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1 A supervised learning problem: statistical classifi-

cation

Assume that we run a fishing boat-factory which is highly automatized: the fish we catch
is sorted automatically by a robot. The robot measures the size of the fish and then
decides which type of fish it is. To simplify our present discussion we assume at first only
two types of fishes: tuna and salmon. Assume that the robot can measure three sizes:
small, medium and large. Now, let the code for the sizes be:

1 = small, 2 = medium, 3 = large.

There is an underling “probability model”also called “probability distribution” or in sta-
tistical parlance “the population distribution”. The length of the fish will be denoted by
X and the “class”, that is the type of the fish is denoted by Y . We assume given a joint
probability table:

1 2 3
tuna P (Y = tuna, X = 1) P (Y = tuna, X = 2) P (Y = tune, X = 3)

salmon P (Y = salmon, X = 1) P (Y = salmon, X = 2) P (Y = salmon, X = 3)
.

The best possible decision rule is based on choosing the class which has highest probability
given the size. Let us see an example:

We may have:
1 2 3

tuna 0.1 0.2 0.3
salmon 0.2 0.1 0.1

(1.1)

So, we have P (Y = salmon,X = 1) = 20%. This means that in the waters in which we are fishing,
20-percent of the fish are salmons of size 1. Similarly we have P (Y = tuna,X = 3) = 0.3. This means
that 30-percent of the fish are tuna of size 3. If we know the underlying probability distribution, that is
we know the table 1.5 to hold, what is the best decision rule for the robot to classify the fish? Again the
robot is only given one of the three sizes {1, 2, 3} and has to guess based on that information if it is a
tuna or a salmon. Say the robot is given a fish of size 2. This fish is then twice as likely to be a tuna:

P (Y = tuna|X = 2) =
0.2
0.3

=
2
3
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and
P (Y = salmon|X = 2) =

0.1
0.3

=
1
3

So, the best decision rule is that if you catch a fish of size 2 you classify it as tuna. With that rule
whenever you catch a salmon of size 2 it gets misclassified. So, this adds to the total missclasification
probability 10%. Similarly, we can device the best rule for size 1 fish as well as size 3 fish:
We have

P (Y = tuna|X = 1) =
0.1
0.3

= 33.3̄%, P (Y = salmon|X = 1) =
0.2
0.3

= 66.6̄%

So, 66.6̄% of the fish of size 1 are tuna, and hence it makes sense to classify the fish of size 1 as tuna.
In this manner every salmon of size 1 will be missclassified adding 10% error into the missclassification
percentage.
similarly with size 3 we get:

P (Y = tuna|X = 3) =
0.3
0.4

=
3
4
, P (Y = salmon|X = 3) =

0.1
0.4

=
1
4

leading us to classify fish of size 3 as tuna.

The classification rule g(.) can be viewed as a function from the set {1, 2, 3} to the classes
set {tuna, salmon}. In fancy machine learning parlance, classification rules are called
classifiers. The set {1, 2, 3} would be the feature space and tuna and salmon are the
classes. The best rule is denoted by g∗ and is called a Bayes classifier. So, formally the
Bayse classifier is defined by:

g∗(x) = tuna if and only if
P(Y = tuna|X = x)

P(Y = salmon|X = x)
≥ 1 (1.2)

(when the conditional probabilities are exactly equal, we could classify either way. Here,
we chose to assign the fish in case of equal probability to the tuna class).
Recall the formula for conditional probability of A given B. This formula is as follows:
P (A|B) = P (A ∩B)/P (B). In the present case, we condition on X = x. So, we can also
rewrite the formula which defines the Bayes classifier. For this note that

P (Y = tuna|X = x) =
P(Y = tuna, X = x)

P(X = x)

and

P (Y = salmon|X = x) =
P(Y = salmon, X = x)

P(X = x)

. Hence,

P (Y = tuna|X = x)

P (Y = salmon|X = x)
=

P (Y = tuna, X = x)/P(X = x)

P (Y = salmon, X = x)/P(X = x)
=

P (Y = tuna, X = x)

P (Y = salmon, X = x)
.

Applying this last equation to 1.2 yields:

g∗(x) = tuna if and only if
P(Y = tuna, X = x)

P(Y = salmon, X = x)
≥ 1 (1.3)
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So, this is the second form of the equation which defines the Bayse classifier.
Finally let πtuna denote the probability of a tuna fish and πsalmon denote the probability
of a salmon. Hence,

πtuna = P (Y = tuna) , πsalmon := P(Y = salmon)

The third way to rewrite the equations leading to the Bayse classifier, is obtained by using
Bayse theorem and is:

g∗(x) = tuna if and only if
πtuna · P(X = x|Y = tuna)

πsalmon · P(X = x|Y = salmon)
≥ 1 (1.4)

In the present case, the best classifier is given by

g∗(1) = salmon, g∗(2) = tuna, g∗(3) = tuna

Our optimal decision rule can be represented in our table by the green entries:

1 2 3
tuna 0.1 0.2 0.3
salmon 0.2 0.1 0.1

(1.5)

whilst the misclassifiction probability is given by the red entries:

misclassification probability of g∗ = P (g∗(X) 6= Y ) = 0.1 + 0.1 + 0.1 = 0.3.

This means that on the long run your robot will miscalssify 30% of the fish! And this is the best you can
do, if you have no other information than the three sizes {1, 2, 3}. This number of 30% of course assumes
the probabilities to be given in table 1.5 to be the correct probabilities.

Now, there is just one additional idea behind statistical classification: in general the
probabilities given in table 1.5 are not exactly known. So, we need to catch some fish,
label them manually as salmon or tuna and then estimate the probabilities given in the
table 1.5. The fish we catch to figure our what a good classification rule is is called
training sample.
let us give an example: Say we catch hundred fish which leads to the following frequency table:

1 2 3
tuna 4 10 45
salmon 15 6 20

(1.6)

So, we have 4 fish which are tuna of size 1. This means 4% of our fish in the training sample are tuna of
size 1. Hence, we estimate the probability for tuna of size 1 to be

P̂ (Y = tuna,X = 1) = 0.04

Similarly we caught 15 salmon of size 1. This represents 15% of our caught fish, which leads to our
estimate:

P̂ (Y = salmon,X = 1) = 0.15

Based on this data, our decision rule is that for a fish of size 1, we classify it as a salmon because

P̂ (Y = tuna,X = 1) ≤ P̂ (Y = salmon,X = 1).
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Note that if we have a very large number of fish which we caught, then the estimated probabilities become
indistinguishable close to the true probabilities. In that case our decision rule based on the annotated
sample and the estimated probabilities is the same as the best rule that is the Bayesian classifier. So, we
have the estimated probabilities given in the table

1 2 3
tuna 0.04 0.10 0.45
salmon 0.15 0.06 0.2

(1.7)

where again green is four our decision rule and red represents the classification errors. The classification
rule (classifier) which we chose is given by

g(1) = salmon, g(2) = tuna, g(3) = tuna

Is this the best possible classifier? The answer is we never know for absolutely sure, since we don’t know
the true probabilities but have only some estimates. However, if we have enough fish in our training
sample, then the estimated probabilities will be very close to the true ones. In that case, decision rule
based on the estimated probabilities will be the same as the one which would be based on the true
probabilities. Hence, with enough data at hand, in the current example we are likely to get the Bayesian
classifier.

