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Abstract

We investigate the optimal alignment of two independent random
sequences of length n. We provide a polynomial lower bound for
the probability of the optimal alignment to be macroscopically non-
unique. We furthermore establish a connection between the transver-
sal fluctuation and macroscopic non-uniqueness.

1 Introduction

In computational genetics and computational linguistics one of the basic
problem is to find an optimal alignment between two given sequences X :=
X1 . . .Xn and Y := Y1 . . . Yn. This requires a scoring system which can
rank the alignments. Typically a substitution matrix gives the score for each
possible pair of letters. The total score of an alignment is the sum of terms
for each aligned pair of residues, plus terms for each gap.

In this paper we take the texts X and Y to be i.i.d. and independent of
each other. One may immediately remark that, for most of the applications
in computer science and biology, one normally assumes a much more com-
plicated relationship between X and Y than this i.i.d. setup. However, the
mathematical problems arising in the sequence alignment theory are usually
very difficult, and even the theory of the i.i.d. case is far from being com-
plete. Therefore, we study the i.i.d. case since it can be considered as the
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first step in understanding sequence alignments for more complex situations,
which one may encounter in practice.

One of the main purposes of this paper is to try to understand what
causes the optimal alignment to be non-unique on portions of the texts of
length of order n (we call that macroscopic non-uniqueness). In Theorem 2.1,
we prove that macroscopic non-uniqueness happens with probability at least
1/(n+1). This seems to suggest that typically the optimal alignment is non-
unique on stretches of order at least n0.5−ǫ, see Remark 2.1. For two sequences
which have been obtained from one common ancestor by transformation,
we expect the non-uniqueness stretches to be of order at most ln n. This
difference could prove to be useful to determine if the sequences are related
or not. Our present result sheds some new light on the question of non-
uniqueness. Previously, Hauser and Matzinger [17] proved a result that goes
in the opposite direction. They showed that typically, for large gap-penalty,
the optimal alignment is unique in most points.

The second main result of this article is that a small probability of macro-
scopic non-uniqueness implies a large transversal fluctuation. More precisely,
a lower bound (3.2) for the interquartile distance of the transversal fluctu-
ation is derived. Roughly speaking, this lower bound equals the inverse of
the probability of macroscopic non-uniqueness. Macroscopic non-uniqueness
is present when we observe simultaneously two close-to-optimal alignments
differing on a stretch of order n.

Optimal alignment can be viewed formally as a Last Passage Percolation
(LPP) problem with correlated weighs. The weights depend on the one-
dimensional texts X and Y . This confers a very different structure than in
standard LPP. For standard LPP the question of the order of the transversal
fluctuation has long been open.

Let us present an example to illustrate the practical usefulness of optimal
sequence alignment.

Let us explain how an automatic spell-checker works. The spell-checker has to identify
misspelled words. For each misspelled word it should give a list of similar words from a
lexicon. In this list, one hopes to find the word which was originally meant to be written.
Take, for example, the word Y = probability and the misspelled word X = prbobilite. One
could try to align the two words to detect similarities. We obtain the alignment

p r o b a b i l i t y
p r b o b i l i t e

The computer counts two matching letters. These are the first two letters: pr. Here,
the computer is unable to detect the great degree of similarity between X and Y by this
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simple alignment.
A better approach consists in aligning the words X and Y while allowing the existence

of gaps in the alignment. We search for the alignment with gaps yielding the maximum
number of matching letters. In our example, such an alignment with gaps maximizing the
number of matches is given by:

p r o b a b i l i t y
p r b o b i l i t e

(1.1)

We count 8 matched letters. These 8 letters form the Longest Common Subsequence
(LCS) of X and Y (the longest sequence which is a subsequence of X and of Y ). That
is, the LCS is prbbilit. The length of the LCS is a score which measures the degree of
similarity between X and Y . We call the alignment (1.1) optimal since it gives the maximal
number of coinciding letters. Note that (1.1) is not the only optimal alignment. Another
optimal alignment is:

p r o b a b i l i t y
p r b o b i l i t e

(1.2)

The alignment (1.2) matches 8 letters correctly. Note that the fifth letter in X is aligned to
different letters of text X depending on the optimal alignment we chose. We say that the
optimal alignment is non-unique in the fifth letter of X . In this article, we investigate the
possibility for two long independent random texts to have long stretches where the optimal
alignment is non-unique. The type of alignment scores we consider are fairly general. We
also allow for the alignment of non-identical letters. In our example, we could reward
the alignment of identical, respectively, similar letters with a score of 1, respectively, 0.5.
Using this scoring scheme and assuming that y and e are similar letters, the optimal
alignment becomes

p r o b a b i l i t y
p r b o b i l i t e

(1.3)

with a score of 8.5.

At present let us mention a little more on the history of mathemati-
cal problems related to optimal sequence alignments. Let Ln designate the
length of the LCS of two independent i.i.d. sequences of length n. Using a
subadditivity argument, Chvatal and Sankoff [11] proved that the limit

γ := lim
n→∞

E[Ln]

n

exists. They consider two binary sequences (this is the standard setting for
this problem). The constant γ is called the Chvatal-Sankoff constant and
its value is unknown. Neither is the exact order of the fluctuation of the
LCS length known. Steele [24] proved that Var[Ln] ≤ n. In [25], Waterman
conjectured that in many cases the variance of Ln grows linearly. Matzinger
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and Lember [20] proved that indeed this is the right order in an important
case. They consider the LCS of two binary i.i.d. sequences with unequal
frequencies for one and zero. They [19] also worked in the context of only
one sequence taken random and the other periodic. Matzinger, Bonetto and
Houdre [10] obtain the same order for the optimal alignment score with an
asymmetric substitution matrix.

In LPP language, the fluctuation of Ln is called longitudinal fluctuation
(the fluctuation under investigation in this article is the transversal fluctua-
tion).

The determination of the Chvatal-Sankoff constant and the order of the
(longitudinal) fluctuations for the LCS problem are long standing open prob-
lems. Montecarlo simulations lead Chvatal and Sankoff to conjecture that
Var[Ln] = o(n

2

3 ). This order of magnitude is similar to the order for the
longest increasing subsequence (LIS) of random permutations (see Baik, De-
ift and Johansson [9] and also Aldous and Diaconis [1]). This similarity of the
order of magnitudes is not a complete surprise. As a matter of fact, the LCS
can be formulated as an oriented LPP problem with correlated weights. On
the other hand, the LIS problem is asymptotically equivalent to a Poisson-
graph based LPP model. For standard LPP the order of magnitude of the
fluctuation has been open for decades despite LPP being one of the central
research areas in discrete probability.

