S × S, let p(x,y) denote the probability P (X = x, Y = y). Let
px := P (X = x) and let py := P (Y = y). We have that

H(X, Y) =
∑

(x,y)∈S×S

p(x,y) log

(

1

p(x,y)

)

.

By independence p(x,y) = px · py. Hence:

H(X, Y) =
∑

(x,y)∈S×S

pxpy log

(

1

pxpy

)

=
∑

(x,y)∈S×S

pxpy

(

log

(

1

px

)

+ log

(

1

py

))

.

Using distributivity and regrouping the terms of the sum above in different order, we find:

H(X, Y) =
∑

y∈S

py

(

∑

x∈S

px log

(

1

px

)

)

+
∑

x∈S

px

(

∑

y∈S

py log

(

1

py

)

)

= H(X)
∑

y∈S

py+H(Y)
∑

x∈S

px.

(5.1)
Since probabilities always add up to one, we have that

∑

y∈S

py =
∑

x∈S

px = 1,

which with 5.1 implies that

H(X, Y) = H(X) + H(Y).

For a word w, let |w| denote the number of letters in w. Thus, for example: |heinrich| =
8.

10

Take as an example an alphabet consisting of 3 letters S = {a, b, c}. Assume that the
probabilities of each letter are:

pa = P (X1 = a) = 30%, pb = P (X1 = b) = 40%, pc = P (X1 = c) = 30%.

The goal is to find a uniquely decodable code that compresses the text X = X1 . . . Xn

maximally. Let C denote a block code. Wanting to compress the text X maximally means
that we want to minimize the average length per letter Xi. In other words, we want to
minimize the quantity:

E[|C(X1)|] = la30% + lb40% + lc30%

where la, lb, lc designate the lengths of the different code words:

la = |C(a)|, lb = |C(b)|, lc = |C(c)|.

The constrain is that C is uniquely decodable, which is equivalent to McMillan’s inequal-
ity:

(

1

2

)la

+

(

1

2

)lb

+

(

1

2

)lc

≤ 1. (5.2)

The optimization problem we are faced with is thus: find x, y, z ≥ 0 minimizing:

f(x, y, z) := x · 30% + y · 40% + z · 30%

under the constrain

g(x, y, z) =

(

1

2

)x

+

(

1

2

)y

+

(

1

2

)z

≤ 1.

To solve this problem we use the Lagrange method. Thus, we look for x, y, z and λ 6= 0
such that λ · grad(f) = grad(g). This, then gives:

λ · (pa, pb, pc) = (0.5x, 0.5y, 0.5z)

which is equivalent to:

(x, y, z) = (− log2(λpa),− log2(λpb),− log2(λpc)) .

If we want:
g(x, y, z) = 1,

we have to put λ = 1. Hence, we find the optimal solution

x = log2

(

1

pa

)

, y = log2

(

1

pb

)

, z = log2

(

1

pc

)

.

11

With these optimal values, we find that the minimum possible value for the objective
function f under the constrain 5.2 is equal to:

pa log2

(

1

pa

)

+ pb log2

(

1

pb

)

+ pc log2

(

1

pc

)

which is equal to the entropy H(X1) of X1.
However these optimal values might not be feasible because the lengths la, lb, lc need to
be integers while it is possible that the optimal values x, y, z are real numbers but not
integers. This implies that H(X1) is a lower bound for the minimum possible expected
length per symbol E[|C(X1)|]. Thus,

H(X1) ≤ E[|C(X1)|]

for any uniquely decodable block code C. On the other hand, we can always take for the
lengths li the first integer larger than log2(1/pi). This changes the quantity x·pa+y·pb+z·pc

by at most one. Furthermore, the thus found integers still satisfy McMillan’s inequality.
This means that there exist a uniquely decodable block code C such that E[|C(X1)|] ≤
H(X1) + 1. We have just proved Shannon’s first theorem:

Theorem 5.1 Let C be an instantaneous block code for a text X = X1X2 . . .Xn with
independent letters with same distribution. Then,

H(X1) ≤ E[|C(X1)|].

Furthermore, if C denotes a block code with shortest expected code word length then:

H(X1) ≤ E[|C(X1)|] ≤ H(X1) + 1.

Let us look at a practical example. Let us assume that the alphabet S consists of two
letters S = {a, b} and

pa = 90%, pb = 10%.

The best a uniquely decodable block code can achieve in the case is an expected length
per symbol of 1. This, means no compression at all. Such a block code is for example
given by:

C(a) = 0, C(b) = 1.

A text like abba would then be encoded as 0110. So the encoding keeps the same length
as the original text and thus there is no compression. To improve this, we can encode
an extension of S instead of encoding S with a block code. Take for example the second
extension S2 of S. This is simply the Cartesian product S × S, that is the set consisting
of all ordered pairs of elements of S. We find that S2 = S × S consists of four letters:

S2 = S × S = {C = aa, D = ab, E = ba, F = bb}.

12

We proceed as follows: we find a block code for the alphabet S2. We first rewrite the text
with letters of S2. And then we encode this using a block code for S2. Define for example
a block code C for S2 in the following manner:

C(C) = C(aa) = 1, C(D) = C(ab) = 01, C(E) = C(ba) = 001, C(F) = C(bb) = 000.

This is an instantaneous code since no code word is prefix to another. with this code the
text abba gives the letter DE which is encoded as: 01001.
Note that:

P (aa) = 0.9 · 0.9 = 0.81, P (ab) = P (ba) = 0.9 · 0.1 = 0.09, P (bb) = 0.1 · 0.1 = 0.01.

Thus, the expected length of the C-encode message per symbol of S2 is equal to:

1 · 0.81 + 2 · 0.09 + 3 · 0.09 + 3 · 0.01 = 1.29.

Each symbol of S2 corresponds to two symbols of S. This implies that the expected length
per symbol of S is equal to 1.29/2 = 0.645. Hence by coding the second extension of S
instead of using a block code of S we can compress the text by 35.5%. We could still
improve this result by coding a higher extension, for example S3 = S × S × S.
We can rewrite Shannon’s first theorem for a block code of the k-th extension Sk. Assume
that the length n of the original text X = X1X2 . . .Xn is a multiple of k so that n = mk.
We rewrite the text X by taking blocks of k letters together, so as to obtain symbols of
Sk. Written, in this form, the text X can be seen as a sequence X = Z1Z2 . . . Zm of m
independent letters Zi from the alphabet Sk where:

Z1 := X1X2 . . .Xk,

Z2 := Xk+1Xk+2 . . .X2k,

Z3 := X2k+1X2k+2 . . .X3k,

...

Let C denote a block code for Sk. C can also be used to encode X by putting:

C(X) := C(Z1)C(Z2) . . . C(Zm).

Let C denote a uniquely decodable block code for Sk minimizing the expected length
E[|C(Z1)|] among all such block codes. Applying Shannon’s first theorem yields:

H(Z1) ≤ E[|C(Z1)|] ≤ H(Z1) + 1. (5.3)

Since, Z1 = X1X2 . . .Xk and since the random letters X1, X2, . . . are all independent
of each other and have same distribution, we find by lemma 5.1:

H(Z1) = H(X1) + H(X2) + . . . + H(Xk) = k · H(X1).

Plugging this into 5.3 and dividing by k yields:

H(X1) ≤
E[|C(Z1)|]

k
≤ H(X1) +

1

k
.

Note that that E[|C(Z1)|]/k is equal to the expected code length E[|C(X)|]/n per symbol
of S. This gives the second version of Shannon’s first theorem:

13

Theorem 5.2 Let C be a uniquely decodable block code for the extension Sk with short-
est possible expected code-word length E[|C(Z1)|]. (Shortest possible among the uniquely
decodable block codes for the extension Sk). Then:

H(X1) ≤
E[|C(X)|]

n
≤ H(X1) +

1

k
.

Here, |C(X)| designates the length of the encoded text and n is the number of letters in
the original text X.

Summary Let us summarize this section. This is about the case when the letters in
the original text are independent of each other. There are two possibilities:

1. The first possibility is when for each letter s ∈ S, the probability ps = P (X1 = s)
can be written in the form:

ps =

(

1

2

)ls

(5.4)

where ls is a natural number. In this case, there exists an instantaneous block code
which achieves maximum compression. The average space per encoded letter is
equal to H(X1) bits. The length of the code word C(s) encoding letter s, is equal
to the number ls from equation 5.4.

2. The second case is when the probabilities of the letters from s are not all equal
to natural number-powers of 1/2. In the case, maximum compression can not be
reached using a block code on the alphabet S. Instead one can use a block code on
an extension of S. By choosing to encode a high enough extension, one can get as
close as one want to the maximum possible compression. By encoding blocks of k
letters of S at a time it is possible to get as close as 1/k to the rate of H(X1) bits
per encoded letter.

6 Compact codes

In the previous section we saw how we can get as close as we want to optimal compression
by encoding large enough blocks of letters at a time. In many practical cases it is however
not possible to take very large blocks of letters. Consider for example the case where S
is the ascii alphabet. This alphabet consists of about 100 symbols. How many exactly?
Can somebody send me an E-mail about this. If we want to encode the fifth extension
S5 of S, we are dealing if all the sequence of five letters of S. There are thus about
|S|5 = 1005 = 10000000000 symbols in S5. If we wish to find a block code for the 5-th
extension S5 we need to find a code word for each of the 1010 symbols of S5. In this
case, it is easier to to encode a smaller extension even if this means less compression. In
this situation one wishes to find the best possible compression among all block codes for
a given extension. This means that one tries to find a code which among all block codes
for a certain extension minimizes the expected code word length.