Consider next an example of detecting counterfeit coins among old historical coins. Say
you would investigate coins from the roman time. Back then, the coins where not as
precisely minted as nowadays. So, there might be an even bigger fluctuation between
weights and other parameters even for the official coins. Assume we are given a training
sample of 10 coins. We let a specialist examine them. He will be able to recognize the
counterfeit ones from the authentic ones. Then we want to determine a test for the
collector to perform at home based on the bias of the coin. We assume that authentic
coins tend to have other biases than counterfeit ones and we want to use this to propose
a home-test for collectors. Hence, we throw each coin 1000 times and count the number
of heads. Assume our training data looks as follows:

(y1, x1) = (1, 499), (y2, x2) = (1, 501), (y3, x3) = (1, 506), (y4, x4) = (1, 509), (y5, x5) = (1, 505)

which are the coins which are not counterfeit and the counterfeit ones

(Y6, x6) = (0, 480), (y7, x7) = (0, 505), (y8, x8) = (0, 515), (y9, x9) = (0, 520), (y10, x10) = (0, 520)

So, here Y = 0 stands for counterfeit coins and 1 is for authentic mint. These are the
two classes. So, for example, the first coin in our training data is authentic, and after
throwing it 1000 times we got 499 heads.
Now, recall that when we flip a coin independently n times and count the number of
heads, we get a binomial variable with parameter n and p. So, let Z denote the number
of heads throwing one specific coin 1000 times. The binomial distribution tells us the
probability:

P (Z = z) =

(
n

p

)
pz(1− p)n−z

5



for all z ≤ n. Here p again designates the probability to get a head when we throw the
die once. For a fair coin we would have p = 0.5. We can now apply the Bayes approach
for determining the best classifier. For this we first assume that the non-counterfeit coins
have all a probability of head equal to p1, whilst the counterfeit ones have their probability
of head equal to p0. To find the best possible classification rule we simple classify a coin
as authentic if given the number of heads, the probability to be authentic is bigger than
the probability to be counterfeit. In other words, the area C1, where the Bayes classifier
classifies a coin as authentic is defined by the equation

π1P1(Z = z|Y = 1)

π0P0(Z = z|Y = 0)
≥ 1

which is equivalent to:

π1

(
n
z

)
pz1(1− p1)

n−z

π0

(
n
z

)
pz0(1− p0)n−z

=
π1p

z
1(1− p1)

n−z

π0pz0(1− p0)n−z
≥ 1

and hence taking the logarithm on both sides of the last inequality above whilst assuming
p1 > p0, we find that the rule which does best at classifying the data classifies as authentic
(Y + 1) when:

z ≥
(

ln(
p1(1− p0)

p0(1− p1)
)

)−1

·
(

(ln π0 − lnπ1) + n ln

(
1− p0

1− p1

))
. (1.8)

There are now two approaches possible from this point on:

• GENERATIVE APPROACH: We can estimate the probabilities p0 and p1 and
then plug the estimates into equation 1.8 to get an estimated classification boundary.
We always denote estimates by putting a hat on the estimated symbol. With our
current data we find:

p̂1 =
x1 + x2 + x3 + x4 + x5

5
=

499 + 501 + 506 + 509 + 505

5000
= 0.504

and similarly

p̂0 =
x6 + x7 + x8 + x9 + x10

5000
=

480 + 505 + 515 + 520 + 520

5
= 0.508

The estimated probabilities π̂1 and π̂0 are simply the relative frequencies of coun-
terfeit and authentic in our training data:

π̂1 = 0.5, π̂0 = 0.5

We can now plug in our estimates into the formula for the classification boundary
given in 1.8 to obtain the estimated classification boundary ẑc:

ẑc =

(
ln(

p̂1(1− p̂0)

p̂0(1− p̂1)
)

)−1

·
(

(ln π̂0 − lnπ̂1) + n ln

(
1− p̂0

1− p̂1

))
= 506.0001

This would then lead to the rule that when z > 506.0001 we classify as authentic.
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• DISSCRIMINATIVE APPROACH We calculated and found that the best
possible classification rule is of the type: z ≥ constant is classified as authentic. So,

C1 = {z ≥ constant}

The constant is not known. Above we estimated it. Another approach is simply
to look for which such rule which assigns class 1 when z ≥ constant does best on
our data given at hand. In other words, instead of estimating the parameters of the
model, we can try for several values of constant and look for which value the rule
is best on the training data. Then hope is that for other coins which come from a
similar sample, the classification rule would do similarly well. So, in our case, assign
Y = 1 if z ≤ 510 (or any constant between 509 and 515) this is the classification
rule which does best on the sample data: It makes two mistakes out of 10, so we
can estimate the classification error with this rule to be 20%. This will tend to not
be un unbiased estimate.

WHICH APPROACH SHOULD WE USE NOW? Generative or discriminative? Reality
is not all black or all white actually: the rules we use for discriminative approach are
usually obtained in the first place from a probability model! So, often we mix: we
calculate the best classifier for a given probability distribution which is known up to
certain parameters. The best classification rule then also depends on these unknown
parameters. In the generative approach, we would then estimate these parameters. In
the discriminative approach, we consider the family of decision rules which depend on the
parameter. Among, these we chose the one which is best at classifying the training data.

2 The two dimensional covariance matrix

For two random variable X and Y the covariance is defined by

COV (X, Y ) = E[(X − E[X])(Y − E[Y ])]

Some properties are given below, where X, Y,X1, X2, Y1, Y2 are random variables whilst
a, b, c, d are non-random constants.

• Covariance is symmetric

COV (X, Y ) = COV (Y,X)

• We have linearity with respect to the first entry:

COV (aX1 + bX2, Y ) = aCOV (X1, Y ) + bCOV (X2, Y )

.

7



• We also have linearity with respect to the second entry

COV (X, aY1 + bY2) = aCOV (X, Y1) + bCOV (, Y2)

.

• The covariance of a variable with itself is the variance

COV (X,X) = V AR[X].

• Assume that X and Y are independent of each other. Then,

COV (X, Y ) = 0

the reverse is not necessarily true, that is there exists variables with 0 covariance
but which are not independent of each other. the reverse is true however when X
and Y are jointly normal as we will see in the next section.

The proofs of these properties can be found in matzingers intro to probability lecture notes
and have to be known for the next test. In multivariate statistics we consider random
vectors. Let us start with a two dimensional random vector:

~X = (X, Y )

A typical example of such a two dimensional random vector would be the impact point of a
shell in traditional artillery shooting. When we fire every time with the same ammunition
and the gun oriented exactly the same way, the shells impact points will non-the-less not
be exactly the same. This imprecision leads to the shell impact point being a “natural”
random vector. Say, now that ~Xi = (Xi, Yi) is the impact point of the i-th artillery shell
on the ground. We assume that the impacts points are independent of each other and
all have the same probability distribution. (The conditions do not change and we shoot
with the same artillery gun pointed in exactly the same direction with the same type
of ammunition. Weather conditions do not change). So, here we are we have an i.i.d.
sequence of random vectors:

~X1 = (X1, Y1), ~X2 = (X2, Y2), ~x = (X3, Y3), . . .

For the random vector ~X = (X, Y ), we represent the covariances between the different
entries of the vector in matrix format. This matrix is then called covariance matrix of ~x
or simply covariance of ~x. So, the covariance of ~X is given by:

COV [ ~X] =

(
COV (X,X) COV (X, Y )
COV (Y,X) COV (Y, Y )

)
What is the covariance matrix good for? let us see an example of how it is used. Say X
is the value of one dollar of a first stock today in a year from now. Similarly, let Y denote
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the value of a second stock in a year from now. Again, we take one dollar worth of stock
today and look how much it is worth in a year. The single period portfolio investment
problem is now defined as follows:
how do you invest a given amount of money into these two stocks so as to maximize the
expected gain and minimize risk. More precisely, we put q1 cents into the first stock and
q2 cents into the second stock. then at the end of the year we will have a value equal to

q1X + q2Y.

(We assume that during the year we are not allowed to trade this stock. So, we consider
a passive investment policy). The value of the portfolio at the end of the year is thus
q1X+ q2Y and is a random variable. At the beginning of the year, when we have to make
our investment decision and determine q1 and q2, the value of the portfolio at the end of
the year is of course not yet known.
The risk is represented by the variance:

V AR[q1X+q2Y ] = COV [q1X+q2Y, q1X+q2Y ] = q2
1COV (X,X)+2q1q2COV (X, Y )+q2

2COV (Y, Y ).

The covariance above are supposed to be known to the investor, which could have de-
termined them by estimation from previous years. The expected gain which we want to
maximize is

E[q1X + q2Y ] = q1E[X] + q2E[Y ].