As mentioned, the exact value of γ remains unknown. In [11], Chvàtal-
Sankoff derive upper and lower bounds on γ, and similar upper bounds were
found by Baeza-Yates, Gavalda, Navarro and Scheihing [8] using an entropy
argument. These bounds have been improved by Deken [14], and subse-
quently by Dancik-Paterson [13, 22]. In [16], Hauser, Martinez and Matzinger
developed a Monte Carlo and large deviation-based method which allows to
further improve the upper bounds on γ. Their approach can be seen as a
generalization of the method of Dancik-Paterson.

For sequence with many letters, Kiwi, Loebl and Matousek [18] have the
following interesting result: when both sequences X and Y are drawn from
the alphabet {1, 2, . . . , k} and the letters are equiprobable, then γ → 2/

√
k

as k → ∞.
Waterman-Arratia [7] derive a law of large deviation for Ln for fluctu-

ations on scales larger than
√

n. In their ground breaking article [7], they
show the existence of a critical phenomena (i.e., whether Ln is positive linear
in n or not).
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Using first passage percolation methods, Alexander [2] proves that E[Ln]
n

converges at a rate of order at least
√

log n/n. In [25], Waterman studies
the statistical significance of the results produced by sequence alignment
methods.

Another problem related to the LCS-problem is that of comparing se-
quences X and Y by looking for longest common words that appear both
in X and Y , and generalizations of this problem where the words do not
need to appear in exactly the same form in the two sequences. (This means
that the words are more than common substrings. They need to appear in a
continuous string without additional letters in between.) The distributions
that appear in this context have been studied by Arratia, Gordon, Gold-
stein and Waterman [3], and Neuhauser [21]. A crucial role is played by
the Chen-Stein method for the Poisson approximation. Arratia, Gordon and
Waterman [4, 5] shed some light on the relation between the Erdös-Rényi
law for random coin tossing and the above mentioned problem. In [6] the
same authors also developed the extreme value theory for this problem.

For a general discussion on the relevance of string comparison for biology
and on other similar problems in computational biology the reader can refer
to the standard texts [15], [23] and [12].

This paper is organized as follows. In Section 2, first, we give some formal
definitions necessary to formulate our results. Then, we derive a lower bound
for the probability of the macroscopical non-uniqueness (Theorem 2.1) and
after that, we improve this bound, which requires however a plausible, but
still unproven, assumption (Theorem 2.2). In Section 3 we establish a relation
between the transversal fluctuation and the probability of macroscopic non-
uniqueness (Theorem 3.1). Proofs are given in Section 4.

2 A lower bound for probability of macro-

scopical non-uniqueness

Now, let us proceed to the formal definitions. In everything that follows,
{Xi}i∈N and {Yi}i∈N are two processes independent of each other. We assume
that the Xi’s are i.i.d. and that the Yi’s are i.i.d., and they are all drawn from
a finite alphabet A.

An alignment of length k is a couple (π, η) consisting of two increasing
sequences of length k each, such that 0 < π(1) < π(2) < . . . < π(k) ≤ n and
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0 < η(1) < η(2) < . . . < η(k) ≤ n. The interpretation is the following: the
alignment (π, η) aligns the π(i)-th letter of the the first text with the η(i)-th
letter of the second text, i = 1, . . . , k.

Let us give an example of an alignment. In this example we align the English word
“think” with its German translation “denke”. A possible alignment is

t h i n k −
d e n k e

the alignment is there to show which letters are related. The letters which are aligned with
a gap are supposed to be missing in one of the two words. The “t” of “think” is aligned
with the “d” of “denke”. The is the first letter of the first string is aligned with the first
letter of the second string. According to our notation, this means that π(1) = η(1) = 1.
Next, the “i”of “think” is aligned with the first “e” of “denke”. Hence, the third letter
of the first string is aligned with the second letter of the second string. This implies that
π(2) = 3 and η(2) = 2. Eventually, the third aligned letter, that is the “n”’s appear in
the fourth position, respectively, third position. Hence, π(3) = 4 and η(3) = 3. The last
letter to get aligned are the “k”’s in both texts. We find π(4) = 5 and η(4) = 4.

The total number of aligned pairs of letters (letters that are not aligned with gaps)
is 4. Hence the length of the alignment (π, η) is equal to 4.

In many cases, it might be useful to view an alignment as a two dimensional table. For
this the x entries are given by the first string whilst the second string gives the y entries.
A “•” sign shows every pair of aligned letters. The alignment considered in this example
then becomes:

e
k •
n •
e •
d •

t h i n k

Let s denote the substitution matrix and q the gap penalty. Let (π, η) be
an alignment of length k. The score S(π, η) of the alignment (π, η) is defined
to be equal to:

S(π, η) :=

k
∑

i=1

s(Xπ(i), Yη(i)) − 2q(n − k).

Here, s(Xπ(i), Yη(i)) is the contribution which we obtain for aligning letter
Xπ(i) from the first text with letter Yη(i) of the second text. The quantity
2q(n − k) is the total gap penalty since there are 2(n − k) letters which are
not aligned.
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Let L denote the maximal alignment score of the two texts X and Y , i.e.,

L := max
(π,η)

S(π, η),

where the maximum is taken over all alignments of the text X with the
text Y .

An optimal alignment of the texts X and Y is an alignment (π, η) that
has maximal alignment score, i.e., such that

L = S(π, η).

Let us look at our alignment of the word “think” with the word “denke”. Assume,
s(·, ·) is such that for identical letters the score is 1, whilst for similar letters the score
is 0.5. Let the score for a pair of dissimilar aligned letters be −0.5, and the gap penalty
be 0.5. We assume that “t” and “d” are similar to each other and that so are “e” and “i”.
The score of the alignment

t h i n k −
d e n k e

is then 2(0.5)+ 2− 2(0.5) = 2. In this alignment there are two pairs of similar letters and
two pair of identical letters which get aligned. One can check that this is also the align-
ment with maximum score. Hence, the alignment (π, η) where (π(1), π(2), π(3), π(4)) =
(1, 3, 4, 5) and (η(1), η(2), η(3), η(4)) = (1, 2, 3, 4) is an optimal alignment of the word
“think” with the word “denke”.