14

The general problem is thus to find an optimal instantaneous block code for a given set
of symbols S. (The set of symbols could be an extension itself.) By optimal, we mean
minimizing the the average length of the encoded text per symbol of the original alphabet.
This is the same as to search for a code C that minimize the expected code word length
E[|C(X1)|].
Let S be an alphabet. Let C denote the set of all possible instantaneous block codes
K : S → ∪∞

i=1{0, 1}
i. Assume that X1, X2, X3, . . . is a sequence of i.i.d. random letters

taking values in S. For s ∈ S, let ps denote the probability of letter s, i.e.

ps := P (X1 = s).

Definition 6.1 Let C : S → ∪i{0, 1}
i be a instantaneous block code. Then, C is called

a compact code if it minimizes the expected length of the encoded code word E[|C(X1)|] =
∑

s∈S |C(s)|ps among all instantaneous block codes for S.
Thus, C : S → ∪i{0, 1}

i is a compact code iff for all instantaneous block code K : S →
∪i{0, 1}

i we have:
∑

s∈S

|C(s)|ps ≤
∑

s∈S

|K(s)|ps.

Note that a code is compact with respect to a set of probabilities ps, s ∈ S. If we change
the probabilities on the random letters a compact code might no longer be compact.
Next, we present an algorithm to construct compact codes. Let us first give two practical
examples. Consider a four letter alphabet {a, b, c, d, } and the probabilities:

pa = 40%, pb = 30%, pc = 20%, pd = 10%.

Take the code C such that:

C(a) = 0, C(b) = 110, C(c) = 10, C(d) = 111.

This is obviously a instantaneous code, but could it be compact? At first glance one can
see that C can not be compact. The code word for b is longer than the code word for c
although b has larger probability than c. So by exchanging code words and giving b the
code word 10 and c the codeword 110 one can obtain a new instantaneous code with strictly
reduced expected code word length. Hence, C can not be optimal. It is thus necessary
that the length of the code words decreases as the probability of the corresponding letters
increase. Let ls denote the length of the code word C(s) of letter s. For C to be compact
it is thus necessary that the following condition holds:

• For s1, s2 ∈ S, if ps1
< ps2

then ls1
≥ ls2

.

Let us look at another example of an instantaneous block code C:

C(a) = 0, C(b) = 10, C(c) = 110, C(d) = 1111.

Here, the condition that the code-word-lengths decrease with increasing probability of the
letters, is satisfied. However, one can immediately see that C is not compact. As a matter

15

of fact, the code word of the letter with smallest probability d could be reduced by one
bit: Instead of taking 1111 for d, we could take 111. Thus C is not compact. The reason
why we can remove the last bit of the code word of d and still get an instantaneous code
is the following:
there is no other code word with same length as C(d) = 1111 and which is identical to
C(d) except on its last bit. Thus, another necessary condition for a code C to be compact
is:

• The two letters with smallest probabilities must have code words of the same length
which differ from each other only in there last bit.

Let us replace the code word for d by the code word 111 in the last example. For the
new code which we obtain, see that the above condition is satisfied. The two letters with
smallest probabilities are c and d. Their code words are with the new code 110 and 111.
Assume now that the code C satisfies the last condition. For example take:

C(a) = 0, C(b) = 10, C(c) = 110, C(d) = 111.

We are going to reduce the problem of finding a compact code for an alphabet with k
letters to the problem of finding a compact code for an alphabet with k − 1 letters. For
this we take the two letters with smallest probability and “melt” them into one letter. The
new resulting letter, has probability equal to the sum of the probabilities of the melted
letters. In the example above, we replace the alphabet {a, b, c, d} by the 3-letter alphabet:
S∗ = {a, b, γ}, where

pγ := pc + pd.

As we will show, it turns out that we can find a compact code C for S in the following
way:
1) Find a compact code K for the reduced alphabet S∗.
2) For the letters s which appear in both alphabets S and S∗, let the code word C(s) of
s be the same as with K, that is C(s) := K(s).
3) Let r, t be the two letters in S with smallest probability. These are the letters which
got “melted” down into one letter γ. Take for them the code word of K(γ) and add a 0,
resp. a 1 to get the code word for r and for t.
In the previous example, if γ has code word 11 then take 111 as code word for r and 110
as code word for t.

Lemma 6.1 Let r, t designate the two letters with smallest probability in the alphabet S.
Let S∗ designate the reduced alphabet where the letters r, t were replaced by a letter γ with
probability pγ := pr +pt. Let K be a compact code for S∗. Let C be the code for S obtained
by adding a suffix to K(r) and K(t):

• C(s) := K(s) for all s ∈ S − {r, t}

• C(r) := K(r)0

• C(t) := K(t)1

16

Then, C is a compact code for S.

Proof. Suppose on the contrary that C is not a compact code. Let D : S → ∪i{0, 1} be
a compact code. Then, since C is not compact:

∑

s∈S

|D(s)|ps <
∑

s∈S

|C(s)|ps (6.1)

Since D is compact, it satisfies the property that the two letters of S with smallest
probability must have code words which are equal except for their last bit. Define thus
a code D∗ on the reduced alphabet S∗ in the following manner: for all s ∈ S − {r, t} let
D∗(s) := D(s).
Let D∗(γ) be the code word obtained from D(r) by removing the last bit. We find:

∑

s∈S

|D(s)|ps =

(

∑

s∈S∗

|D∗(s)|ps

)

+ pr + pt (6.2)

Reducing the code C in a similar way gives the code K. Thus,

∑

s∈S

|C(s)|ps =

(

∑

s∈S∗

|K(s)|ps

)

+ pr + pt (6.3)

Plugging 6.2 and 6.3 into 6.1 yields:
∑

s∈S∗

|D∗(s)|ps <
∑

s∈S∗

|K(s)|ps

It is easy to see that D∗ is an instantaneous block code since D is (prefix-freeness). Hence
the last inequality contradicts the fact that K is a compact code. Thus, C must be a
block code.

7 Expected length of encoded text and entropy

Let Z1 be a random variables which can take values in a set Ω. For z ∈ Ω, let pz designate
the probability that Z1 takes on value z, i.e. pz = P (Z = z). Then, the expectation is
E[Z1] is defined to be equal to:

E[Z1] :=
∑

z∈Ω

z · pz.

Let us first recall the Law of Large Numbers from probability theory:

Theorem 7.1 Let Z1, Z2, . . . be i.i.d. (= independent and identically distributed) random
variables. Then, as n goes to infinity we have that:

Z1 + Z2 + . . . + Zn

n
→ E[X1]. (7.1)

17

Hence, the average of Z1 + . . . + Zn/n converges to the expectation E[Z1] as n goes to
infinity. In a less mathematical formulation: for large n, expression 7.1 is very close to
the value E[Z1].

Let us look at an example. Let Z1 be a four sided die with sides 1, 2, 3 and 4. Assume
the die is biased and that the probabilities of each side is given by:

P (Z1 = 1) = 10%, P (Z1 = 2) = 40%, P (Z1 = 3) = 10%, P (Z1 = 4) = 40%.

The expectation E[Z1] of Z1 is obtained by multiplying the probabilities by the corre-
sponding values and summing over the different values:

E[Z1] = 1 · 0.1 + 2 · 0.4 + 3 · 0.1 + 4 · 0.4 = 2.8

In this case, (Z1+Z2+. . .+Zn)/n designates the value which we obtain when we throw the
die n-times independently and then take the average. Hence, in the case of this example,
the Law of Large Numbers tells us, that for large n the average (Z1 + Z2 + . . . + Zn)/n is
close to 2.8.
Assume that we are in the case of a random text X consisting of n i.i.d. letters X1, X2, . . . , Xn

so that X = X1X2 . . .Xn. Let C be a block code. Then the length of the encoded text
C(X) = C(X1)C(X2) . . . C(Xn) is equal to:

|C(X)| = |C(X1)| + |C(X2)| + . . . + |C(Xn)|.

For example: assume we have a three letter alphabet S = {a, b, c} and a code C:

C(a) = 0, C(b) = 10, C(c) = 11.

Assume that n = 4, that is the text X has length 4. We thus throw a die 4 times to
get four random letters. For example we could get X1 = a, X2 = a, X3 = b, X4 = c, and
hence the original text would be equal to:

X = aabc.

Encoding X yields: C(X) = C(aabc) = C(a)C(a)C(b)C(c) = 001011. The length |C(X)|
of the encoded text is thus

|C(X)| = |C(a)| + |C(a)| + |C(b)| + |C(c)| = 1 + 1 + 2 + 2 = 6.

Let Zi denote the length of the i-th encoded letter Xi of text X. Thus Zi = |C(Xi)|.
With this notation the length |C(X)| of the encoded text equals:

|C(X)| = Z1 + Z2 + . . . + Zn.

Since, the Xi’s are independent and have same probabilities so do the Zi’s which are
function of the Xi’s. We can thus apply the Law of Large Numbers to the Zi’s. We find
that for large n, the average (Z1 + . . . + Zn)/n is approximately equal to E[Zi]. Thus,

Z1 + . . . + Zn ≈ n · E[Z1] = n · E[|C(X1)|].

18

The conclusion is:

The length of the encoded text is approximately equal to the
expected length E[|C(X1)|] of the code word times the number of
letters, as soon as the length of the original text is not too small.