So, the optimal one period portfolio investment strategy is found by maximizing

q1E[X] + q2E[Y ]

under the constrain

q2
1COV (X,X) + 2q1q2COV (X, Y ) + q2

2COV (Y, Y ) ≤ constant1

where the constant constant1 > 0 depends on how much risk the investor is willing to
bear. Also, the total amount of money is usually given so that another condition is

q1 + q2 = contant2,

with the total amount of money to be invested denoted byconstant2 and known to us.
Finally, we may not be allowed to borrow money, and hence we would have as additional
constrain

q1, q2 ≥ 0

.
The remarkable thing to realize, is that for solving this one period optimal portfolio
investment problem, we do not need to know the exact distribution of ~X: we just need
the expectation and the covariance matrix! The same holds true when instead of investing
only in two stocks we invest into several stocks.
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2.0.1 Principal direction of a covariance matrix

When we shoot many times we see the there is much more dispersion (=fluctuation) in
the direction of shooting then perpendicular to it. Again we assume that we are shooting
with the same artillery gun, with the tube pointed in exactly the same direction and
under the same conditions. So, with such a data set of impact points there is a direction
in which the coordinates fluctuate maximally, this is usually the direction in which we
are shooting. The direction perpendicular to this is the direction in which the impact
points fluctuate least. With a plot of the impact points it is usually where simple to see
approximately what these directions are. But how could we calculate them based on the
covariance matrix of ~X = (X, Y )? (Again ~X represents the impact point of a shell.) The

answer is simple: the eigenvectors of the covariance matrix cov( ~X) represent the direction
of maximum resp. minimum spread of the artillery shells impact points. The reason is as
follows:
to project on a line passing through the origin and the unit-vector

~u = (u1, u2)

we simply build the dot product. That is assume the vector (u1, u2) has length 1:

u2
1 + u2

2 = 1.

Then, the dot product
~u · ~X = u1X + u2Y

gives us the projection of the vector ~X onto the straight line ~u · t. So, to find the direction
~u of maximal dispersion (=fluctuation), we search for ~u which maximizes

V AR[~u · ~X] = V AR[u1X + u2Y ] =

= COV [u1X + u2Y, u1X + u2Y ] = u2
1COV (X,X) + 2u1u2COV (X, Y ) + u2

2COV (Y, Y )

under the constrain
u2

1 + u2
2 = 1.

To solve this constrained optimization problem, we find the gradients and set them to
point into the same direction. Hence,

~grad(V AR[~u· ~X]) =

(
2u1COV (X,X) + 2u2COV (X, Y )
2u1COV (X, Y ) + 2u2COV (Y, Y )

)
= 2

(
COV [X,X) COV (X, Y )
COV (Y,X) COV (Y, Y )

)(
u1

u2

)
.

should be colinear with

~grad(u2
1 + u2

2) = 2

(
u1

u2

)
So in other words we look for λ and a vector (u1, u2) so that

λ

(
u1

u2

)
=

(
COV (X,X) COV (X, Y )
COV (X, Y ) COV (Y, Y )

)(
u1

u2

)
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But the last equation above is the equation for a eigenvector with eigenvalue λ of the
covariance matrix COV [ ~X]! We have just established that the direction of maximal
dispersion is given as an eigenvector of the covariance matrix. The same thing holds
true for the direction of minimum dispersion. Note that we can find such a direction of
maximal dispersion and minimal dispersion for any covarianc matrix, there is no need
for artillery shooting. Only that in artillery shooting these direction then have a simple
physical interpretation: the direction of maximum dispersion is the direction in which we
shoot. And the direction perpendicular to this is the direction of minimum dispersion.
Again, the orthogonality of these two directions is not just given with artillery shooting:
it holds true for any covariance matrices. The reason is simply that these directions
are eigenvectors and for symmetric matrices, the eigenvectors corresponding to different
eigenvalues are always perpendicular to each other. To see why consider the following: let
A be a symmetric matrix and ~v1 and ~v2 to eigenvectors with corresponding eigenvalues λ1

and λ2. If we assume λ1 6= λ2, then the eigenvectors are perpendicular. Indeed, consider
the dot product

λ1~v2 · ~v1 = ~vT2 λ1~v1 = ~vT2 A~v1 = (A~v2)
T~v1 = λ2~v2~v1 (2.1)

If ~v2 and ~v1 would not be perpendicular to each other, then their dot product would not
be 0. Hence, in the sequence of equations 2.1, we could divide on the very right and very
left by ~v2 · ~v1 leading to

λ1 = λ2

which is a contradiction since we assumed λ1 6= λ2. So, if there are different eigenvalues
then the corresponding eigenvectors must satisfy ~v · ~v2 = 0 and hence be orthogonal to
each other. And this in terms leads to the direction of maximal dispersion and minimal
dispersion to be orthogonal to each other. We also get that the covariance of the coordinate
in these two directions is 0 as we will see.
Another important fact is that the eigenvalues λ1 and λ2 represent the variance of the
impact points projected in each of the two eigenvalues directions. To see that this is
indeed true, take ~u to be the eigenvector corresponding to the eigenvalue λ1. We assume
~u = (u1, u2) to have unit length: u2

1 + u2
2 = 1. Then,

V AR[ ~X · ~u] =

= COV (Xu1 + Y u2, Xu1 + Y u2) = u2
1COV (X,X) + 2u1u2COV (X, Y ) + u2

2COV (Y, Y ) =

= (u1, u2)

(
COV (X,X) COV (X, Y )
COV (Y,X) COV (Y, Y )

)(
u1

u2

)
= (u1, u2)λ1

(
u1

u2

)
= λ1(u

2
1 + u2

2) = λ1.

The same thing can be shown of course for λ2 and the corresponding eigenvector.

2.1 Estimation of covariance matrix

Say again that we observe several artillery impact points:

~X1 = (X1, Y1), ~X2 = (X2, Y2), ~X3 = (X3, Y3), . . . , ~Xn = (Xn, Yn)

11



With this data set how do we estimate the covariance matrix given by:

COV [ ~X] =

(
COV (X,X) COV (X, Y )
COV (Y,X) COV (Y, Y )

)
?

Note that

COV (X,X) = E[X2]− (E[X]2),

COV (X, Y ) = E[XY ]− E[X]E[Y ],

COV (Y, Y ) = E[Y 2]− E[Y ]2

Hence, the covariance matrix can be written as

COV [ ~X] =

(
E[X2] E[XY ]
E[Y X] E[Y 2]

)
−
(
E[X]2 E[X]E[Y ]
E[Y ]E[X] E[Y ]2

)
(2.2)

The expression on the right side of the last equation above contains only expectations.
Expectations are long term averages of the random variables when we repeat the exper-
iment many times independently. (Law of large numbers: when you throw the same die
many times independently and calculate the average, you get about the expected value.
Provided you throw it many times) So, we are going to simply estimate all the expecta-
tions in the least expression above by taking the corresponding averages. the estimates
of something is then denoted by putting a hat on that thing. So, we use the estimates:

Ê[X] :=
X1 +X2 + . . .+Xn

n

Ê[Y ] :=
Y1 + Y2 + . . .+ Yn

n

Ê[X2] :=
X2

1 +X2
2 + . . .+X2

n

n

Ê[Y 2] :=
Y 2

1 + Y 2
2 + . . .+ Y 2

n

n

Ê[XY ] :=
X1Y1 +X2Y2 + . . .+XnYn

n

The estimate for the covariance matrix is now obtained by replacing in formula 2.2 the
different expectations by their respective estimates. We find as estimate of the covariance
matrix:

ˆCOV [ ~X] =

(
Ê[X2] Ê[XY ]

Ê[Y X] Ê[Y 2]

)
−
(

Ê[X]2 Ê[X]Ê[Y ]

Ê[Y ]Ê[X] Ê[Y ]2

)
and hence

ˆCOV [ ~X] =
1

n

( ∑n
i=1X

2
i

∑n
i=1XiYi∑n

i=1 YiXi

∑
i=1 Y

2
i

)
−
(

X̄2 X̄ · Ȳ
X̄ · Ȳ Ȳ 2

)
12



Where X̄ and Ȳ represent the sample means

X̄ =
X1 +X2 + . . .+Xn

n

and

Ȳ =
Y1 + Y2 + . . .+ Yn

n

2.2 Example

Again assume that we should with an artillery gun. let (Xi, Yi) denote the impact point
on the ground of the i-th shell we shoot. The canon tube points always in the same
direction and we shoot under the same circumstances with the same ammunition. Hence,