We defined L to be the the maximal alignment score of the two texts X
and Y . To indicate that the texts have length n, we may sometimes write Ln

for L. An important assumption throughout this paper is: we are in the linear
phase (see Arratia and Waterman [7]), and so

lim
n→∞

Ln

n
> 0.

Let (π, η) be an alignment of length k. Let f be the continuous map
obtained by linear interpolation from the discrete map:

π(i) 7→ η(i).

We call f the path associated with (π, η). More precisely, f is the conti-
nuous map from [π(1), π(k)] to [η(1), η(k)], such that both of the following
conditions hold:

• For all i ∈ {1, 2, . . . , k}, we have: f(π(i)) = η(i).
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• For all i ∈ {1, 2, . . . , k − 1} and all t ∈ [π(i), π(i + 1)], we have:

f(t) = η(i) + (t − π(i))
η(i + 1) − η(i)

π(i + 1) − π(i)
.

Let f : [a1, b1] → R
+ and g : [a2, b2] → R

+ be two continuous maps. Let
x ∈ [a1, b1]∩ [a2, b2]. We say that f and g cross at the point x iff f(x) = g(x).
Let I be a integer interval. We say that f and g do not cross on I if there
exists no point x ∈ I ∩ [a1, b1] ∩ [a2, b2] such that f(x) = g(x).

Let us introduce the following important notations: first, let I1 denote
the interval I1 := [0, (n+1)/2) and let I2 := ((n+1)/2, n]. Also, we say that
an alignment π′, η′ is close to optimal, if

|S(π′, η′) − L| ≤ 2 max
a,b∈A

|s(a, b)| + 4q. (2.1)

Let A be the event that there exist an optimal alignment (π, η) of X and Y
and a close-to-optimal alignment (π′, η′) which do not cross each other on at
least one of the two intervals I1, I2. (Hence, one can observe that (π, η) and
(π′, η′) should satisfy the two conditions in Lemma 4.2.)

The next theorem is one of the two main results of this paper. It gives a
lower bound for the probability that there exist simultaneously two close-to-
optimal alignments which do not cross each other on a long stretch.

Theorem 2.1 We have that

P (A) ≥ 1/(1 + n). (2.2)

Let
r1 := max

(π,η)
π(1)

where the maximum is taken over all optimal alignments (π, η) of the texts X
and Y . We will show in the next proposition that with high probability,
the interval [r1, (n + 1)/2] has length of linear order in n. If |r1 − n/2|
is not of linear order in n, then the statement “there exist two close-to-
optimal alignments which do not cross on [0, n/2]” does not convey a lot of
information: they simply don’t cross because they are not defined on most
of that interval.
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Note that |r1−n/2| is of linear order only when we are in the linear phase,
that is when:

lim
n→∞

Ln

n
> 0. (2.3)

That is why throughout this paper we assume that (2.3) holds.
For two sequences V and W , we denote by L(V ; W ) the optimal alignment

score of V and W .

Proposition 2.1 There exist a constant cLD > 0 not depending on n, (but
depending on the scoring function and the gap penalty), such that

P (r1 ≥ 0.4n) ≤ 2n−cLD ln n. (2.4)

Although Theorem 2.1 gives a lower bound for the probability of macro-
scopic non-uniqueness, we do not believe that the inequality (2.2) is the best
possible. In the rest of this section we will try to strengthen this inequality,
assuming a fact about the so-called mean curve that we believe is true.

Let us define the mean curve. Let p ∈ [0, 1]. We define Ln(p) to be the
optimal alignment score when we align two independent i.i.d. sequences with
unequal lengths n(1 + p) and n(1− p) (to simplify notations we assume that
np and n(1 − p) are integers). Hence:

Ln(p) := L(X1X2 . . .Xn(1+p); Y1Y2 . . . Yn(1−p)).

By subadditivity, the limit

γ(p) := lim
n→∞

E[Ln(p)]

n

exists. The curve p 7→ γ(p) is called the mean curve and is convex and sym-
metric around the origin. Convexity follows from a subadditivity argument.
Not a lot is known, however, about differentiability properties of the mean
curve, although it is reasonable to suppose that it should be (at least) twice
differentiable (cf. Theorem 2.2 below).

We established Theorem 2.1 using that Z and Z̃ take values in [0, n]. If
the values taken by Z and Z̃ lie with high enough probability in an interval
of smaller order then the lower bound (2.2) can be improved. This is the
idea behind the next theorem:
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Theorem 2.2 Assume that p 7→ γ(p) has continuous second derivative in
a open neighborhood of p = 0 and γ(p)′′ < 0 (positive curvature at p = 0).
Then,

P (A) ≥ 1

2n0.75 ln n
, (2.5)

for all n large enough.

We believe that one should be able to prove that the polynomial lower
bounds (2.2) and (2.5) imply also a similar bound for two macroscopically
different optimal alignments. (In this article the result is for one optimal
and one close to optimal alignment, which is somewhat weaker.) We plan to
investigate this issue in a forthcoming paper.

Remark 2.1 Using the polynomial lower bound for the probability of macro-
scopically different close to optimal alignments, there is a heuristic argument
which suggests that the path of the optimal alignments is typically non-unique
on stretches of size n0.5+ǫ, where ǫ > 0. To see this, divide the intervals [1, n]
into n0.5+ǫ pieces of length n0.5−ǫ each. According to Theorem 2.1, the prob-
ability that the optimal path in non-unique on one of the stretches of length
n0.5−ǫ is larger than n−0.5+ǫ. Since there are n0.5+ǫ of them, the expected num-
ber of stretches of length n0.5−ǫ where the optimal alignment is non-unique is
at least n2ǫ. In other words, typically, the optimal alignment is non-unique
on a stretch of polynomial length in polynomially many places.

This is in stark contrast to what we expect when X and Y are not in-
dependent but were obtained by random mutations from a common ancestor
(computational biology). Then, it is believed that in many cases the optimal
alignment should be non-unique on stretches of length of at most logarithmic
order in n. This very different behaviour should be useful for distinguishing
if two sequences are related or not.