Probability theory (Central Limit Theorem) tells us that this approximation is very good:
the difference between Z1 + . . . + Zn and n · E[Z1] is with high probability no more than

order o(n
1

2). Most of the time, we consider texts for which n, the number of letter is

large so that o(n
1

2) is negligible in comparison to n. If the text X for example has length

n = 10000, then n
1

2 = 100. So, the encoded text length is proportional to 10000 plus
minus something of the order of 100: C(X) = 10000 . . . E[|C(X1)| + −o(100).

8 Convexity of entropy

Assume that a random letter X1 has probabilities given by:

P (X1 = a) = 20%, P (X1 = b) = 30%, P (X1 = c) = 50%.

Note that we can summaries the situation in a three dimensional vector:

(0.2, 0.3, 0.5).

We write L(X1) for the probability distribution of X1. The vector specifying all the
probabilities of the random letter X1 is called the probability distribution of X1. If a
random letter takes values in an alphabet S with q letters, then the probability distribution
of that letter can be seen as a q-dimensional vector. For example, if X1 is a fair coin which
is equal to one with probability p and equal to 0 otherwise, we have that

L(X1) = (p, p − 1).

Assume that we have two four sided dice X1 and Y1 with different probabilities:

P (X1 = a) = 20%, P (X1 = b) = 30%, P (X1 = c) = 30%, P (X1 = d) = 20%

and

P (Y1 = a) = 25%, P (Y1 = b) = 25%, P (Y1 = c) = 25%, P (Y1 = d) = 25%.

Assume that we have a coin where side 1 has probability p and where 0 has probability
1 − p. We can now use the coin and the two dice to generate a new random variable: we
flip the coin and then decide which coin to use based on the side of the coin. With the
chosen die we generate a random letter. The letter thus obtained can be denoted by Z1.
The probabilities of Z1 are given by

P (Z1 = a) = 0.2p + 0.25(1 − p) , P (Z1 = b) = 0.3p + 0.25(1 − p),

P (Z1 = c) = 0.3p + 0.25(1 − p) , P (Z1 = d) = 0.2p + 0.25(1 − p).

19

In vector notation, we find:

L(Z1) = p (0.2, 0.3, 0.3, 0.2) + (1 − p) (0.25, 0.25, 0.25, 0.25) = pL(X1) + (1 − p)L(Y1).

The distribution of Z1 is called a mixture of the distributions of X1 and Y1. Thus, in this
case L(Z1) is a linear combination of L(X1) and of L(Y1). Note that the entropy of X1

depends only on the “probabilities”, that is of the entries in the vector L(X1). Hence,
the entropy H(X1) can be seen as a function of L(X1). Thus, H(X1) = H(L(X1)). Next
we prove that entropy is a concave function.

Lemma 8.1 Let S designate an alphabet with q symbols. Let X1 and Y1 be two random
letters taking values in S. Let p ∈ [0, 1]. Then:

H (pL(X1) + (1 − p)L(Y1)) ≥ pH (L(X1)) + (1 − p)H (L(Y1)) .

In other words the entropy function H(.) is concave.

Proof. Take for example a three letter alphabet S = {a, b, c}. Then, the entropy function
H is

H : (pa, pb, pc) → pa log2

(

1

pa

)

+ pb log2

(

1

pb

)

+ pc log2

(

1

pc

)

.

In other words,

H : (x, y, z) 7→ x log2

(

1

x

)

+ y log2

(

1

y

)

+ z log2

(

1

z

)

where we only consider non-negative values for x, y and z.
Let us look at the function f(.):

f : x 7→ x log2

(

1

x

)

for x ≥ 0. Taking the second derivative, we find:

d2f

d2x
=

d(log(1/x) − 1)

dx
= −

1

x
.

For x ≥ 0 we have that −(1/x) ≤ 0. Thus, the function f is concave. It follows that H
is a sum of three concave functions: x log2(1/x), y log2(1/y) and z log2(1/z). The sum of
concave functions is again concave. Thus, H(.) is concave

9 Entropy of joint variables

Theorem 9.1 Let X1 and Y1 be two random variables. Then

H(X1, Y1) ≤ H(X1) + H(Y1)

with equality iff X1 and Y1 are independent.

20

Before giving a proof let us see an example. Let X1 and Y1 be two random letters from
an alphabet S = {a, b, c}. Imagine the joint probability of X and Y is given by:





pa,a pa,b pa,c

pb,a pb,b pb,c

pc,a pc,b pc,c



 =





0.1 0.05 0.05
0.2 0.05 0.01
0.04 0.3 0.2





where pa,a designates the probability P (X1 = a, Y1 = a) and pa,b designates the probability
P (X1 = a, Y1 = b) and ...
Then, (X1, Y1) is an ordered random pair, or call it a 2-dimensional random vector. Denote
the random pair (X1, Y1) by Z1. What is the entropy of Z1? To calculate the entropy of a
random object, we need to take the probability of each possible outcome and multiply it
with the logarithm of the inverse of its probability. Then we sum over all possible states.
For Z1 there are in this example 9 possible states. Thus we find:

H(Z1) = H(X1, Y1) =
∑

r,s∈S

pr,s log

(

1

pr,s

)

.

In our example, thus:

H(Z1) =pa,a log

(

1

pa,a

)

+ pa,b log

(

1

pa,b

)

+ pa,c log

(

1

pa,c

)

+ pb,a log

(

1

pb,a

)

+

+ pb,b log

(

1

pb,b

)

+ pb,c log

(

1

pb,c

)

+ pc,a log

(

1

pc,a

)

+ pc,b log

(

1

pc,b

)

+ pc,c log

(

1

pc,c

)

.

Thus:

H(Z1) = 0.1 log(1/0.1) + 0.05 log(1/0.05) + . . . + 0.3 log(1/0.3) + 0.2 log(1/0.2).

Let us calculate next the the entropies of X1 and Y1. For this we need to find what the
“probabilities” for X1 and Y1 are.
We have that

P (X1 = a) = pa,a + pa,b + pa,c = 0.1 + 0.05 + 0.05 = 0.2

and
P (X1 = b) = pb,a + pb,b + pb,c = 0.2 + 0.05 + 0.01 = 0.26

and
P (X1 = c) = pc,a + pc,b + pc,c = 0.04 + 0.3 + 0.2 = 0.54

Thus, the entropy H(X1) of X1 is equal to:

H(X1) = 0.2 log2(1/0, 2) + 0.05 log2(1/0.05) + 0.05 log2(1/0.05).

In a similar way we could calculate H(Y1). Let us next present a very intuitive proof of
lemma 9.1. Let for this Z1, Z2 = (X2, Y2), Z3 = (X3, Y3), . . . be a sequence of independent

21

copies of the random pair Z1 = (X1, Y1). Let Z be a text of n independent random letters,
so that:

Z := Z1Z2 . . . Zn.

Assume that n is large. We saw that the minimum space to store a random text of i.i.d.
letters is about n times the entropy of one random letter. (Here n is the length of the
text.) By maximum compression without information-loss the text Z requires thus for
storage:

H(Z1)n

bits of space. Now we could also store it by taking the two text X and Y separately
and compressing each of them maximally. (Here X designates the random text X :=
X1X2 . . . Xn and Y := Y1Y2 . . . Yn.) For text X, we need about

H(X1)n

space and for Y , we would need about

H(Y1)n

bits of space. Thus the total space needed if we compress X and Y separately and store
them in two files is H(X)n + H(Y)n. Clearly if we store X in a manner to not lose any
information and same thing for Y then from the two files we will be able to reconstruct the
text Z. Thus, there exist a compression of Z with no information-loss which requires about
H(X1)n+H(Y1)n. The optimal compression of Z can not be worse, than compressing X
and Y separately. (Otherwise it would not be the optimal compression.) Thus, H(Z1)n
is about less or equal to H(X1)n + H(Y1)n. Hence, H(Z1)n ≤ H(X1)n + H(Y1)n from
which it follows that

H(Z1) ≤ H(X1) + H(Y1).

Let us next give more mathematical proof of theorem 9.1:
Proof. Still to be written down.

Lemma 9.1 Let X1 be a Bernoulli variable with parameter p. That is P (X1 = 1) = p
and P (X1 = 0) = 1 − p. Then

H(X1) = p log

(

1

p

)

+ (1 − p) log

(

1

1 − p

)

Definition 9.1 For p ∈ [0, 1] we define the entropy function H(p) at p in the following
way:

H(p) = p log

(

1

p

)

+ (1 − p) log

(

1

1 − p

)

At p = 0 and p = 1 define H(p) by continuity to be equal to 0.

22

Lemma 9.2 The function H(p) reaches a maximum at p = 1/2.

Lemma 9.3 Let S be an alphabet with q symbols in it. Let X1 be a random letter taking
values in S. Then, H(X1) is maximum when each letter has same probability. When all
the Q letters in the alphabet S have same probability, then H(X1) = log(q).

The last lemma can also be phrased in the following way: the function

f : (p1, p2, . . . , pq) 7→ f(p1, p2, . . . , pq) = p1 log(1/p1) + . . . + pq log(1/pq)

under the constrain
p1, p2, . . . , pq ≥ 0

and
p1 + . . . + pq = 1

is maximized when

p1 = p2 = . . . = pq =
1

q
.