~X1 = (X1, Y1), ~X2 = (X2, Y2), . . . , ~Xn = (Xn, Yn)

are ii.d random vectors. Assume that we get the following 10 impact points

Xi Yi

1.11 0.47
1.13 1.99
−3.84 −2.82

1.77 0.26
0.28 1.55
−1.46 −2.84

0.52 −0.28
−2.50 −1.70
−3.07 −5.32

0.75 1.84

We can represent these impact points on a map. (That is we plot the above points in two
dimensions). The result can be seen in figure 5. In that figure we see that the direction
of maximal dispersion is approximately (1, 1) and the direction of minimum dispersion is
orthogonal given by (−1, 1). Indeed, the covariance matrix we used to simulate this data
is

COV ( ~X) =

(
5 4
4 5

)
(2.3)

and one can verify that indeed for this covariance matrix the eigenvectors are (1, 1) and
(−1, 1). The corresponding eigenvalues are 9 and 1. So, the standard deviation in the
direction of the eigenvectors is 3 and 1 respectively. And indeed when we look at the
impact points in figure 5 we see that the average fluctuation in the direction (1, 1) is
approximately 3, whilst in the direction of minimum fluctuation it is about 1.
The center of gravity of the impact points is represented by the red square in figure 5. Its
value is given by

(X̄, Ȳ ) = (
X1 + . . .+X10

10
,
Y1 + . . .+ Y10

10
) = (−0.531,−0.685)

13



Figure 1:

This is also an estimate for the expectation E[ ~X] = (E[X], E[Y ]) so that the estimates
value in the present case is

(Ê[X], Ê[Y ]) = (−0.531,−0.685).

In reality we had used E[X] = 0 and E[Y ] = 0 so the estimate is not that far from the
true value. With more artillery impact points the precision would be greater. Finally we
can estimate the covariance matrix. If X denotes the matrix with two column and 10
rows containing our impact points, then the covariance matrix estimate can be written
as:

ˆCOV [ ~X] =
1

n

( ∑n
i=1X

2
i

∑n
i=1XiYi∑n

i=1 YiXi

∑
i=1 Y

2
i

)
−
(

X̄2 X̄ · Ȳ
X̄ · Ȳ Ȳ 2

)
=

1

n
XTX −

(
X̄2 X̄Ȳ
X̄Ȳ Ȳ 2

)
=(

3.91 4.04
4.04 5.73

)
−
(

0.28 0.36
0.36 5.2

)
=

(
3.62 3.68
3.68 5.26

)
the last matrix above is our estimate for the covariance matrix given in 2.3. Note that

the difference is not too big. Again with more data points, the precision would be better.

14



3 Precision of estimate of eigenvalues and eigenvec-

tors of covariance matrix in the low dimensional

case.

In the artillery shooting example, one might one to know how precisely the eigenvectors
can be determined. Recall that the eigenvector with biggest eigenvalue represent the
direction in which we are shooting. So, we can use the eigenvector with biggest eigenvalue
to find a line on which the enemy artillery gun is located. Of course, one would then like
to know the precision with which the eigenvector is determined, since if the precision is
bad we might not have enough information about the location of the enemy artillery gun.
So, here we assume a three dimensional situation, where the shells explode in the air.
So, the explosion point of the i-th shell is denoted by ~Xi = (Xi, Yi, Zi). We assume that
the same artillery gun shoots many round under the same conditions. Hence, we have a
sequence of i.i.d. vectors

~X, ~X1, ~X2, . . . , ~Xn

corresponding to the different explosion points in the air. (Here ~X = (X, Y, Z) so this is
one impact point without index, to later on simplify notations). We will also assume that

E[ ~X] = E[(X, Y, Z)] = E[ ~Xi] = (E[Xi], E[Yi], E[Zi]) = (0, 0, 0).

We will explain later why in many applications, this assumption is realistic. Furthermore,
we assume that the direction in which we are shooting is given by (1, 0, 0). We also assume
that Xi, Yi and Zi are independent of each other. Hence, the covariance matrix is given
by

COV [ ~X] =

 σ2
X 0 0
0 σY 0
0 0 σ2

Z

 =

 E[X2] E[XY ] E[XZ]
E[Y X] E[Y 2] E[Y Z]
E[ZX] E[ZY ] E[Z2]


Now recall the Central Limit Theorem: say we have variables W1,W2, . . . which are

i.i.d then we have that for n large enough, the properly re-scaled sum is approximately
standard normal:

W1 +W2 + . . .+Wn − nE[W1]√
n

≈ N (0, 1).

the goal is to figure out how precise our estimates for the eigenvalues and eigenvectors
are. Since the expectation is 0, in our estimate of the covariance matrix we can leave
the part which estimates the expectation out. So, we use the following estimate for the
covariance matrix:

ˆCOV [ ~X] =


X2

1+...+X2
n

n
X1Y1+...+XnYn

n
X1Z1+...+XnZn

n
Y1X1+...+YnXn

n

Y 2
1 +...+Y 2

n

n
Y1Z1+...+YnZn

n
Z1X1+...+ZnXn

n
Z1Y1+...+ZnYn

n

Z2
1+...+Z2

n

n


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We can now apply the Central Limit Theorem to all the entries of the estimated covariance
matrix above. For example take Wi to be equal to Wi = XiYi. Then,

X1Y1 + . . .+XnYn
n

−E[X1Y1] =
1√
n

W1 +W2 + . . .+Wn − E[W1]√
n

≈ σW1

N (0, 1)√
n

=
σX1σY1√

n
N (0, 1)

(3.1)
So, take the difference between the estimated covariance matrix and the real one:

E = ˆCOV [ ~X]− COV [ ~X] =

=


X2

1+...+X2
n

n
− E[X2] X1Y1+...+XnYn

n
− E[XY ] X1Z1+...+XnZn

n
− E[XZ]

Y1X1+...+YnXn

n
− E[Y X]

Y 2
1 +...+Y 2

n

n
− E[Y 2] Y1Z1+...+YnZn

n
− E[Y Z]

Z1X1+...+ZnXn

n
− E[ZX] Z1Y1+...+ZnYn

n
− E[ZY ]

Z2
1+...+Z2

n

n
− E[Z2]


With the Central Limit Theorem applied to each of the entries of the last matrix above

in the same way as in 3.1, we find

ˆCOV [ ~X]− COV [ ~X] ≈ 1√
n

 σX2N11 σXσYN12 σXσZN13

σY σXN21 σY 2N22 σY σZN23

σZσXN31 σZσYN32 σZ2N33

 (3.2)

where Nij are all standard normal variables and Nij = Nji for all i, j = 1, 2, 3. Further-
more, the Nij which are different from each other, are automatically independent of each
other. This follows from the following argument:
by the multidimensional Central Limit theorem the “vector-matrix’ N11 N12 N13

N21 N22 N23

N31 N32 N33


is multivariate normal. This means any entries with covariance being 0 are also automat-
ically independent. But for example

COV (XY,XZ) = E[XYXZ]−E[XY ]·E[XZ] = E[X2]E[Y ]E[Z]−E[X]E[Y ]E[X]E[Z] = 0

Hence,

COV

(
X1Y1 + . . .+XnYn

n
,
X1Z1 + . . .+XnZn

n

)
=

=
1

n2

∑
i,j

COV (XiYi, XjZj) =
1

n2

∑
i

COV (XiYi, XiZi) = 0

Which implies that N12 and N13 are uncorrelated and hence independent of each other
asymptotically since they are jointly normal.
Next we are going to establish the formula for the estimated eigenvalue and eigenvectors of
the covariance matrix. Again, here the estimated eigenvalues and eigenvectors are simply
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the eigenvectors and eigenvalues of the estimated covariance matrix. We assume here
σX , σY and σz to all have different values from each other. Let A denote the covariance
matrix, E again the error-matrix (that is the difference between the estimated and the
true covariance matrix). Let ~µ = (1, 0, 0)T be the eigenvector with the biggest eigenvalue

of A = COV [ ~X]. Let λ = σ2
X denote the biggest eigenvalue of the covariance matrix A

and let λ+ ∆λ denote the biggest eigenvalue of the estimated covariance matrix.
So the estimated covariance matrix is A + E, hence the true covariance matrix plus
a “perturbation” E. Let ~v = ~µ + ∆~µ be the eignevector with biggest eigenvalue for
the estimated covariance matrix and assume that ∆~µ is orthogonal to µ. Hence ∆~µ =
(0,∆µY ,∆µX)T . With these notations, we have:

(A+ E)(~µ+ ∆~µ) = (λ+ ∆λ)(~µ+ ∆~µ). (3.3)

Also, since ~µ is an eigenvector of A, we have:

A~µ = λ~µ (3.4)

Subtracting equation 4.1 from 3.4, we find:

(A− Iλ)∆~µ = −E~µ+ ∆λ~µ+−E∆~µ+ ∆λ∆~µ. (3.5)

In the last equation above the two terms:

−E∆~µ+ ∆λ∆~µ.

is asymptotically smaller than the other terms, since these terms are of order constant
over n, whilst the other terms are of order constant over

√
n.