3 Transversal fluctuation and the probability

of macroscopic non-uniqueness

Let Z be the smallest value in the point (n+1)/2 taken by a path associated
with an optimal alignment of the texts X and Y . More precisely:

Z := min
f

f((n + 1)/2),
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where the minimum is taken over all paths f associated with an optimal
alignment (π, η) of X and Y .

Note that the fluctuation of Z in First and Last Passage Percolation
language is called transversal fluctuation.

For a random variable W we define the interquartile distance by

qw = F−1
W (3/4) − F−1

W (1/4),

where F−1
W (.) designates the inverse distribution function of W .

We are now ready to state the second main result of this article. This
result says that if the probability that there exists two close-to-optimal align-
ments different on large stretches is small, than the fluctuation of Z is large.

Recall that A is the event that there exist simultaneously two close-to-
optimal alignments different on a large stretch. The event A was defined just
before Theorem 2.1.

Theorem 3.1 Let α ∈ [0, 1]. Assume that

P (A) ≤ n−α, (3.1)

then
qZ ≥ (2(n−α + n−1))−1 − 4, (3.2)

where qZ is the interquartile distance of the random variable Z.

We saw in Theorem 2.1 that P (A) ≥ n−1. Hence we are only interested
in the case when α < 1. For α ∈ (0, 1), the order of the expression in the
right-hand side of (3.2) is nα. In other words, we get a lower bound on the
transversal fluctuation of order equal to the inverse of the probability P (A).

The result of Theorem 3.1 can also be described in the following way: a
small quenched fluctuation implies a large annealed fluctuation. To see this,
assume that we hold X and Y fixed and select one optimal path at random.
The “fluctuation” between one optimal path and the other for X and Y
fixed, can be interpreted as quenched fluctuation. If the different optimal
paths do not differ a lot macroscopically then this fluctuation is small. We
think of the annealed fluctuation as of how much the optimal paths changes
when we redraw X and Y . The fluctuation of Z is a good measure of these
fluctuations.
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4 Proofs

4.1 Main idea: a measure-preserving transformation

The main technique used in this paper is introducing a measure preserving
map (transformation) ∼. This map is defined as follows: we transform the
text Y by removing the first letter of Y and placing it at the end. The text
obtained in this manner is denoted by Ỹ . More precisely:

• For i with 0 ≤ i < n, we define Ỹi := Yi+1.

• We define Ỹn := Y1.

Obviously, the transformation ∼ does not change the distribution, since we
assumed that the texts are i.i.d.

We denote by S̃(π, η) the score obtained when we use the alignment (π, η)
to align the texts X and Ỹ :

S̃(π, η) :=
k
∑

i=1

s(Xπ(i), Ỹη(i)) − 2q(n − k).

Let L̃ denote the optimal alignment score of the texts X and Ỹ :

L̃ := max
(π,η)

S̃(π, η)

where the maximum is taken over all alignments of the text X with the
text Ỹ .

Again, let us look at the numerical example where X is the word “think” and Y is
equal to “denke”. Take the scoring scheme as described in the numerical example before.
In this case, we find that the transformed text Ỹ is equal to “enked”. We obtain this by
removing the “d” at the beginning of “denke” and moving it to the end of the word.

The optimal alignment of X and Ỹ is:

t h i n k
e n k e d

In this alignment there is one pair of similar letters aligned, and two identical letters
aligned. Four letters are aligned with gaps. The score of the above alignment is hence
equal to 0.5 + 2 − 4(0.5) = 0.5. This is the maximum possible alignment score and hence
L̃ = 0.5.

Note that between Y and Ỹ the only difference is the first letter of Y and the last
letter of Ỹ . The above alignment of X with Ỹ can be obtained from the alignment of X
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with Y presented previously. For this we simply align all the letters of Ỹ , except Y1,
with the same letter as before. The last letter of Ỹ gets aligned with a gap. In this way
every alignment of X with Y induces an alignment of X with Ỹ . We denote by (π̃, η̃) the
alignment of X with Ỹ induced by the alignment (π, η) of X with Y .

The difference in score of the two alignments is at most the maximum possible score
for a pair of letters, plus twice the gap penalty.

Let (π, η) be an alignment of length k (recall that we think of (π, η) as
being an alignment of X with Y ). As mentioned in the previous paragraph,
we write (π̃, η̃) for the alignment of the text X with the text Ỹ , induced by
the alignment (π, η). By this we mean that that except for the letter Y1, the
two alignments align the same pair of letters. More precisely: Let 1∗ := 2 if
η(1) = 1 and 1∗ := 1 otherwise. We define π̃ to be the increasing sequence:

π(1∗) < π(1∗ + 1) < . . . < π(k).

Let η̃ be the increasing sequence

η(1∗) − 1 < η(1∗ + 1) − 1 < . . . < η(k) − 1.

It is straightforward to note that the length of alignment (π̃, η̃) is k − 1 if
η(1) = 1 and k if η(1) > 1. Similarly, we define the alignment π̂, η̂ to be the
alignment of length k − 1 defined by the equation

(π̂(i), η̂(i)) := (π(i), η(i) + 1),

which is to hold for every i ∈ [1, k−1]. If we think of (π, η) as an alignment of
X with Ỹ , then (π̂, η̂) aligns the texts X and Y in such a way that, roughly,
the same letters get aligned for both alignments. The only exception is the
last aligned pair of letters aligned by (π, η).

The next lemma states what we already saw in the last numerical example:
the difference in score between an alignment and its induced alignment is less
than the maximal score for a pair of letters, plus twice the gap penalty.

Lemma 4.1 Let (π, η) be an alignment. We have that

|S(π, η)− S̃(π̃, η̃)| ≤ q∗ (4.1)

and
|S̃(π, η) − S(π̂, η̂)| ≤ q∗. (4.2)

whilst
|L − L̃| ≤ q∗, (4.3)
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where
q∗ := max

a,b∈A
|s(a, b)| + 2q.

Proof. The alignment (π̃, η̃) contains one pair of aligned letters less than
(π, η). The loss incurred for that is at most maxa,b∈A |s(a, b)|. If two letters
are matched with gaps the additional penalty occurring is 2q. Hence,

S(π̃, η̃) ≥ S(π, η) − q∗,

whilst, by definition, we have

S(π, η) ≥ S(π̃, η̃).