10 Markov sources

In many cases, the assumption that letters in a text are independent of each other is not
realistic. For example, the probability of encountering a e in a English text might be
10%. So if the letters where independent, the probability to encounter a string eee would
have probability 0.1%. However, the string eee never appears in English. This shows
that in an English text letters are not independent of each. Another example is: take the
letters k and q. Both have probabilities to appear in an English text different from zero.
However, the string qk never appears in English.
One of the main models used to approximate many real life situation is called Markov
chain. Let X = X1X2 . . .Xn designate a random text consisting of random letters
X1, X2, We say that the sequence of random letters

X1, X2, X3, . . .

has the Markov property, if what each letter is equal to depends only on the letter right
before. By this we mean the following: assume that the random letters X1, X2, . . . are
from an alphabet X = {a, b, c}. Then, if we have the Markov property, we can calculate
the probability of what letter Xj is going to be, if we only know letter Xj−1. In the Markov
case, for example if we know say that X1 = a, X2 = b, X3 = c and want to calculate what
the probability P (X4 = a|X1 = a, X2 = b, X3 = c) is, then we only need to know that
X3 = c. In other words, the conditional probability

P (X4 = a|X1 = a, X2 = b, X3 = c)

depends only on X3. Thus, with the Markov property we have that:

P (X4 = a|X1 = a, X2 = b, X3 = c) = P (X4 = a|X3 = c).

23

Definition 10.1 We say the sequence of random variables X1, X2, . . . has the Markov
property iff for all (non-random) sequence s1, s2, . . . , sj+1 we have that

P (Xj+1 = sj+1|X1 = s1, X2 = s2, . . . , Xj = sj) = P (Xj+1 = sj+1|Xj = sj).

The probability to go from one letter r to the next s is called the transition probability from
state r to state s. We are mainly interested in transition probabilities which don’t change
but remain fix. A Markov process which keeps always the same transition probabilities is
called a Markov chain.

Definition 10.2 We call the random sequence X1, X2, . . . a Markov chain if it has the
Markov property and if for all r, s ∈ S, the transition probability

P (Xj+1 = s|Xj = r)

does not depend on j. The probability

P (Xj+1 = s|Xj = r)

is called transition probability from state r into state s and is denoted by pr→s or also by
prs.

We usually write down the transition probabilities in form of a matrix. This matrix is
then called transition matrix. Imagine for example a 2 letter alphabet S = {a, b, } and
the following transition matrix:

P =

(

paa pab

pba pbb

)

=

(

0.2 0.8
0.3 0.7

)

In this case we have:
after an a we have again an a with 20% probability and a b with 80% probability, after a
b, we have with 30% probability an a and with 70% a b.
On important property of the i.i.d. case: all the letters X1, X2, X3, . . . have the same
probabilities. Thus, we have that

P (X1 = a) = P (X2 = a) = P (X3 = a) = . . . (10.1)

and
P (X1 = b) = P (X2 = b) = P (X3 = b) = . . . (10.2)

This property is not shared by Markov chain. However, the Markov chains we consider
here (the non-cyclic irreducible ones) have the property that they quickly converge into
a “stationary regime” where 10.1 and 10.2 approximately hold. When for all s ∈ S,

P (X1 = s) = P (X2 = s) = P (X3 = s) = . . . (10.3)

we way that the Markov chain is in a stationary state. After a while most Markov chains
converge into a stationary state. Since we are only interested in rather long texts in

24

information theory, we can always assume that our Markov texts are in a stationary
state. This stationary probabilities for different s ∈ S will be denoted by π(s) and can
be calculated by solving by the equation:

(

π(a) π(b)
)

=
(

π(a) π(b)
)

·

(

paa pab

pba pbb

)

and
∑

s∈S π(s). The stationary probability π(s) of symbol s, represents the long term
frequency of s in our Markov text X. It is also approximately is equal to the probability
that the j-th letter Xj of our text is a s, provided j is not too small. Let us next look at
what is the best way to encode a Markov text. Assume that we have a 3 letter alphabet
S = {a, b, c} and a transition Matrix:





1/2 1/4 1/4
1/4 1/2 1/4
1/4 1/4 1/2



 =





paa pab pac

pba pbb pbc

pca pcb pcc



 .

In this case, if a letter is preceded by an a, then the probability that this letter is equal
to :
an a is 1/2, a b is 1/4, a c is a 1/4.// On the other hand, if a letter is preceded by a b,
then the probability that this letter is equal to :
an a is 1/4, a b is 1/2, a c is a 1/4.// Finally, if a letter is preceded by a c, then the
probability that this letter is equal to :
an a is 1/4, a b is 1/4, a c is a 1/2.// for each of these three cases another coding scheme
is optimal:
1) In the first case, that is when the letter is preceded by an a, an optimal code D is given
by:

D(a) = 0, D(b) = 10, D(c) = 11.

2) In the second case, when a letter is preceded by a b, an optimal code F is given by:

F (a) = 10, F (b) = 0, F (c) = 11.

3) If a letter is preceded by a c an optimal code G is :

G(a) = 10, G(b) = 11, G(c) = 0.

Thus, to achieve optimal compression with a Markov text we apply to each letter a
different code depending on the preceding letter.
Let us illustrate this by an example of a text we encode using the above described method.
Let the text to encode be equal to X = X1X2X3X4X5 = aabca.
For the first letter X1, we make the convention that it is preceded by an a. So we use
code D to encode it and find D(X1) = D(a) = 0.
The second letter X2 of the text X is preceded by an a. So we use code D to encode it.
We find that D(X2) = D(a) = 0.
The third letter X3 is proceeded by an a. We hence use code D. We get D(X3) = D(b) =

25

10.
The fourth letter is preceded by a b. Thus, we use code F . We find F (X4) = F (c) = 11.
In a similar, way we find that the last letter X5 needs to be encoded with code G. We
find G(X5) = G(a) = 10.
Eventually, when we encode the text aabca using this method, we get:

D(a)D(a)D(b)F (c)G(a) = 00101110.

Let us look at another example: assume the alphabet we consider is S = {a, b} and let
the transition matrix of the Markov chain is given by

P =

(

0.25 0.75
0.75 0.25

)

=

(

Pa→a Pa→b

Pb→a Pb→a.

)

Here, a letter which is preceded by an a is equal to an a with 25% probability and to a b
with 75% probability. However, “probability” 0.75 is not an integer power of 1/2. Thus,
optimal compression can not be reached if we encode each letter at a time. Instead we
need to take large blocks of such letters and encode them together. To do this we need
to separate the letters which are proceeded by an a from those which are preceded by a
b. Let us next give a few useful notations and definitions:

• Let Na designate the total number of a’s in the text X = X1X2 . . .Xn.

• Let Yi designate the i-th letter in the text X which is preceded by an a for i ≤ N a.

• Let Y designate the text we obtain if we take only the letters which are preceded
by an a. Hence:

Y = Y1Y2 . . . YNa.

• Let N b designate the total number of b’s in the text X.

• Let Zi designate the i-th letter of X which is preceded by a b for all i ≤ N b.

• Let Z = Z1Z2 . . . ZNb designate the subsequence of letter from X, which we obtain
if we take only the letters which are preceded by a b.

The most important facts about the “subtexts” Y and Z are:

• Y and Z are independent of each other.

• If we are given Y and Z, we can “reconstruct” X. (For this we always make the
assumption that the first letter X1 is a letter preceded by an a.) Hence, Y and Z
uniquely determine X and thus contain the full information contained in X.

26

• The letters Y1, Y2, . . . are i.i.d. with

P (Yi = a) = pa→a, P (Yi = b) = pa→b.

• The letters Z1, Z2, . . . are i.i.d. with

P (Zi = a) = pb→a, P (Zi = b) = pb→b.

This solves the question of what minimum space is needed to store a Markov text X
without loss of information. Since the information contained in X is equivalent to the
information contained in the two text Y and Z, storing X is the same as storing Y and
storing Z. Since Y and Z are independent of each other, we can not use one of them
to store the other on less space. We have to encode Y and Z separately. The minimum
amount of space needed to store X is equal to the space needed for Y plus the space needed
for Z. But the texts Y and Z are both i.i.d. texts. Hence, their maximal compression is
given by their entropy.
The minimal space for Y , is approximately H(Yi) times the number of letters in text Y .
Hence, the space needed to store Y is equal to H(Yi)N

a. However, Na is approximately
equal to π(a)n. Hence, the minimum amount of space needed to store Y is approximately
equal to H(Yi)π(a)n.
In a similar way, we find that the minimal space needed to store Z is approximately
H(Zi)π(b)n. Hence the total space used to store X (that is to store Y and Z separately)
is approximately:

H(Yi)π(a)n + H(Zi)π(b)n.

This gives an amount of space of

H(Yi)π(a) + H(Zi)π(b) (10.4)

per symbol of the text X. Expression 10.4 is called entropy rate of the Markov text X.
We have that

H(Yi) = paa log2

(

1

paa

)

+ pab log2

(

1

pab

)

since Yi is equal to a with probability paa and is equal to b with probability pab. Similarly:

H(Zi) = pba log2

(

1

pba

)

+ pbb log2

(

1

pbb

)

since Zi is equal to a with probability pba and is equal to b with probability pbb.
Important: For a Markov process which is not i.i.d. the entropy rate is different from

the entropy H(Xi) of a letter of X.
Let us explain how to encode a Markov text and reach optimal compression (or close to
it).

1. Take the random text X and separate the letters which are preceded by an a from
those which are preceded by a b. After separation you obtain the two text of i.i.d.
letters Y and Z.

27

2. Chose an optimal (or close to optimal) code D to encode Y .

3. Chose an optimal (or close to optimal) code F for Z. Encode Z using F .

Of course this optimal method to encode a Markov chain works also in the general case,
when the alphabet contains more than two letters.