So, we find that
(A− Iλ)∆~µ ≈ −E~µ+ ∆λ~µ

and hence 0 0 0
0 σ2

Y − σ2
X 0

0 0 σ2
Z − σ2

X

 0
∆µY
∆µZ

 ≈ − 1√
n

 σX2N11

σXσYN21

σXσZN31

+

 ∆λ
0
0

 (3.6)

Which implies that

∆µY ≈ −
N21√
n

σY σX
(σ2

Y − σ2
X)

and

∆µZ ≈ −
N21√
n

σY σX
(σ2

Z − σ2
X)

and finally

∆λ ≈ σX2

N11√
n

We obtain similar estimates for the other eigenvector/eigenvalue pairs.

17



4 Principal components of covariance matrix and fac-

tor analysis

So, far we have seen examples of artillery shooting. Let us consider next the case of a
portfolio. Say ~X = (X, Y, Z)T contains the information about three stocks. Say X is the
change in value of the first stock from today to tomorrow. Similarly, Y is the change in
value of the second stock and Z is the change in value of the third stock. We assume
again E[ ~X] = (E[X], E[Y ], E[Z])T = (0, 0, 0)T this is realistic since the daily change
has an expectation part which is negligible compared to the standard deviation. Let us
assume that ~Xi = (Xi, Yi, Zi)

T is the change from day i to day i + 1. We assume that

the changes are i.i.d. and hence ~X, ~X1, ~X2, . . . are supposed to be i.i.d. Now assume that
there are two sectors of the industry to which these stocks belong. For example, high-tech
and energy. Let S be an index for the first sector and T be an index for the second. Often
times one models stocks as a linear combination on indexes. So we would assume that we
have

X = aXS + bXT + εX

Y = aY S + bY T + εY

Z = aZS + bZT + εZ

Here aX , aY , az and bX , by, bz are supposed to be non-random coefficients. Furthermore
we assume that

εX , εY , εZ

are independent of each other and of S and T and have 0 expectation. To simplify our
discussion at first we assume that they also have same standard deviation:

σ2 = σ2
εX

= σ2
εY

= σ2
εZ
.

The covariance between X and Y is then given:

COV (X, Y ) = COV (aXS + bXT + εX , aY S + bY T + εY ) =

= axayCOV (S, S) + aXbYCOV (S, T ) + bXaYCOV (T, S) + bXbYCOV (T, T )

Let us first assume that S and T are independent of each other so that COV (S, T ) =
COV (T, S) = 0. we also assume S and T standardized so that COV (S, S) = V AR[S] = 1
and COV (T, T ) = 1. Assume also at first that X and Y depend only on S and that Z
depends only on T . This means az = 0 and bX = bY = 0. In that case:

X = aXS + εX , Y = aY S + εY , Z = bZT + εZ
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The covariance matrix in that case is then given by:

COV [ ~X] =

 COV (X,X) COV (X,Y ) COV (X,Z)
COV (Y,X) COV (Y, Y ) COV (Y,Z)
COV (Z,X) COV (Z, Y ) COV (Z,Z)

 =

=

 COV (aXS, aXS) COV (aXS, aY S) COV (a1S, bZT )
COV (aY S, aXX) COV (aY S, ayS) COV (aY S, bZT )
COV (bZT, aXS) COV (bZT, aY Y ) COV (bZT, bZT )

+

 COV (εX , εX) 0 0
0 COV (εY , εY ) 0
0 0 COV (εZ , εZ)


=

 axax axay 0
ayax ayay 0

0 0 bZbZ

+

 σ2
X 0 0
0 σ2

Y 0
0 0 σ2

Z


=

 axax axay 0
ayax ayay 0

0 0 bZbZ

+ σ2I

where I stands for the 3× 3 identity matrix. Now here we have that the matrix axax axay 0
ayax ayay 0

0 0 bZbZ


has two eigenvectors with non-zero eigenvalues. These are the vector

~u1 = (aX , aY , 0)T

with eigenvalue λ1 = a2
X + a2

Y and another eigenvector

~u2 = (0, 0, 1)

with eigenvalue λ2 = b2Z . Adding σ2I does not change the eigenvectors. it merely increases the eigenvalues
by σ2. So, the eigenvectors ~u1 and ~u2 are also the eigenvectors of the covariance matrix! Now, we can
use these eigenvectors to try to group stocks “belonging to the same sector”. For this simply take the
non-zero entries of ~u1: the first and second entry are non-zero so we can assume that X and Y belong
to a same industry sector. Then, the eigenvector ~u2 has only its third entry non-zero. So, we decide
that it represents by itself a sector. Now, why would this be useful? Answer: it is mainly useful when
we do not know how to group things. For example, you work with futures and you want to see if there
are groups which tend to go together. Now, here in the current example, our covariance matrix has a
simple block structure. So in principal we can just look at the correlation matrix and group the stocks
which are highly correlated into groups. No, need for eigenvectors there. So, when are eigenvectors most
useful? Answer: there could be several such indexes and they need not correspond to sectors but can be
overlapping. Think for example of the introducing an additional variable measuring the general state of
the economy. Call it M . Now, say that we have 2p stocks. The first p depend only on S and M so that
for i = 1, 2, . . . , p we have

Xi = aiS + ciM + εi

Then the stocks with indices from p+ 1 to 2p belong to a second sector and will depend only on T and
M , So that

Xi = biT + ciM + εi
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when i = p+ 1, . . . , 2p. The covariance matrix we find in that case is given by:

COV [ ~X] =

a1a1 a1a2 a1a3 . . . a1ap 0 0 0 . . . 0
a2a1 a2a2 a2a3 . . . a2ap 0 0 0 . . . 0
a3a1 a3a2 a3a3 . . . a3ap 0 0 0 . . . 0
. . .
. . .
apa1 apa2 apa3 . . . apap 0 0 0 . . . 0

0 0 0 0 0 b1b1 b1b2 b1b3 . . . b1bp
0 0 0 0 0 b2b1 b2b2 b2b3 . . . b2bp
0 0 0 0 0 b3b1 b3b2 b3b3 . . . b3bp
. . .
0 0 0 0 0 bpb1 bpb2 bpb3 . . . bpbp


+

+



c1c1 c1c2 c1c3 . . . c1cp c1cp+1 c1cp+2 c1cp+3 . . . c1c2p
c2c1 c2c2 c2c3 . . . c2cp c2cp+1 c2cp+2 c2cp+3 . . . c2c2p
c3c1 c3c2 c3c3 . . . c3cp c3cp+1 c3cp+2 c3cp+3 . . . c3c2p
. . .
. . .
. . .
. . .
. . .
c2pc1 c2pc2 c2pc3 . . . c2pcp c2pcp+1 c2pcp+2 c2pcp+3 . . . c2pc2p


+ σ2I =

= ~a · ~aT +~b ·~bT + ~c · ~cT + σ2I

where we have

~a = (a1, a2, . . . , ap, 0, . . . , 0)T ,~b = (0, 0, . . . , 0, b1, b2, . . . , bp)T ,~c = (c1, c2, . . . , . . . , c2p)T