Therefore, (4.1) follows. Similarly we prove (4.2).
For every alignment (π, η) we have that (π̃, η̃) is well defined. Hence, we

know that for every alignment (π, η) of X and Y , there is an alignment of X
and Ỹ with a score closer than q∗ from the score S(π, η). The converse is
also true. Hence (4.3). �

Recall that Z was defined as the smallest value in the point (n + 1)/2
taken by a path associated with an optimal alignment of the texts X and Y ,
i.e.,

Z := min
f

f((n + 1)/2),

where the minimum is taken over all paths f associated with optimal align-
ments of the two texts. Similarly, we define Z̃:

Z̃ := min
f

f((n + 1)/2),

where the minimum is taken over the set of all paths associated with an
optimal alignment (π, η) of X and Ỹ (we could take any other point instead
of (n + 1)/2, which is at linear distance from 1 and n, to make the same
argument).

Let us come back to our numerical example where X = think and Y = denke, whilst
Ỹ = enked. The optimal alignment of X and Y is:

e
k •
n •
e •
d •

t h i n k
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The optimal alignment of X with Ỹ is

d
e
k •
n •
e •

t h i n k

In this case we have that n = 5 and (n + 1)/2 = 3. In each case, for both Y and Ỹ , the
optimal alignment is unique. It follows that Z and Z̃ are equal to the value at 3 of the
paths associated with the respective optimal alignments. We find Z = 2 and Z̃ = 1. Note
that, in this case, Z̃ = Z − 1.

Look at the •’s in the two diagrams above. As mentioned, they represent pairs of
aligned letters. Between the first alignment and the second most points are moved down-
wards by one unit. The only exception is the first •. As we will argue later, this is a
typical situation: the transformation ∼ has in most cases the effect of moving down the
map associated with the optimal alignment except possibly at its beginning and end.

Note that (X, Y ) has the same distribution as (X, Ỹ ). Hence, Z and Z̃
have the same distribution. It follows that

E[Z] = E[Z̃]. (4.4)

This implies that the equation

Z̃ = Z − 1

can not hold with a too large probability. This is one of the main ideas of
this paper.

We saw that in many cases, Z̃ = Z − 1. Hence, in many cases Z̃ > Z − 1
does not hold. The next lemma gives a necessary condition for the inequality
Z̃ > Z−1 to hold. Roughly speaking, this condition is that there exist a close-
to-optimal alignment whose path does not cross the optimal alignment on a
large interval. Recall the notations I1 = [0, (n+1)/2) and I2 = ((n+1)/2, n].

Lemma 4.2 If
Z̃ 6= Z − 1, (4.5)

then there exist:

• an optimal alignment (π, η) of X and Y , and

• another alignment (π′, η′),
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such that the following two conditions are satisfied:

1. We have that the alignment (π′, η′) is close to optimal (recall (2.1)):

|S(π′, η′) − L| ≤ 2q∗. (4.6)

2. If f designates the path associated with (π, η) and h′ designates the path
associated with (π′, η′), then f and h′ do not cross on at least one of
the intervals I1, I2.

In other words, inequality (4.5) implies that there exist two close-to-optimal
alignments which are macroscopically different on the scale n.

Proof. We use the following notation. Let f be a continuous strictly increas-
ing map with convex domain in [1, n] and image space [1, n]. We write S[f ]
for the score obtained by aligning the texts X and Y along f . More precisely:

S[f ] :=

(

∑

i

s(Xi, Yf(i))

)

− r · q, (4.7)

where the sum is taken over those i’s in the domain of f for which f(i) is an
integer and r is equal to the number of non-matched letters. Note that r is
equal to 2n minus twice the number of terms in the sum (4.7).

Similarly, let S̃[f ] denote the score obtained by aligning X with Ỹ along f .
More precisely,

S̃[f ] :=

(

∑

i

s(Xi, Ỹf(i))

)

− r · q, (4.8)

where again the sum is taken over those i’s in the domain of f for which f(i)
is an integer and r is equal to the number of non-matched letters.

Let 1 ≤ c < d ≤ n. We write Sd
c (f) for the score obtained by aligning X

with Y but calculated only on the interval [c, d]. Hence, Sd
c (f) is equal

to (4.7), where the sum is taken over all i ∈ [c, d] such that f(i) is an integer,
and r is the sum of

(

the number of i’s in [c, d] such that f(i) is not an integer
)

and
(

the number of j’s in [f(c), f(d)] such that f−1(j) is not an integer
)

.
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We write S̃d
c (f) for the score obtained by aligning X with Ỹ but calculated

only on the interval [c, d].
For a map f we denote by f|[a,b] the restriction of f to [a, b].
Let (π, η) denote an optimal alignment of X and Y . Let f be the path

associated with (π, η). We assumed that (π, η) minimizes f(n/2) among all
optimal paths. Hence, we have that f(n/2) = Z.

Let g denote the path associated with (π̃, η̃). Let h denote the path
associated with an optimal alignment of X with Ỹ which is minimal in the
point n/2. Hence, h(n/2) = Z̃. Let h′ be the path which is defined on the
interval h−1([0, n − 1]) by the equation h′(x) := h(x) + 1.

Now comes an important point: assume that every optimal path and every
close to optimal path cut each other on I1 and on I2. In other words, we
assume that any optimal alignment (π, η) of X and Y and every alignment
(π′, η′) satisfying (4.6), cross each other on I1 and on I2.

Then: Since f is the path of an optimal alignment of X and Y , since
furthermore h is an optimal alignment of X and Ỹ , Lemma 4.1 implies that

|S[f ] − S̃[h]| ≤ q∗. (4.9)

By an argument similar to the one used in Lemma 4.1, one obtains

|S[h′] − S̃[h]| ≤ q∗. (4.10)

Combining (4.9) and (4.10), we obtain that

|S[f ] − S[h′]| ≤ 2q∗. (4.11)

Because of our assumption, f and h′ cut each other on I1 and on I2. Hence,
g and h also cut each other on I1 and on I2.