Definition 10.3 Let X1, X2, . . . be a Markov chain of letters from an alphabet S. We
define the entropy rate of the Markov chain by

∑

s∈S

H(Xs
i)π(s)

where
Xs

i

designates the i-th letter in X which is preceded by a s. Hence:

H(Xs
i) :=

∑

r∈S

P (Xj+1 = r|Xj = s) log2

(

1

P (Xj+1 = r|Xj = s)

)

=
∑

r∈S

psr log2

(

1

psr

)

.

We can also rewrite the entropy rate of a Markov chain in the following way:

∑

s,r

π(s)psr log2

(

1

psr

)

=
∑

s,r

π(s, r) log2

(

1

psr

)

where π(s, r) designates the probability π(s)psr of the string sr under the stationary dis-
tribution.

Let us give a theorem.

Theorem 10.1 Let X1, X2, . . . be a Markov chain of letters from an alphabet S. Then,
the entropy rate of the Markov chain is equal to the limit:

lim
n→∞

H(X1, X2, X3, . . . , Xn)

n

Let us look at yet another approach to compressing Markov texts. We could encode letters
or group of letters acting as if they where independent. For example we could find a block
code C for the above described Markov chain. How well would that code do? The length
of the encoded text is:

|C(a)|Na + |C(b)|N b

where

• Na is the number of a’s in the text X,

• N b is the number of a’s in the text X,

28

• |C(a)| designates the length of the code word for a.

• |C(b)| designates the length of the code word for b.

We saw that Na is approximately equal to π(a)n. Similarly, N b is approximately equal to
π(b)n. Thus, the space needed to store the text X if we use the block code C to encode
it, is approximately:

|C(a)|π(a)n + |C(b)|π(b)n

or
|C(a)|π(a) + |C(b)|π(b)

per letter of the original alphabet. This is the same space needed as if the letters would
be independent and with probabilities π(a) and π(b).
Take now blocks of k-letters of the Markov chain at a time and encode them using a block
code for the k-th extension Sk. Use the stationary distribution of those groups of letters
to find a good code.
For example if you consider the 3rd extension. The probability of an aba in the stationary
regime, is going to be equal to: the probability to have an a in the stationary regime,
times the probability to go from a to b, times the probability to go from b to a. Thus,
under stationary distribution the probability to have an aba is

π(a) · pa→bpb→a.

We can apply Shannon’s theorem for a block coding of Markov chain and find:

Theorem 10.2 Let C be a block code on the k-th extension for a Markov chain. Assume
that among such codes, C minimizes the expected length of the encoded text. Then:

H(X1, X2, . . . , Xk)

k
≤

E[|C(X)|]

n
≤

H(X1, X2, . . . , Xk)

k
+

1

k

where the Markov chain X1, X2, . . . is taken in the stationary regime.

Assume that X1, X2, . . . is a Markov chain which is in its stationary regime. (If it
is not, when we let the Markov chain go for a while it gets very quickly very close to
the stationary regime anyhow. So the first letters which might not be in the stationary
regime can be discarded.) For the stationary regime we have that all the probabilities
P (X1 = a), P (X2 = a), ... are equal to each other and are equal to π(a).
similarly in the stationary regime, all the probabilities P (X1 = b), P (X2 = b), ... are equal
to each other and are equal to π(b).
Why do on the long run the frequencies of a’s and b’s get close to the probabilities π(a)
and π(b) just like in the i.i.d. case? Simple divide the letters X1, X2, . . . into r groups of
letter which are r apart from each other. For example for r = 10, the first group will be

X10, X20, . . .

29

the second group will be:
X1, X11, X21, X31 . . .

the third group will be
X2, X12, X22, X32

By choosing r big enough, the letters in each group are very close to being independent
of each other. So, for each group, we are very close to getting a proportion of a’s, resp.b’s
equal to the probabilities π(a) and π(b). If in each group the proportion of a’s and b’s is
very close to π(a) and π(b), then the overall proportion of a’s and b’s in X is also very
close to π(a) and π(b). There exist also processes (i.e. sequences of random symbols)
which are stationary but not necessarily Markov. Let us give a definition.

Definition 10.4 Let X1, X2, . . . be a sequence of random symbols from an alphabet S. We
say that the sequence X1, X2, . . . is stationary iff for all k ∈ N and all finite sequences of
(non-random) symbols:

s1, s2, . . . , sk

we have that:

P (X1 = s1, X2 = s2, . . . , Xk = sk) = P (Xt+1 = s1, Xt+2 = s2, . . . , Xt+k = sk)

for all t ∈ N.

Note that a Markov Chain is in general not a stationary sequence of random symbols.
However, if we let a Markov chain run for a little while, it usually becomes close to
stationary. Also, when we start a Markov chain simulating an X1 having the stationary
distribution, then we get a stationary sequence.

11 Data transmission

Let us first look at a simple case. Assume that we want to send Matzinger’s lecture notes
to some relatives in Russia through a transmission channel like the Internet for example.
Each bit sent costs a certain amount of money. Furthermore, during transmission, random
transmission errors can occur. We assume that for each bit transmitted there is an error
probability p < 1/2 and the errors are independent from one bit to the next. Let Xi be
the i-th bit sent and let Yi denote the i-th bit received by the receiver. We assume that:

P (Yi = 1|Xi = 1) = P (Yi = 0|Xi = 0) = 1 − p,

P (Yi = 0|Xi = 1) = P (Yi = 1|Xi = 0) = p

where p does not depend on i. This model is called the Binary Symmetric Channel (BSC).
Let us first look at an example: Assume that we have a code D(.) which uses as code

30

word for every letter of the alphabet its rand in the alphabet expressed in binary form so
that:

a D(a) = 00001
b D(b) = 00010
c D(c) = 00011
d D(d) = 00100
e D(e) = 00101
f D(f) = 00110
g D(g) = 00111
h D(h) = 01000
i D(i) = 01001
j D(j) = 01010
k D(k) = 01011
l D(l) = 01100
m D(m) = 01101
n D(n) = 01110
o D(o) = 01111
p D(p) = 10000
q D(q) = 10001
r D(r) = 10010
s D(s) = 10011
t D(t) = 10100
u D(u) = 10101
v D(v) = 10110
w D(w) = 10111
x D(x) = 11000
y D(y) = 11001
z D(z) = 11010
. D(.) = 11011

Let us now look at what happens when we transmit a text which uses the above encoding.
Assume we want to transmit the message “math”. We find:

D(math) = D(m)D(a)D(t)D(h) = 01101000011010001000

Let us now add a few random errors: take for example p = 25%. After simulation our
message reads:

01111001001010101001

If we decode this we find:

D−1(01111001001010101001) = D−1(01111)D−1(00100)D−1(10101)D−1(01001) = odui

We see the message has been completely changed. Next we are going to try to transmit the
same bit several times and hope in this way be able to reconstruct the original message.

31

Assume that our text consists of a four letter alphabet S = {m, a, t, h}. Let us use the
following code:

D(a) = 00, D(m) = 10, D(t) = 01, D(h) = 11.

Let the message be:
math.

Now we encode this message:

D(math) = 10000111

Instead of transmitting it directly we are going to transmit every bit five times. This will
cost more money, but in this way we increase the chances of being able to decode the
message correctly: So we send:

111110000000000000000000000011111111111111111.

Assume that the probability of an error p is 0.1. What it the probability that we can
reconstruct a bit which we sent five times correctly? We work in the following way: we
take groups of five bits and decide that it correspondent to the bit which appears most
often: for example if we receive:

11110

as one group of five bits we assume that the bit was a 1 and that the last bit out of the five
is an error. Hence we use a majority rule to try to determine what the original message
was. The probability that our majority rule fails in identifying what the bit was is thus:
if we take groups of five bits: the probability to have more than two errors. This is

(

5

3

)

(0.1)3(0.9)2 +

(

5

4

)

(0.1)4(0.9)1 + (0.1)5 ≈ o(
1

100

So we see that the probability of an error is small, about one in hundred bits only is
wrong. With this strategy how much information can we transmit? How much do we
have to pay to send one book.
Take the book, compress it maximally and the send each bit five times. Say the book
is 200 pages. Means about, 200 × 1000 characters. entropy of English: about 2.71. So,
encoded we get 200 × 1000 × 2.71 binary bits. We send each bit five times, so the total
number of bits we need is about 200 × 1000 × 2.71 × 5. The number of bits we use per
information send is:

200 × 1000 × 2.71 × 5

200 × 1000 × 2.71

1

5

Thus, per actual information bit sent with the above scheme it seems like we need to pay
for five transmission bits. Information sent per symbol sent in our scheme is about 1/5.
This is the information transmission rate R. The above method to decode a received
message uses the majority rule. We will see that this method is not very efficient. By
this we mean, that we could send much less symbols and yet have a more reliable way for

32

the receiver to figure out what the original message was. Also, it should be noted, that
on the long run the above described method produces a constant proportion of errors.
Hence, the receiver after trying to decode the received message, still is left with a (may
be small) but fix proportion of errors. We will see that we can improve this as long as the
transmission rate R is not too large.

12 Conditional entropy

Assume that Z1, Z2, . . . is an i.i.d. sequence of two-dimensional random symbols

Z1 = (X1, Y2), Z2 = (X2, Y2),

Let
X = (X1, . . . , Xn)

and let
Y = (Y1, . . . , Yn).