Now, if there would not be the term ~c · ~cT in the last formula above for the covariance matrix, then,
the two eigenvectors with biggest eigenvalues would be ~a and ~b. Their eigenvalues would be ~at~a + σ2

and ~bt~b + σ2. All other eigenvectors would have eigenvalues σ2 which is much smaller. So, the way to
find which stocks are in the same industry sector would be to find the two eigenvectors with biggest
eigenvalues. The non-zero entries of such an eigenvector shows which stocks belong to the same sector.
But now instead, we have added the term ~c~ct to the covariance matrix. Then ~a and ~b are no longer
eigenvectors. However take the three eigenvectors with biggest eigevalues: ~u1, ~u2, ~u3. These vectors are
then linear combinations of ~a, ~b and ~c. This follows from the fact that the matrix COV [ ~X] − σ2I has
all its columns being linear combination of those three vectors. Also, we know that an eigenvector must
always be in the linear span of the matrix. So, in other words, we have three equations:

~a = r11~u1 + r12~u2 + r13~u3

~b = r21~u1 + r22~u2 + r23~u3

~c = r31~u1 + r32~u2 + r33~u3

The coefficients rij are not known when we analyse a covariance matrix. Nor will the vectors ~a, ~b and
~c be known apriori in general. The one thing known, are the eigenvectors which here are denoted by
~u1, ~u2 and ~u3. The eigenvectors of the covariance matrix are called principal components. So, given the
principal components, we try to “ find back vectors like ~a, ~b and ~c”, which will show us which stocks
belong to the same sector. This operation is called factor analysis: This consist of finding coefficients
rij for which the resulting ~a and ~b have many close to 0 entries and ~a and ~b tend to be orthogonal to
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each other. Unfortunately enough, there is usually not a unique solution. Also, we have to define what
criteria we use.

Then, applying this kind of calculation to every entry, we find that the covariance matrix is given by

COV [ ~X] =

 COV (X,X) COV (X,Y ) COV (X,Z)
COV (Y,X) COV (Y, Y ) COV (Y,Z)
COV (Z,X) COV (Z, Y ) COV (Z,Z)

 =

= cov(S,S)

 a2
x axay axaz

ayax a2
y ayaz

azax azay azaz

+ cov(S,T )

 axbx axbY axbz
aybx aybY aybz
azbx azby azbz

+

+ cov(S,T )

 bxax bxay bxaz
byax byay byaz
bzax bzay bzaz

+ cov(T,T )

 bxbx bxby bxbz
bybx byby bybz
bzbx bzby bzbz

+ σ2I =

= COV (S, S)~a · ~aT + COV (S, T )~a ·~bT + COV (T, S)~b · ~aT + COV (T, T )~b ·~bT + σ2I

where ~a = (aX , aY , aZ)T and ~b = (bX , bY , bZ)T whilst I represents the identity matrix. Now not that
the image space of our covariance matrix without the term σ2I is two dimensional and is spanned by
~aT and ~bT . So, without the term σ2I there are only two non-zero eigenvalues and their corresponding
eigenvectors span the linear space generated by ~a and ~b. Imagine now a similar situation but with p
stock instead of only 3. Again, we assume that all the stocks depend on two indeces S and T through
some non-random linear coefficients as before. So, again ~X, ~X1, ~X2, . . . are i.i.d vectors but this time the
dimension be p:

~X = (X1, X2, . . . , X100)T

and
~Xi = (Xi1, Xi2, . . . , Xip

and
Xj = ajS + bjT + εj

where the coefficients aj and bj are non random and

ε1, ε2, . . . , εp

have expectation 0 are uncorrelated and are uncorrelated with S and T . The covariance of Xi with Xl

is given by

COV (Xi, Xl) =
= Cov(aiS + biT + εi, alS + biT = εl) =
= aialCOV (S, S) + aiblCOV (S, T ) + bialCOV (T, S) + biblCOV (T, T )

for i 6= l. hence the covariance matrix is given by the same formula as before

COV [ ~X] =

= COV (S, S) · ~a · ~aT + COV (S, T ) · ~a ·~bT + COV (T, S) ·~b · vecat + COV (T, T ) ·~b~b+ σ2I

So, despite the space having a high dimension p, the covariance matrix when we subtract σ2I has only
rank two. This means only two non-zero eigenvalue for the matrix COV [ ~X]− σ2I. Adding the identity
matrix time σ2 moves all eigenvalues up by σ2. Hence, the covariance matrix COV [ ~X] will have two
“big “eigenvalues and all others will be equal to σ2. To understand that the covariance matrix is only of
dimension 2 means that there is a very simple structure. When we calculate the spectrum of the matrix,
we see that there are two eigenvalues which are separated from the rest and can hence conclude that
there is “ a simple structure” behind the covariance matrix.
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Now, in reality we will never now the exact covariance matrix, but only the covariance matrix up to an
“estimation-error-matrix” E. So, the question is if instead of the matrix COV [ ~X] we are given

COV [ ~X] + E

where E = ˆCOV [ ~X]−COV [ ~X] will we still be able to recognize that there is a low dimensional structure
behind the covariance matrix. Of course, this will depend on “how big” the perturbation-matrix E is.
At this stage we have to introduce perturbation results for symmetric matrices. This is the content of
the next subsection.

4.1 Perturbation results for symmetric matrices

We are going to look at how much a perturbation can modify the eigenvalues and eigenvectors of a
symmetric matrix. Of course, the change will depend on how big the “perturbation” is. Our measure of
choice will be the spectral norm for symmetric matrices. For a symmetric matrix A, we will denote the
spectral norm of A by |A|. (The spectral norm can also be defined for non-symmetric matrices, but here
we use only symmetric). The spectral norm is given as the biggest absolute value of an eigenvalue.
Let us see an example:

A =

 4 0 0
0 3 0
0 0 2


here the biggest eigenvalue is 4. Hence, the spectral norm is 4:

|A| = 4

Now, let us add a “small perturbation”. For this take E to be equal to

E =

 0.02 0 0
0 0.03 0
0 0 0.01


The resulting “perturbated matrix” is

A+ E =

 4 0 0
0 3 0
0 0 2

+

 0.02 0 0
0 0.03 0
0 0 0.01

 =

 4.02 0 0
0 3.03 0
0 0 2.01


So, here the eigenvalues of A are λ1 = 4, λ2 = 3 and λ3 = 2. The eigenvalues of the perturbation matrix
A + E are λ∗1 = 4.02, λ∗2 = 3.03 and λ∗3 = 2.01 We see that non of the eigenvalues got changed by more
than 0.03. The reason is that the biggest eigenvalue of E is 0.03, so that |E| = 0.03. In other words we
have

|λi − λ∗i | ≤ |E|,

for any i = 1, 2, 3. In the case, that both matrices A and E are diagonal, the last inequality above is easy
to understand. But it also holds, when the matrices A and E are not diagonal but just symmetric as we
show below in Theorem 4.1.
Now let us consider the problem of finding the vector (u1, u2, u3)T of Euclidean norm 1 so that A~u has
maximal Euclidean norm. We will denote by |~x| the Euclidean norm of a vector ~x. so, in the case of the
current matrix A we find that

max |A~u| =
√

42u2
1 + 32u2

2 + 22u2
3

under the constrain µ2
1 +µ2

2 +µ2
3 = 1 In the current case, of a diagonal matrix A, it is easy to see that the

constraint maximum is given by the biggest eigenvalue 4. This is true in general, not just for diagonal
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matrices. It can be shown to hold true in general by using Lagrange multipliers. So, we have in general
for any symmetric n× n-matrix A that the spectral norm |A| is equal to the maximum:

|A| = max
~µ∈Sn−1

|A~u|

where Sn−1 denotes the surface of the unit ball centered at the origin in Rn.
A third equivalent way to characterize the spectral norm of a symmetric matrix is the maximum

|A| := max
~u,~v∈Sn−1

~vA~u

where the maximum is taken over all pairs of vectors ~u and ~v on Sn−1. Another formula for the spectral
norm of a diagonal matrix is

|A| = max
~µ∈Sn−1

|~µA~µ|.