Denote by a = (a1, a2) the point where g and h cut each other to the left
of n/2. Hence, a1 < n/2 and h(a1) = g(a1) = a2. Denote by b = (b1, b2)
the point where g and h cut each other to the right of n/2. We have that
n/2 < b1 and h(b1) = g(b1) = b2. Between a and b, we can replace the path h
by g. In this way we obtain a new path (increasing continuous function)
which is equal to g on [a1, b1] and is equal to h outside [a1, b1]. This yields
an admissible alignment. Since h is the path of an optimal alignment of X
and Ỹ we find

S̃b1
a1

[g] ≤ S̃b1
a1

[h]. (4.12)

By definition of (π̃, η̃), we have that f(a1) = g(a1) + 1 and f(b1) = g(b1) + 1.
We can thus replace the path f on the interval [a1, b1] by h′. In this manner,
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we get an admissible path which is equal to h′ on [a1, b1] and is equal to f
outside [a1, b1]. Since f is an optimal alignment of X with Y , we get

Sb1
a1

[f ] ≥ Sb1
a1

[h′],

which is equivalent to
S̃b1

a1
[g] ≥ S̃b1

a1
[h]. (4.13)

Together, (4.12) and (4.13) imply

S̃b1
a1

[g] = S̃b1
a1

[h]. (4.14)

From (4.14) it follows that on [a1, b1] we can replace the path h by g and
still get an optimal alignment of X and Ỹ . Thus if we take the alignment
which is equal to g on [a1, b1] and is equal to h outside [a1, b1], this gives an
optimal alignment of X with Ỹ . Hence, by definition of Z̃ we obtain that at
the point n/2 that alignment does not go below Z̃:

g(n/2) ≥ Z̃.

From the last inequality above and the facts that g(n/2) = f(n/2) − 1 and
f(n/2) = Z, we find

Z − 1 ≥ Z̃. (4.15)

We can now use a similar argument and, in the path f , replace the part on
[a1, b1] by h + 1. This yields an alignment which is equal to h + 1 on [a1, b1]
and is equal to f outside [a1, b1]. With the same line of argument as before,
we find that this new alignment is an optimal alignment for X and Y . Hence
its value at n/2 cannot be below Z. This gives

Z ≤ h(n/2) + 1

and hence
Z − 1 ≤ Z̃. (4.16)

Together, (4.15) and (4.16) imply

Z − 1 = Z̃. (4.17)

We have just proven that if every optimal and close to optimal alignment
of X and Y cut each other on I1 and on I2, then (4.17) follows. This implies
that when

Z − 1 6= Z̃

holds, then there exists a close to optimal alignment and an optimal align-
ment which do not cut each other on either I1 or I2. �
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4.2 Proof of Theorem 2.1

Proof. Let W be the random variable

W := Z̃ − Z + 1.

Since Z̃ and Z have same distribution, we find that

E[W ] = 1. (4.18)

Note that, since Z and Z̃ take values in [0, n], we have that

P (W ∈ [−n + 1, n + 1]) = 0.

Let pi be equal to the probability pi := P (W = i). We have

1 = E[W ]

=
∑

i∈[−n+1,n+1]

ipi

≤
∑

i∈[1,n+1]

ipi

≤
∑

i∈[1,n+1]

(n + 1)pi

≤ (n + 1) · P (W > 0).

The last inequality implies that

P (W > 0) ≥ 1

n + 1
. (4.19)

Now, W > 0 is equivalent to Z̃ > Z − 1. But, we saw in Lemma 4.2, that if
Z̃ > Z − 1, then A holds. Hence, W > 0 implies the event A, so that (4.19)
implies that

P (A) ≥ 1

n + 1
.

�
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4.3 Proof of Proposition 2.1

Proof. In order to simplify the notations, we assume that 0.25n is an integer.
Note that r1 > 0.4n is equivalent to

Ln = L(X0.4nX0.25n+1 . . .Xn; Y ) (4.20)

Let L∗ be defined by

L∗ := L(X0.4nX0.25n+1 . . .Xn; Y ).

We have that

E[L∗] = E[L(X1X2 . . .X0.6n; Y ) = E[L0.8n(0.25)]. (4.21)

Furthermore,

L∗ = 0.8nγ(0.25) + (E[L∗] − 0.8nγ(0.25)) + (L∗ − E[L∗]) ,

and with (4.21) we find

L∗ = 0.8nγ(0.25) + (E[L0.8n(0.25)] − 0.8nγ(0.25)) + (L∗ − E[L∗]) . (4.22)

By definition
lim

n→∞
E[L0.8n(0.25)]/(0.8n) = γ(0.25). (4.23)

The speed of convergence in the limit (4.23) is faster than ln n√
n
, as proved by

Alexander [2]. Hence, for n large enough:

|E[L0.8n(0.25)] − γ(0.25)| ≤
√

n ln n (4.24)

We know that the map p 7→ γ(p) is concave and symmetric in p = 0. It
follows that

γ(0) ≥ γ(0.25). (4.25)

Let F n be the event that

|L∗ − E[L∗]| ≤
√

n ln n.

When F n holds, with the help of (4.22), (4.24) and (4.25), we obtain that

L∗ ≤ 0.8nγ(0) + 2
√

n lnn. (4.26)
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Similarly, by the speed of convergence result [2] we obtain that for all n large
enough

|E[Ln] − nγ(0)| ≤
√

n ln n. (4.27)

Let Bn be the event that

|Ln − E[Ln]| ≤
√

n ln n.

When Bn occurs, we find with the help of (4.27) that

Ln ≥ nγ(0) − 2
√

n ln n. (4.28)

We made the assumption that we are in the linear phase, i.e., that

γ(0) = lim
n→∞

E[Ln]/n > 0.