Imagine the following data compression problem:
we have stored the text X. Now, we want to store Y . What is the maximum compression
we can reach for Y without information-loss? Since X is already stored, we can use X
to code and decode Y . In this way, we can store Y on less space than if we had to store
it alone. We only need to store the information contained in Y which is not already
contained in X. Let us illustrate how this is done:

Assume that the joint probabilities are given by:





P (Xi = a, Yi = a) P (Xi = b, Yi = a) P (Xi = c, Yi = a)
P (Xi = a, Yi = b) P (Xi = b, Yi = b) P (Xi = c, Yi = b)
P (Xi = a, Yi = c) P (Xi = b, Yi = c) P (Xi = c, Yi = c)



 =





0 1/8 1/8
1/8 1/4 0
1/8 1/8 1/8





Recall that the conditional probability of the event A given the event B is denoted by
P (A|B) and is equal to

P (A|B) =
P (A ∩ B)

P (B)
.

Thus conditional on Xi = a, we have that Yi has the following probabilities:

P (Yi = a|Xi = a) = 0

P (Yi = b|Xi = a) =
P (Yi = b, Xi = a)

P (Xi = a)
=

1/8

1/8 + 1/8
=

1

2

P (Yi = c|Xi = a) =
P (Yi = c, Xi = a)

P (Xi = a)
=

1/8

1/8 + 1/8
=

1

2

33

A variable, which is equal to a with zero probability, and equal to b or c with 50%
probability each can be optimally compressed by using a block code D:

D(b) = 0, D(c) = 1.

If we know that Xi = b then we find:

P (Yi = a|Xi = b) =
P (Yi = c, Xi = a)

P (Xi = a)
=

1/8

1/8 + 1/8 + 1/4
=

1

4

P (Yi = b|Xi = b) =
P (Yi = b, Xi = b)

P (Xi = b)
=

1/4

1/8 + 1/8 + 1/4
=

1

2

P (Yi = c|Xi = b) =
P (Yi = c, Xi = a)

P (Xi = a)
=

1/8

1/8 + 1/8 + 1/4
=

1

4

A random letter which is equal to a with prob. 1/4, equal to b with prob. 1/2 and equal
to c with prob. 1/4 can be compressed maximally by a code F :

F (a) = 00, F (b) = 1, F (c) = 01.

Eventually we have that when Xi = c then

P (Yi = a|Xi = c) =
1

2
P (Yi = b|Xi = c) = 0

P (Yi = c|Xi = c) =
1

2

A random letter which is equal to a with prob 0.5, to b with prob. 0 and equal to c with
prob. 0.5 can be maximally compressed by a block code G:

G(a) = 1, G(c) = 0.

Every time Xi = a, we use code D to encode Yi. When Xi = b, we use code F and when
Xi = c we use code G. Let us give an example:

(Z1, Z2, Z3, Z4) = ((a, b), (a, c), (c, c), (b, a))

where we took n = 4. In this case

X = (a, a, c, b)

and
Y = (b, c, c, a).

and hence Y1 = b, Y2 = c, Y3 = b and Y4 = a. Since X1 = a, we use code D to encode Y1

and find D(Y1) = D(b) = 0.
We have X2 = a, and thus we use again code D to encode Y2. We find D(Y2) = D(c) = 1.

34

Furthermore, X3 = c. Hence we use code G to encode Y3. We find G(Y3) = G(c) = 0.
Eventually, X4 = b. This implies that we use code F to encode Y4. We find F (Y4) =
F (a) = 00. Thus the message Y = bcba when encoded gives:

D(b)D(c)G(c)F (a) = 01000.

When all the codes used are instantaneous, it is easy to see that one can decode the
encoded Y correctly y provided we are given X.
How much space do we need to store the text Y if we can use X for encoding and decoding
purposes? To answer this question let us define:
-Let Na, resp N b, resp N c be the number of a’s, b’s and c’s appearing in the text X =
X1 . . .Xn.
- Let Y a

j be the j-th Yi for which Xi = a. Let Y a be the text: Y a := Y a
1 . . . Y a

Na.
- Let Y b

j be the j-th Yi for which Xi = b. Let Y b be the text: Y b := Y b
1 . . . Y b

Nb.
- Let Y c

j be the j-th Yi for which Xi = c. Let Y c be the text: Y c := Y c
1 . . . Y c

Nc.
It is easy to check that the three texts Y a, Y b and Y c are all independent of each other.
They are also all independent of X. It is easy to see that if we are given Y a, Y b, Y c and
X we can reconstruct Y . Thus, the minimum amount of space needed to store Y with
the help of X, is equal to the minimum amount of space needed to store Y a, Y b and Y c.
Since the three random texts are independent of each other, the total amount of space to
store (Y a, Y b, Y c) is the sum of the amount of space needed for each Y a, Y b and Y c.
It is easy to check that the Y a

i ’s are independent of each other. So the space needed
to store Y a is equal to H(Y a

1) times the number of variables Y a
i in Y a. There are Na

variables Y a
i in Y a. By law of large number Na is approximately equal to

P (X1 = a)n.

Hence the space needed to store Y a is roughly equal to

H(Y a)P (X1 = a)n.

In a similar fashion, the space needed for Y b is about

H(Y b)P (X1 = b)n,

whilst the space for Y c is about

H(Y c)P (X1 = c)n.

Thus the space needed to store (Y a, Y b, Y c) is

n ·
(

H(Y a)P (X1 = a) + H(Y b)P (X1 = b) + H(Y c)P (X1 = c)
)

. (12.1)

This is approximately the minimum amount of space needed to store Y , if we can use X
for the encoding and decoding. If we can use X for coding and decoding, what we store
is only the portion of the information contained in Y which is not contained in X. Hence

35

expression 12.1 is a measure of the amount of information which is left in Y after we have
taken out all the information which is also contained in X. If we divide expression 12.1
by the number of letters n in Y , we get the information which is contained in Y but not
in X, per symbol of Y . This is then called the conditional entropy of Y given X.
For a letter s in the alphabet S, we also denote H(Y s

i) by H(Yi|Xi = s). This means
the entropy of Yi when we take Yi to have a conditional probability law obtained by
conditioning on Xi = s.

Definition 12.1 We define the conditional entropy of Yi given Xi to be equal to:

H(Yi|Xi) =
∑

s∈S

H(Yi|Xi = s)P (Xi = s).

13 Mutual information

How much information does X contain about Y ?
We saw that the information which is contained in Y but not in X is equal to H(Y |X).
So the rest of the information in Y must be contained also in X. The total amount of
information contained in Y is equal to the entropy H(Y). Hence the information which
is contained in X about Y is equal to H(Y) − H(Y |X). This information is called the
mutual information of X and Y . It is a measure of the amount of information shared by
X and Y .

Definition 13.1 We define the mutual information I(X; Y) of X and Y to be equal to:

I(X; Y) =: H(Y) − H(Y |X).

It is an interesting fact that the information which X contains about Y is equal to the
amount of information which Y contains about X.

Lemma 13.1 We have that
I(X; Y) = I(Y ; X).

Proof. we have that
I(X; Y) = H(Y) − H(Y |X) =

Proof.

14 Transmission channels

The model we consider goes as follows. We assume that we are able to transmit symbols
from an alphabet S through a transmission channel. Let Xi denote the i-th symbol
sent and let Yi denotes the i-th symbol received by the receiver. For each symbol sent
there is a positive probability of an error. Hence P (Yi = Xi) < 1. We assume however

36

that for a given transmission channel the error probabilities remain fix during the whole
transmission process. We also assume that the transmission errors are independent from
one letter sent to the next. A transmission channel is defined by specifying for each pair
r, s ∈ S the probability that the receiver receives an s if we send an r. Thus We will
denote this probability by prs. This is the conditional probability that Yi = s given that
Xi = r: prs = P (Yi = s|Xi = r).
Let us give an example when we have a tree-symbol alphabet S = {a, b, c}:





paa pab pac

pba pbb pbc

pca pcb pcc



 =





0.8 0.1 0.1
0.1 0.7 0.2
0.1 0.1 0.8





If we send an a in this example, the probability that the receiver receives an a is 80%.
On the other hand, the receiver will receive a b with 10% probability if we send an a. If
we send a b the receiver gets a b with 70% probability, an a with 10% probability and a
c with 20% probability.

15 Shannon’s second theorem for the binary sym-

metric channel

The general setting is the following:

• Let M = M1M2 . . . Mk designate a message consisting of k symbols from an alphabet
S. We assume that M is generated by a random process.

• Let D designate a code which we use to encode the message M to make it fit for
transmission. Thus

X := D(M)

designates the binary string which we send through our transmission channel.

• Let n designate the number of symbols we send over the transmission channel.
Hence, n is the length of the binary string X:

n := |X| = |D(M)|.

X can be written as a string of n zero’s and one’s’:

X = X1X2 . . .Xn

where Xi is the i-th bit sent over the transmission channel.

• Let Y = Y1 . . . Yn designate the received binary string by the receiver after trans-
mission. Thus Yi is the i-th bit received.

37

• Let p designate the probability that a given bit is not transmitted correctly. Thus

p = P (Yi 6= Xi).

• We assume that the transmission errors are independent of each other. Let Ai be
the event that the i-th bit is transmitted correctly, that is:

Ai := {Xi = Yi}.

We assume that the Ai’s are independent of each other for different i’s.

• Since we consider the symmetric channel, we assume that the probability of an error
does not dependent on what the bit which we send is equal to:

P (Ai|Xi = 0) = P (Ai|Xi = 1) = P (Ai) = 1 − p.

• Let F designate the code which we use to try to “decode” the received message Y .
Thus we apply F to Y in order to try to retrieve M .

Definition 15.1 We define the rate at which we transmit information to be the amount
of information sent over the number of symbols sent. Thus:

R =
H(M)

n
=

H(M)

|D(M)|
,

where M is the message we try to transmit and n = |X| = |D(M)| is the number of
symbols transmitted.