Again, the result are simple: they say that if the spectral norm of E is less than ε > 0, then the
eigenvalues move by less than ε. This is the statement of the next theorem:

Theorem 4.1 Let A and E be two symmetric n × n matrices and assume that |E| ≤ ε. Assume that
λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of A. Let λ∗1 ≥ λ∗2 ≥ . . . λ∗n be the eigenvalues of A+ E. Then,

|λi − λ∗i | ≤ ε = spectral norm of perturbation.

Proof. We first do the proof for the biggest eigenvalue λ1 of A. Let λ∗1 be the biggest eigenvalue of
A+ E. By our characterization of the spectral norm, we have

|(A+ E)~u| = |A~u+ E~u| ≤ |A~u|+ |E~u| ≤ |A| · |~u|+ |E| · |~u| (4.1)

Let Bn(1) denote the unit ball in Rn. We can then apply inequality 4.1 to our characterization of spectral
norm:

|A+ E| = max
~u∈Bn(1)

|(A+ E)~u| ≤ max
~u∈Bn(1)

||A| · |~u|+ |E| · |~u| ≤ |A|+ |E|

hence, the biggest eigenvalue λ∗1 of A + E must be less than |A| + |E|. But |A| is equal to the biggest
eigenvalue λ1 of A. Hence,

λ∗1 − λ1 ≤ |E|
Similarly we can prove the converse, that is that λ1−λ∗1 is less or equal to |E|. This finishes proving that

|λ1 − λ∗1| ≤ |E|.

In factor analysis we saw how important eigenvectors of covariance matrix are: they give us “indexes
which allow us to understand the data better”. Now, we usually don’t know the exact value of the
covariance matrix, but only have an estimate. Then, typically we take the eigenvectors of the estimated
covariance matrix as our estimate of the eigenvectors. In low dimension there might not be a big difference
between the estimated covariance matrix and the true one. But, in high dimension, this difference can
entrirely mess up things. So, we want to find a way, to bound the difference between the estimated and
the true eigenvectors. Among others, this should tell us how much samples of a random vector we need
to be able to estimate the covariance matrix sufficiently precisely for whatever perpupse we have in mind.
Next, we present a very simple formula, which is the name of the game. The error for the estimated
eigenvector is less than twice the fraction of spectral norm of perturbation divided by spectral gap. This
main result is given in theorem 4.2. It is the corner-stone for getting a theoretical formula for bounding
the error in the estimated eigenvectors in the high-dimensional case. (In the lower-dimensional case, we
had more explicit stuff, where we did not just bound the error but where able to describe explicitly the
asymptotic distribution of the coordinates of the error vector in section 3).
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Theorem 4.2 Let A and E to symmetric n × n matrices and assume that |E| ≤ ε. Assume that all
eigenvalues are unique so that λ1 > λ2 > . . . > λn be the eigenvalues of A. Let λ∗1 ≥ λ∗2 ≥ . . . λ∗n be the
eigenvalues of A+E. Let ~µ be the eigenvector of A with eigenvalue λ1 and let ∆~µ denote the change in
eigenvector. This means that ~µ + ∆~µ is the eigenvector of A + E corresponding to λ∗1. We also assume
that ~µ+ ∆~µ has length 1 and ∆~µ is perpendicular to ~µ. In this case, provided that

ε ≤ λ1 − λ2

2
,

we have
|∆~µ| ≤ 2ε

λ1 − λ2

Proof. From equation 3.5 we find:

(A− Iλ1)∆~µ = −E(~µ+ ∆~µ) + ∆λ(~µ+ ∆~µ). (4.2)

Now we assume that
|~µ+ ∆~µ| = 1.

We can do this because eigenvectors are only defined up to a scalar. So, to determinate the amplitude
by which they change we need to normalize them. (Otherwise we could just multiply them with a very
big number, and then any change if small would appear big in norm). Hence, since the spectral norm of
E is less than ε we find that

|E(~µ+ ∆~µ)| ≤ ε (4.3)

By theorem 4.1, we know that |∆λ| ≤ ε. This then implies that

|∆λ(~µ+ ∆~µ)| ≤ ε (4.4)

Taking the Euclidean norm on both sides of equation 3.5, yields:

|(A− Iλ1)∆~µ| = |E(~µ+ ∆~µ) + ∆λ(~µ+ ∆~µ)| ≤ |E(~µ+ ∆~µ)| + |∆λ(~µ+ ∆~µ)| ≤ ε+ ε = 2ε (4.5)

where for the last inequality above we used inequalities 4.3 and 4.4. Now, we took ∆~µ to be in the plane
orthogonal to ~mu. Recall when we work in the basis given by the eigenvectors of A, we find that (A−Iλ1)
is a diagonal matrix given by

A− λ1I =


0 0 0 0 . . . 0
0 λ2 − λ1 0 0 . . . 0
0 0 λ3 − λ1 0 . . . 0
. . .
0 0 0 0 . . . λn − λ1


and the vector

∆~µ = (0,∆µ2,∆µ3, . . . ,∆µn)T .

Now, the eigenvalues where taken in decreasing order: λ1 ≥ λ2 ≥ . . . ≥ λn. It follows that in the matrix
A− λ1I the smallest absolute value of a non-zero entry in the diagonal is λ1 − λ2. The vector ∆~µ is not
affected by the non-zero entry, since its first entry is 0. And hence

(λ1 − λ2)|∆~µ| ≤ |(A− λ1I)∆~µ|

Applying the last inequality above to 4.5, finally yields the desired result:

|∆~µ| ≤ 2ε
λ1 − λ2

.
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4.2 Bounds for the spectral norm of the perturbation matrix :
simplified case of independent entries above the diagonal.

The next question is how to bound the spectral norm of the symmetric error matrix E in our applications,
here to covariance matrix estimation. We assume that all the entries of E have expectation 0.
Recall that in our low-dimensional case we had found that asymptotically E = ˆCOV [ ~X − COV [ ~X]
behaves asymptotically like

E = ˆCOV [ ~X]− COV [ ~X] ≈ 1√
n

 σX2N11 σXσYN12 σXσZN13

σY σXN21 σY 2N22 σY σZN23

σZσXN31 σZσYN32 σZ2N33

 (4.6)

where the matrix on the right side of the last equation above has independent normal entries above the
diagonal and Nij are i.i.d. for i ≤ j ≤ p standard normal. Let us first assume that all the σ’s are
equal to 1. And let us assume that instead of three dimensions we have p dimension. Then, for such a
symmetric matrix of i.i.d. standard normal entries above the diagonal the spectral norm can be bound
in a simple way. Now, the actual estimated covariance matrix is slightly more complicated than a matrix
of independent entries above the diagonal, so we will treat that case only in the next subsection. But,
for understanding the method of bounding the spectral norm of the perturbation it is best to start with
a symmetric perturbation matrix which consists of independent entries above the diagonal. Later, in the
next section, we will see that to view the estimated covariance matrix as a matrix of independent normal
entries above the diagonal, can be a good approximation when the number of samples is several times
bigger than the dimension of the vectors considered. This approximation leads however to a complete
misunderstanding of what is going on when the number of samples is strictly less than the dimension of
the vectors. In that case, the estimated covariance matrix is defective, whilst a matrix with independent
normal entries above the diagonal has always full rank!
So, in this current subsection we consider symmetric matrices with independent normal entries above the
diagonal. The technique to bound the perturbation’s spectral norm is less opaque for symmetric matrices
with i.i.d. entries above the diagonal, than if we use righatway the true estimated covariance matrix.
So, we have such a symmetric matrix E with all entries above the diagonal independent normal. Let us
assume to start with that all the entries are standard normal. Take now ~µ = (µ1, µ2, . . . , µp)T to be a
vector of Euclidean length 1:

|~µ| = µ2
1 + µ2

2 + . . .+ µ2
p = 1

Let us consider
~µT · E · ~µ =

∑
ij

Eijµiµj .

This expression has expectation 0. Let us calculate the variance then:

V AR[~µT · E · ~µ] = V AR[
∑
ij

Eijµiµj ] =

= V AR[
∑
i>j

2Eijµiµj +
∑
i

Eiiµ
2
i ] =

∑
i>j

4V AR[Eij ]µ2
iµ

2
j +

∑
i

V AR[Eii]µ4
i =

=
∑
i,j

2µ2
iµ

2
j −

∑
i

2µ4
i +

∑
i

µ4
i =

= 2
∑
i

µ2
i

∑
j

µ2
j −

∑
i

µ4
i = 2−

∑
i

µ4
i ≤ 2.