From γ(0) > 0, it follows that for all n large enough: the equations (4.26)
and (4.28) jointly imply Ln > L∗. But when Ln > L∗ holds, then r1 < 0.4n.
Hence, F n and Bn imply r1 < 0.4n. Thus,

(F n ∩ Bn) ⊂ {r1 < 0.4n},

from which it follows that

P (r1 ≥ 0.4n) ≤ P (F nc) + P (Bnc), (4.29)

where F nc, respectively, Bnc denotes the complement of F n, respectively, Bn.
By a large deviation result of Arratia and Waterman [7] we have that there
exist a constant cLD > 0 not depending on n, such that

max{P (F nc), P (Bnc)} ≤ n−cLD ln n

for all n. The last inequality together with (4.29) implies (2.4). �

4.4 Proof of Theorem 2.2

First, the question is when is Z typically taking values in an interval of
smaller order than n. We know of degenerate situations when this is not
true. On the other hand, if we assume the mean curve to have non zero
curvature at the origin, one can prove that Z typically takes values in an
interval of size order n0.75.
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Lemma 4.3 Assume that p 7→ γ(p) has continuous second derivative in a
open neighborhood of p = 0 and γ(p)′′ < 0. Then, we find that for all n large
enough

P ( Z /∈ [n − n0.75 ln n, n + n0.75 ln n] ) ≤ 2n2−c ln n, (4.30)

where c > 0 is a constant not depending on n and (i, j).

Proof. Let L(i, j) denote the optimal score obtained by aligning X1X2 . . . Xi

with Y1Y2 . . . Yj:
L(i, j) := L(X1 . . .Xi; Y1 . . . Yj).

Let
L̄(i, j) := L(Xi+1 . . . Xn; Yj+1 . . . Yn).

Let a > 0 be an integer with a ≤ n/2. We have that

L(n/2, n/2 − a) = 0.5(n − a)γ(pa)

+ E[L(n/2, n/2 − a)] − 0.5(n − a)γ(pa)

+ L(n/2, n/2 − a) − E[L(n/2, n/2 − a)], (4.31)

where
pa =

a

0.25(n − a)
.

According to our notation, we have that

L(n/2, n/2 − a) = L0.5(n−a)(pa).

Using the fact that the convergence of Ln(p) is faster than ln n√
n
, we obtain

| E[L(n/2, n/2 − a)] − 0.5(n − a)γ(pa) | ≤
√

n ln n (4.32)

for n large enough (the inequality (4.32) holds true because it is possible to
find a uniform bound for all a ∈ [0, n]).

Let F (i, j) be the event that

|L(i, j) − E[L(i, j)| ≤
√

n ln n.

Similarly, we define F̄ (i, j) to be the event that

|L̄(i, j) − E[L̄(i, j)| ≤
√

n ln n.
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Let F n
tot be the event:

F n
tot :=

⋂

i,j∈[0,n]

(F (i, j) ∩ F̄ (i, j)).

Assume that
a ≥ n0.75 · ln n. (4.33)

The map p 7→ γ(p) is convex and symmetric around the origin. We assumed
that it has strictly positive curvature at p = 0. Hence, γ(0)′ = 0 and there
exists an open neighbourhood O such that 0 ∈ O and for all p ∈ O we have

γ(0) ≥ γ(p) + κ · p2, (4.34)

where κ > 0 is a constant not depending on p ∈ O. Let p0 designate the
value of pa when a is taken equal to n0.75 · ln n. Assuming that (4.33) holds,
and that n is large enough so that p0 ∈ O, we find that

γ(0) ≥ γ(p0) + κ · p0
2. (4.35)

Since the map p 7→ γ(p) is concave and symmetric around the origin, it
follows that on [0, 1] it must be decreasing. Hence, when (4.33) holds, we
have that γ(p0) ≥ γ(pa), so that inequality (4.35) becomes

γ(0) ≥ γ(pa) + κ · p0
2. (4.36)

Hence, when the event F n
tot holds, we find using (4.31), (4.32) and (4.36) that

L(n/2, n/2 − a) ≤ 0.5(n − a)γ(0) − 0.5(n − a)κ · p0
2 + 2

√
n ln n. (4.37)

Let

p̄a =
−a

0.25(n + a)
.

Let p̄0 denote the value of p̄a when a is equal to n0.75 ln n. According to our
notation, we have that

E[L̄(n/2, n/2 − a)] = E[L0.5(n+a)(p̄a)].

Using the same rate of convergence as we did in (4.32), we obtain the in-
equality

|E[L̄(n/2, n/2 − a)] − 0.5(n + a)γ(p̄a)| ≤
√

n ln n. (4.38)
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With a similar argument as was used for (4.37), we obtain that if the event
F n

tot holds together with (4.33), then

L̄(n/2, n/2 + a) ≤ 0.5(n + a)γ(0) − 0.5(n + a)κ(p̄0)
2 + 2

√
n ln n. (4.39)

The inequalities (4.37) and (4.39) together imply:

L(n/2, n/2 − a) + L̄(n/2, n/2 + a)

≤ nγ(0) − 0.5κ((n − a)(p0)
2 + (n + a)(p̄0)

2 + 4
√

n ln n, (4.40)

and hence

L(n/2, n/2−a)+L̄(n/2, n/2+a) ≤ nγ(0)−0.5κ(n+a)(p̄0)
2+4

√
n ln n. (4.41)

Note that

(p̄0)
2 = (ln n)2 · n−0.5 1

0.625(1 + n−0.25 ln n)2
. (4.42)

Also, when n is large enough, we get

1 ≤ 1

0.625(1 + n−0.25 ln n)2
. (4.43)

Since a > 0, we have that n+a ≥ n. Combining this with the formulas (4.41),
(4.42) and (4.43), we obtain

L(n/2, n/2−a)+L̄(n/2, n/2+a) ≤ nγ(0)−0.5κ(ln n)2
√

n+4
√

n ln n. (4.44)

Similarly, when F n
tot holds, we find that

Ln ≥ nγ(0) − 2
√

n ln n. (4.45)

Together, (4.44) and (4.45) imply

Ln−
(

L(n/2, n/2−a)+L̄(n/2, n/2+a)
)

≥ 0.5κ(ln n)2
√

n−6
√

n ln n. (4.46)

For n large enough, we have

0 < 0.5κ(ln n)2
√

n − 6
√

n ln n,

so that
Ln > L(n/2, n/2 − a) + L̄(n/2, n/2 + a). (4.47)
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But if (4.47) holds, then there is no path f of an optimal alignment such that
f(n/2) ∈ [n−a, n−a+1). Hence, when (4.46) holds for all a ≥ n0.75 ln n, then
there is no path f of an optimal alignment such that f(n/2) ∈ [0, n−n0.75 ln n]
and hence Z ≥ n − n0.75 ln n. Summarizing, we have proved that for all n
large enough

F n
tot ⊂ {Z ≥ n − n0.75 ln n}.