Definition 15.2 For a given channel, the channel capacity C is defined to be

C := max I(Xi; Yi),

where the maximum is taken over all possible probability laws for Xi.

We are now ready for Shannon’s second theorem:

Theorem 15.1 Assume we are trying to transmit information with a given channel with
capacity C > 0. Let R > 0 be a fix number. Then,

• If R < C, the it is possible to send messages through that channel at rate R in
a reliable way. This means that it is possible to send messages at rate R through
the channel so that the receiver can with high probability correct the transmission
errors. (with high probability, we mean probability as close to 100% for messages
long enough.)

• If R > C it is not possible to send information in a reliable way through that channel
at rate R.

38

To prove that it is not possible to send information through a channel at rate R > C in a
reliable way, we need the following lemma:

Lemma 15.1 Let X = X1X2 . . .Xn and Y = Y1Y2 . . . Yn be two random texts consisting
of n symbols from an alphabet S. Let ~s = s1s2 . . . sn ∈ Sn designate a (non-random)
string of symbols of S. Assume that for every ~s ∈ Sn we have:
conditional on X = ~s, the Yi’s are independent of each other and depend only on their
corresponding Xi. That is:

L(Y |X = ~s) =
n
⊗

i=1

L(Yi|Xi = si). (15.1)

Then, we have that
I(X; Y) ≤ I(X1; Y1) + . . . + I(Xn; Yn).

Proof. By definition of mutual information, we have that

I(X; Y) = H(Y) − H(Y |X) (15.2)

Now, we learned that the entropy of a text is smaller equal to the sum of the entropy of
the letters. (See lemma 9.1.) Hence

H(Y) = H(Y1Y2 . . . Yn) ≤ H(Y1) + . . . + H(Yn) (15.3)

Furthermore, we find that

H(Y |X) =
∑

~s∈Sn

H(Y |X = ~s)P (X = ~s). (15.4)

However conditional on X = ~s, the letters of the text Y become independent of each other.
The entropy for a text with independent letters is equal to the sum of the entropies of
the letters. Hence:

H(Y |X = ~s) = H(Y1|X = ~s) + H(Y2|X = ~s) + . . . + H(Yn|X = ~s).

Conditional on X = ~s, we have that Yi depends only on the corresponding Xi. Hence,

H(Yi|X = ~s) = H(Yi|Xi = si)

where si designate the i-th coordinate of the string ~s. Hence

H(Y |X = ~s) =

n
∑

i=1

H(Yi|Xi = si)

Plugging the last expression into 15.4, we find:

H(Y |X) =
∑

~s∈Sn

n
∑

i=1

H(Yi|Xi = si)P (X = ~s) =
∑

s∈S

n
∑

i=1

∑

s∈S

H(Yi|Xi = s)P (Xi = s).

39

Using the last equality together with 15.3 in 15.2, we find that

I(X; Y) ≤ (H(Y1) + . . . + H(Yn)) −
n
∑

i=1

∑

s∈S

H(Yi|Xi = si)P (Xi = s) =

(

H(Y1) −
∑

s∈S

H(Y1|X1 = si)P (X1 = s)

)

+ . . . +

(

H(Yn) −
∑

s∈S

H(Yn|Xn = si)P (Xn = s)

)

=

I(X1; Y1) + . . . + I(Xn; Yn)

Let us next show why we can only transmit information at a rate R which is below channel
capacity C. Assume that we could transmit the random message M in such a way that the
receiver could decode it correctly with hundred percent probability. Then, the information
of M would be contained in X as well as in Y . Hence, the mutual information between
X and Y would be at least the information contained in M . The information contained
in M is H(M). Thus, we would have

H(M) ≤ I(X; Y). (15.5)

However, we can not be 100% sure that the reciever can decode the received message
correctly. Instead we only are close to 100% for long messages. Thus, instead of the
inequality 15.5, we have instead:

(1 − (ε(k))H(M) ≤ I(X; Y) (15.6)

where ε(k) → 0 as k → ∞. (Here k denotes the length of the message M .) By lemma
15.1, we find that

I(X; Y) ≤ I(X1; Y1) + I(X2; Y2) + . . . + I(Xn; Yn). (15.7)

By definition of channel capacity we have that I(Xi; Yi) ≤ C. Applying this to 15.7 gives

I(X; Y) ≤ n · C (15.8)

Using inequality 15.8 in 15.6, we find

(1 − ε(k))
H(M)

n
≤ C (15.9)

Now, H(M)/n is equal to the rate R. Letting k go to infinity we have that (1− ε(k)) → 1
and hence we obtain:

R ≤ C.

40

16 Random coding

In this section we prove that for R < C it is possible to transmit information at rate R
in a reliable way. To prove this we use random coding. Let D designate the code used to
encode the original message before transmission. In random coding the code words of D
are chosen at random by flipping a fair coin. For different messages one sends one keeps
however using the same list of code words. Decoding is done by comparing a received word
with the list of code words. The receiver guesses that the word in the code word list which
is closest to the received word is the word which has actually been sent. To compare how
close words are from one another we use the Hamming distance. The Hamming distance
for two words v and w of the same length is equal to the number of differences between
v and w. For example if

v = 0010, w = 1011

then d(v, w) = 2 because the first and the last bit are different. In random coding the
code D used to prepare the message for transmission encodes strings of l symbols at a
time. Hence, D is a block code for S l. To have the random coding work well with high
probability, we need to take l large.
We can always assume that the message M we want to transmit is an i.i.d. binary message
with entropy 1 per letter. This is so because any ergodic message, when it is compressed
maximally and put in binary form becomes a random text of that type. We thus assume
throughout this section that the symbols of the message M : M1, M2, . . . are i.i.d. such
that

P (Mi = a) = P (Mi = b) = 0.5.

Let us define random coding at rate R.

Algorithm 16.1 • The D code used to encode the message M before transmission is
a block code on S l.

• For each string of l letters ~sS l chose a code word D(~s) at random by throwing an
unbiased coin l/R times.

• To decode the received message, chose the code word of D(S l) which is closest to the
received word.

We want to prove that random coding works with high probability when the rate R is
strictly below the capacity of the channel. Let w1, w2, . . . , w2l denote the code words
defining our code D. Hence w1 is the code word for the string aaa . . . a of length l and
consisting only of a’s. Hence w2 is the code word for the sting aaa . . . ab of length l. We
assume without loss of generality that the code word sent is the first one, that is w1.
(This assumption is made to facilitate notation.) Let v1 denote the binary word received
by the receiver. Hence v1 is obtained from w1 by adding approximately a percentage |p|
of errors. Hence, (by law of large numbers), we have that

d(w1, v1)

|v1|
≈ p < 0.5

41

holds with high probability when l is large enough. For a code word, which is not sent,
we have another situation. Take for example the code word w2. In this case w2 and v1

are independent and we have that with high probability

d(w2, v1)

|v1|
≈ 0.5

holds when l is large enough.(Law of large numbers.) Hence, the received word v1 tends
to be closer to the code word which was sent then to another code word. This is what
we want to use to recognize as a receiver which code word was sent. However since there
exists many code words (total number of 2l) some of them could by chance still be close
to v1 and thus induce the receiver in error. We need to prove that with high probability,
all the code words which were not sent are different enough from the received word v1.
This insures then that the receiver can decode the received word correctly with high
probability. To prove that when the rate is strictly below the capacity, decoding works
with high prob., we need a few definitions:
Let ε > 0 be a very small but fix quantity. We define the event Bε to be the event that
the following inequality holds:

∣

∣

∣

∣

d(w1, v1) − p

|w1|

∣

∣

∣

∣

< ε.

For all i ∈ 2, . . . , 2l, let Aε
i denote the event that:

d(wi, v1) − p

|w1|
≥ ε

holds. The event Aε
i guaranties that the code word wi is far enough from the received

code word v1.
Let Aε denote the event that all the events Aε

i hold simultaneously:

Aε =
2l

⋂

i=2

Aε
i .

Let Bi denote the event that
d(wi, v1)

|v1|
= p.

Obviously when Bε and Aε both hold then the decoding works. By law of large number
Bε holds with high probability. So we just need to prove that when the rate R is strictly
below the capacity of the transmission channel, then Aε also holds with high probability.
In other words we need to prove that the probability that Aε does not hold is small. Now:

P ((Aε)c) = P



(
2l

⋂

i=2

Aε
i)

c



 = P





2l

⋃

i=2

(Aε
i)

c



 ≤
2l

∑

i=2

P ((Aε
i)

c) = (2l − 1)P ((Aε
2)

c).

42

For small ε, we have that P ((Aε
1)

c) is very close to P (B2). Hence, we have to prove the
the following expression

(2l − 1)P (B2) (16.1)

is small. Let k denote the length of the word |wi|. Hence,

P (B2) = P (d(w2, v1) = kp) = P (BIN(k, 0.5) = k · p) .

Here, BIN(k, 0.5) denotes a binomial variable with parameter k and 0.5. Hence BIN(k, 0.5)
is the variable which is obtained by taking the sum of five coin-tosses with unbiased coins.
Now, P (BIN(k, 0.5) = k · p) is equal to

(

k

kp

)

0.5k =

(

k

kp

)

ppk(1 − p)(1−p)k 0.5k

ppk(1 − p)(1−p)k
.

However,
(

k

kp

)

ppk(1 − p)(1−p)k (16.2)

is equal to the probability that a binomial variable with parameters k and p is equal to
kp. Hence, expression 16.2 is smaller than 1. We thus find that the expression on the
right side of 16.1 is smaller than

2l 0.5k

ppk(1 − p)(1−p)k
= 2l·const

where the constant const is equal to:

const = 1 −

[

1 − p log2(1/p) − (1 − p) log2(1/(1 − p))

R

]

= 1 −
1 − H(p)

R

(Here H(p) denotes the entropy of a coin with side 1 having probability p.)
In the next section we prove that the capacity of a binary symmetric channel with error
probability is equal to 1− H(p). Since the rate R is supposed to be strictly smaller than
the channel capacity we get:

R < 1 − H(p)

from which it follows:

1 <
1 − H(p)

R
and finally

1 −
1 − H(p)

R
< 0.

This implies that the constant const is strictly negative:

const = 1 −

[

1 − p log2(1/p) − (1 − p) log2(1/(1 − p))

R

]

= 1 −
1 − H(p)

R
< 0.

Hence, because the constant const is negative we find that 2l·const is exponentially small
in l and thus for l only “medium” large is already extremely small. Hence the probability
that the decoding does not work correctly is extremely small.

43

17 Channel capacity

Let us calculate here the channel capacity for a binary channel with error-probability
equal to p.
By definition the channel capacity is equal to

max I(X1; Y1)

where the maximum is taken over all possible probability laws for X1. (This means aver
all possible values a and b such that a + b = 1, a, b ≥ 0 and P (X1 = 0) = a and
P (X1 = 1) = b.) Now, we have:

I(X1; Y1) = H(Y1) − H(Y1|X1) =

= H(Y1) − (H(Y1|X1 = 0) · P (X1 = 0) + H(Y1|X1 = 1) · P (X1 = 1)) .

Note, that the entropies of Y1 conditional on X1 = 0 is equal to the entropies of Y1

conditional on X1 = 1 and is equal to:

H(Y1|X1 = 0) = H(Y1|X1 = 1) = p log2

(

1

p

)

+ (1 − p) log2

(

1

1 − p

)

= H(p).

This implies that

I(X1; Y1) = H(Y1) − (H(p)P (X1 = 0) + H(p)P (X1 = 1)) =

H(Y1) − H(p) (P (X1 = 0) + P (X1 = 1)) = H(Y1) − H(p).

Note that H(p) does not depend on P (X1 = 0) = a and P (X1 = 1) = b. So, in
our maximizing problem, H(p) is to be treated like a constant. Hence, for the binary
symmetric channel we find that the channel capacity is equal to

(max H(Y1)) − H(p) (17.1)

where the maximum is taken over all possible probability laws for X1. Let us find the
maximum max H(Y1). Let q = P (Y1 = 1). Then,

H(Y1) = H(q) = q log2

(

1

q

)

+ (1 − q) log2

(

1

1 − q

)

.

Taking the derivative, we find

dH(q)

dq
= − log2

(

q

1 − q

)

.

Putting the derivative equal to zero gives

q

1 − q
= 1

44

which implies that q = 0.5. Hence, H(q) takes it maximum value for q = 0.5. When we
take for the probabilities of X1 the following: P (X1 = 0) = P (X1 = 1) = 0.5 we find by
law of total probability that

P (Y1 = 0) = P (Y1 = 0|X1 = 0)0.5 + P (Y1 = 0|X1 = 1)0.5 = (1 − p)0.5 + p0.5 = 0.5.

Hence for the choice P (X1 = 0) = P (X1 = 1) = 0.5, we obtain q = 0.5 and thus H(Y1)
finds itself maximized. For q = 0.5, we get

H(0.5) = 0.5 log2(2) + 0.5 log2(2) = 1.

Hence
max H(Y1)

is equal to 1. With 17.1 we find that for a binary symmetric channel the capacity is given
by

1 − H(p).

18 Differential entropy

Definition 18.1 Let X be a continuous random variable with probability-density function
f(.). Then we define the differential entropy h(X) of X to be equal to:

h(X) :=

∫

f(s) log2

(

1

f(s)

)

ds.

(For f(s) = 0, we define f(s) log2(1/f(s)) to be equal to zero.)

Lemma 18.1 Let X be a continuous random variable with probability-density function
f(.). Assume that f(.) is continuous. Let Y n be a discrete approximation of X, so that:

when X ∈ [i/n, (i + 1)/n[, then Y n = i/n.

Then,
lim

n→∞
(H(Y n) − log2(n)) = h(X).

In other words, if X is a continuous random variable, then for large n, H(Y n) is approx-
imately equal to:

H(Y n) := h(X) + log2(n).

Recall that when X and Y are two jointly continuous random variables, then the condi-
tional density of Y conditional on X = s is given by:

f(s, y)

fX(s)

45

where fX(s) denotes the probability-density of X at the point s. The density of X can
be calculated from the joint density f(x, y) in the following manner:

fX(s) =

∫

f(s, y)dy.

Definition 18.2 Let X and Y be to continuous random variables having joint density
equal to f(x, y). Then we define the conditional differential entropy h(Y |X = s) of Y
given X = s to be equal to the differential entropy of a random variable which has density
equal to the conditional density of Y given X = s. Hence:

h(Y |X = s) :=

∫

f(s, y)

fX(s)
log2

(

fX(s)

f(s, y)

)

dy.

The conditional differential entropy of Y given X is defined:

h(Y |X) :=

∫

h(Y |X = s)fX(s)ds.

Compare the last formula with the definition of conditional entropy.

Lemma 18.2 Let X and Y be two continuous random variables with a joint density func-
tion f(x, y). Let (Xn, Y n) be the discrete approximation of (X, Y) obtained by partioning
R into intervals of length 1/n. (By this we mean that whenever:

(X, Y) ∈ [i/n, (i + 1)/n[×[j/n, j/(n + 1)[

then (Xn, Y n) = (i/n, j/n).) With this notations we have:

lim
n→∞

I(Xn, Y n) = h(Y) − h(Y |X).

Definition 18.3 Let X and Y be two random variables having joint density f(x, y). We
define the mutual information I(X, Y) to be equal to I(X, Y) := h(Y) − h(Y |X).

We next are explaining what the model-assumptions for a Gaussian channel is. We have
the following notations and assumptions.

1. Let Xi designate the i-th signal sent.

2. Let Yi designate the i-th signal received.

3. Let εi designate the error occurring during the transmission of the i-th signal. Hence,
Yi := Xi + εi.

4. We assume that ε1, ε2, . . . is an i.i.d. sequence of normal variables.

5. We assume that the mean of the errors is zero on the long run:

E[εi] = 0

for all i ∈ N and V AR[ε] = σ2 is given.

46

Lemma 18.3 Let X be a normal random variable with variance σ2. Then

h(X) = 0.5 log2(2πeσ2).

In the continuous case, a transmission channel consists in giving for all possible value
s ∈ R, the conditional probability of Yi given that Xi = s.
In many cases, when we deal with continuous transmission channels there is a power
constrain. Typically, we have a requirement that

V AR[Xi] ≤ P

where P > 0 is a given number. The next theorem is Shannon’s second theorem for
continuous channels.

Theorem 18.1 Let P > 0 be a number. Assume that we are given a continuous trans-
mission channel over which we are allowed to transmit below power P . (This means that
we are required to transmit in such a way that V AR[Xi] ≤ P for all i ∈ N.) Then the
maximum amount of information we can send over this channel per symbol sent in a
reliable way is given by

max I(Xi; Yi)

where the maximum is taken over all probability distributions for Xi such that V AR[Xi] ≤
P . (Transmission in a reliable way means as usual that the receiver can decode the message
correctly and find the original message with probability close to one.)

Lemma 18.4 Let X be a random variable such that V AR[X] ≤ P , where P > 0 is a given
number. Then, X has maximum differential entropy under the above power constrain iff
X is normal with variance P .

Theorem 18.2 Assume that we transmit over a Gaussian channel with the varaince of
the transmission errors given: V AR[εi] = σ > 0 given. Then the maximum amount of
information per signal sent which we can transmit in a reliable way is given by:

1

2
· log2

(

1 +
P

σ2

)

.

Proof. The channel capacity for a continous channel under our power constrain is given
by

max I(Xi; Yi)

where we take the maximum over all probability laws for Xi satisfying V AR[Xi] ≤ P .
Now in the continous case:

I(Xi, Yi) = h(Yi) − h(Yi|Xi) = h(Yi) −

∫

h(Yi|Xi = s)fX(s)ds.

Recall that in the Gaussian channel model

Yi = Xi + εi.

47

Conditional on Xi = s, Xi becomes a contant. Hence

h(Yi|Xi = s) = h(Xi + εi|Xi = s) = h(s + εi|Xi = s)

Since adding a constant does not change the differential entropy, we have that

h(s + εi|Xi = s) = h(εi|Xi = s).

Since, Xi and ε are independent we get that

h(εi|Xi = s) = h(εi) = 0.5 log2(2πeσ2)

where in the end we used the formula for the differential entropy of a normal random
variable. Thus:

I(Xi, Yi) = h(Yi) − 0.5 log2(2πeσ2).

Now the maximum value we get for

h(Yi) = h(Xi + εi)

according to lemma 18.4 is when Xi is normal with variance P . In that case Yi is normal
with variance P + σ2. In that case we have a maximum differential entropy h(Yi) equal
to

0.5 log2(2πe(P + σ2)).

Hence

max I(Xi; Yi) = (max h(Yi)) − 0.5 log2(2πeσ2) =

=0.5 log2(2πe(P + σ2)) − 0.5 log2(2πeσ2) = 0.5 log2(2πe(1 + P/σ2)).

48