By symmetry we obtain also

F n
tot ⊂ {Z ≤ n + n0.75 ln n}.

The two last inclusions finally imply that

F n
tot ⊂ {Z ∈ [n − n0.75 ln n, n + n0.75 ln n]},

so
P (Z /∈ [n − n0.75 ln n, n + n0.75 ln n]) ≤ P (F nc

tot). (4.48)

Note also that

P (F nc
tot) ≤

∑

i,j∈[0,n]

( P (F c(i, j)) + P (F̄ c(i, j)) ). (4.49)

By the large deviation result of Arratia and Waterman [7], we find that

max{P (F c(i, j)), P (F̄ c(i, j))} ≤ n−c lnn, (4.50)

where c > 0 is a constant not depending on n. Using (4.50) in (4.49), we
obtain

P (F nc
tot) ≤ 2n2−c ln n. (4.51)

Inequalities (4.48) and (4.51) together imply (4.30). �

Now, we are able to prove Theorem 2.2.

Proof of Theorem 2.2. Let W be the random variable

W := Z̃ − Z + 1.

Since Z̃ and Z have the same distribution, we find that

E[W ] = 1. (4.52)
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Note that W takes values in [−n + 1, n + 1] and that due to (4.30):

P (W ∈ [−2n0.75 ln n, 2n0.75 ln n]) ≥ 1 − 4n2−c lnn. (4.53)

Let I denote the interval I := [1, 2n0.75 ln n]. Let pi be equal to the probability
pi := P (W = i). We have

1 = E[W ]

=
∑

i∈[−n+1,n+1]

ipi

≤
∑

i>0

ipi

≤
∑

i∈I

(2n0.75 ln n)pi + (n + 1) · P (W > 2n0.75 ln n).

From the last inequality and with the help of (4.53), we find:

1 ≤ P (W > 0)(2n0.75 ln n) + 4(n + 1)n2−c ln n. (4.54)

Note that
lim

n→∞
4(n + 1)n2−c ln n = 0,

so that for n large enough we have

4(n + 1)n2−c lnn ≤ 1

2
. (4.55)

Using (4.54) and (4.55), we find that

1 ≤ P (W > 0)(2n0.75 ln n) +
1

2
, (4.56)

from which it follows that

1

4n0.75 ln n
≤ P (W > 0). (4.57)

But W > 0 is equivalent to Z̃ > Z − 1. If Z̃ > Z − 1, then the event A
occurs, as was proven in Lemma 4.2. Hence

{Z̃ > Z − 1} ⊂ A,

so that

P (A) ≥ P (Z̃ > Z − 1) = P (W > 0) ≥ 1

4n0.75 ln n
.

�
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4.5 Proof of Theorem 3.1

We saw that Z and Z̃ have the same distribution, but yet in many cases
Z̃ = Z − 1. There is another important consequence which follows from this
seeming contradiction. For two variables V and W with the same distri-
bution, the only possibility that the equation V = W − 1 holds with high
probability is when the fluctuation of V is large.

Let us give two examples to illustrate this. First let the distribution L(V ) be mono-
atomic. Then, if L(V ) = L(W ), we find that

P (V = W − 1) = 0.

On the other hand, if V and W have both uniform (discrete or continuous) distributions
in the interval [0, n], then it is possible to couple V and W in such a way that

P (V = W − 1) ≥ 1 − 1

n
.

The next lemma show that a high probability for V = W −1 to hold, im-
plies a large fluctuation of V when the two variables have same distribution.

Lemma 4.4 Assume that V and W are two random variables with identical
distribution such that

P (V = W − 1) ≥ 1 − n−α, (4.58)

and such that
P (V ∈ [0, n]) = P (W ∈ [0, n]) = 1.

Then, the interquartile distance qw satisfies

qw > (2(n−α + n−1))−1 − 4. (4.59)

Proof. We begin by recalling a simple fact about discrete probability dis-
tributions. For two distributions µ and ν on a finite (or countable) set B,
define the total variation distance by

‖µ − ν‖ =
1

2

∑

z∈B

|µ(z) − ν(z)|.

It is well-known that

‖µ − ν‖ = inf P (U1 6= U2), (4.60)
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where the infimum is taken over all possible couplings of variables U1 (having
distribution µ) and U2 (with distribution ν). Now, denote pi = P (V ∈
(i− 1, i]), for i = 1, . . . , n, and let p0 = P (V = 0). From (4.58) and (4.60) it
is straightforward to obtain that

n
∑

i=1

|pi − pi−1| ≤ n−α. (4.61)

Let k0 = arg min pk, k1 = arg max pk; without restriction of generality we
now suppose that k0 < k1. Clearly, pk0

< n−1, so we obtain from (4.61) that

pk1
= pk1

− pk0
+ pk0

≤ pk0
+

k1
∑

i=k0+1

|pi − pi−1| ≤ n−α + n−1,

which means that

pk ≤ n−α + n−1 for all k = 0, . . . , n. (4.62)

Now, let Q1 and Q3 be the first and the third quartiles of the random
variable V (and W ). Suppose that Q1 ∈ (m0 − 1, m0], Q3 ∈ (m1, m1 + 1] for
some m0 ≤ m1. By (4.62), we have that P (V ∈ [Q1, Q3]) ≥ 1

2
−2(n−α +n−1),

so

P (V ∈ (m0, m1]) ≥
1

2
− 4(n−α + n−1). (4.63)

On the other hand, again by (4.62),

P (V ∈ (m0, m1]) ≤ (m1 − m0)(n
−α + n−1). (4.64)

Thus, by (4.63) and (4.64),

qw ≥ m1 − m0 ≥
1

2(n−α + n−1)
− 4.

�

Now, we are ready to finish the proof of Theorem 3.1.

Proof of Theorem 3.1. We apply Lemma 4.4. For this we take the variables Z
and Z̃ as the variables V and W of Lemma 4.4. Note that Z and Z̃ have
the same distribution. Furthermore, we showed in Lemma 4.2 that, if A does
not hold, then Z̃ = Z − 1. Hence, inequality (3.1) implies that

P (Z̃ = Z − 1) ≥ 1 − n−α.

The last inequality above is the condition (4.58) of Lemma 4.4. Thus, all the
conditions of Lemma 4.4 hold, and we obtain (3.2). �
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