So, we know now that ~µTE~µ is a normal with expectation 0 and standard deviation less than 2 for
~µ ∈ Sp−1. Our goal here is to bound the spectral norm of E, which is the maximum value of ~µTE~µ
when ~µ ranges over Sp−1. The good news is that to find the order of magnitude of that maximum in the
present case we need only find the maximum over a ε-net of Sp−1. A set C is called an ε-net of a set B
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in a metric space if for each point x of B there is a point y of C so that d(x, y) ≤ ε. Let us next give the
lemma which shows how we use ε-nets to find the order of magnitude of the maximum we are interested
in:

Lemma 4.1 Let ε > 0 and let E be a symmetric p × p-matrix. Then, Nε ⊂ Sp−1 be a ε-net of Sp−1.
Then,

|E| ≤ 1
1− 2ε

max
~µ∈Nε

~µTE~µ

Proof. Let ~x be the unit vector so that
~xTE~x = |E|

In other words ~x is the eigenvector with biggest eigenvalue. Let ~y be a vector from the ε-net Nε which is
not futher from ~y than a Euclidian distance ε. Let us denote by ~ε the difference:

~ε = ~x− ~y.

Then by definition the Euclidian norm of ~ε is less or equal to ε. Now, we have

|E| = (~y + ~ε)T · E(~y + ~ε) = ~yTE~y + ~εE~x+ ~yE~ε ≤ ~yTE~y + 2|E|ε

Taking the maximum for ~y over Nε of the last equation above yields:

|E| ≤ sup
~y∈Nε

~yTE~y + 2|E|ε

and hence
|E| ≤ 1

1− 2ε
sup
~y∈Nε

~yTE~y.

This finishes this proof.

So, now we know that in order to figure out the order of magnitude of the spectral norm of E, it is
enough to determine the maximum of ~uTE~u over a ε-net of the unit sphere Sp−1. Now, how big such
a maximum can get may depend on the criminality of the ε-net. So, we are interested in the minimal
possible criminality of a ε-net of Sp−1. That minimal criminality will be called the covering number of
Sp−1.

Lemma 4.2 Let N p
ε be a ε-net with minimal criminality. So, |N p

ε | is the covering number of Sp−1. We
have the following upper bound

covering number of Sp−1 = |N p
ε | ≤

(
1 +

2

ε

)p

(4.7)

Proof. Let us cover the surface of the unity sphere by adding ball of radius ε > 0 one after another.
We place the center of the next ball in a place which is not covered. This way the centers of the balls
are all away from each other by strictly more than ε. So, if we reduce the size of each of these balls by
a factor 0.5 then they do not longer intersect. Let N denote the cardinality of the covering obtained
by successively adding balls with centers located in the non-covered area. Clearly Nn

ε ≤ N . But, the
reduced balls of the covering, are all contained in the ball centered at the origin and with diameter 1 + ε

2 .
Since they don’t intersect, we find the the volume they cover must be less than the volume of the ball of
radius 1 + ε

2 . This leads to

N ·Bp( ε
2

) ≤ Bp(1 +
ε

2
)

and hence
N · ( ε

2
)pB(1) ≤ (1 +

ε

2
)pB(1)

26



which implies

N ≤
(

1 +
2
ε

)p
.

Hence, since N is bigger or equal to N p
ε , this implies inequality 4.7.

So finding the order of magnitude of the spectral norm of E boils down, to figuring out the maximum of
the expression

~µTE~µ (4.8)

where ~µ ranges over a ε-net of Sp−1. Expression 4.8 is a normal random variable with expectation 0 and
standard deviation less or equal to 2. Such a variable hence most of the times takes values between −4
and 4. However the maximum we consider will be of a much bigger order. The reason is that we consider
many such variables, and hence, with many variables, the odds are that at least some of them will be
exceptionally big. To quantify this phenomena we need to determine the order of the probability for a
normal random variable be big. This is the content of the next lemma:

Lemma 4.3 Let N (0, 1) be a standard normal. Let s > 0. Then, we have

P (N (0, 1) ≥ s) ≤ 0.5 · exp(−s2/2).

Proof. Let s > 0. We have

P (N (0, 1) ≥ s) =
∫ ∞
s

exp(−x2/2)√
2π

dx =
∫ ∞

0

exp(−(s+ y)2/2)√
2π

dy (4.9)

where to obtain the last equation above we operated the change of variable x = s+ y. Now, for s, y > 0
we have

−(s+ y)2 ≤ −s2 − y2

This implies that the right most side of the chain of equations 4.9, is less than∫ ∞
0

exp(−(s+ y)2/2)√
2π

dy ≤ exp(−s2/2)
∫ ∞

0

exp(−y2/2√
2π

dy = exp(−s2/2)·P (N (0, 1) ≥ 0) = 0.5 exp(−s2/2)

The last equation together with 4.9 finishes to prove that

P (N (0, 1) ≥ s) ≤ 0.5 exp(−s2/2).

We are now ready to explain why a symmetric p×p-matrix E with standard normal entries which are
independent above the diagonal has spectral norm of order

√
p times constant. The idea is very simple:

to get the order of magnitude of the spectral norm of E it is enough to find the order of magnitude of
the maximum of ~µTE~µ where ~µ ranges over a ε > 0-net Nε. We also need ε < 0.5, for guaranteeing that
the maximum over the ε-net of Sp−1 is the same order as the maximum over all of Sp−1.
Now, this is the same principle as when you are climbing in the mountains: if you climb often the risk of
an accident becomes bigger. so, for example if every time you climb the risk of an accident is 1/1000 and
you climb 10 times, then the overall risk of an accident happening during one of your climbs is going to
be 10/1000 = 0.01. Here, the vectors ~µ in our ε-net N p

ε are going to be the climbs. The accident will be
that ~µTE~µ is going to be exceptionally big. So, using the same formula as for the climbs:

P (An accident happens during one of the climbs) ≤ number of climbs×P (Accident happens during one climb).

So, instead of number of climbs we will have number of elements in the ε-net, hence the covering number.
So, applying this we find:

P (There is a ~µ in the ε-net so that ~µTE~µ ≥ t) ≤ |N p
ε | · P (~µTE~µ) ≤ 0.5(1 +

2
ε

)p · exp(−t2/8)
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where we used our upper bound 4.7 for the covering number and the following:

P (~µTE~µ ≥ t) ≤ P (2N (0, 1) ≥ t) ≤ 0.5 exp(−t2/8). (4.10)

The last inequality was derived from Lemma 4.3 and the fact that ~µTE~µ is normal with expectation 0
and standard deviation less or equal than 2.
Now, take for t the value

t0 :=
√
p ·
√

8 ln(1 +
2
ε

).

With that value t0 for t, the bound on the right side if inequality 4.10 is equal to 0.5. So, when you take
t to be even bigger than t0 by a quantity s, then the bound on the right side of inequality 4.10 becomes
less than 0.5 exp(−s2/2). This is the content of the next theorem:

Theorem 4.3 Let Eij for i, j ≤ p be standard normal variable so that Eij = Eji for all i, j ≤ p and so
that Eij for i ≤ j ≤ p is a collection of i.i.d. standard normal variables. Let E denote the p× p-matrix,
given by

E = (Eij)

Let ε be a constant so that 0 < ε < 0.5. Then, for every s ≥ 0 we have:

P (|E| ≥ constantε ×
√
p + s) ≤ 0.5 exp(−s2/2) (4.11)

where

constantε =

√
8 · ln(1 + 2

ε )

1− 2ε
.

We also have a lower bound. That is there exists c0, c1 > 0 not depending on p so that

P (|E| ≤ c0 ·
√
p) ≤ exp(−c1p)

Proof.
Now, the above lemma is for random matrices where all entries are standard normal. In reality, this is

seldom the case for our covariance-matrix-estimation-error. Rather, asymptotically, we get an expression
like in 4.6 where there are coefficients σiσj multiplying the standard normal variables. So, let us assume
that we have a matrix E with normal entries with 0 expectation and so that the entries above the diagonal
are independent of each other. Furthermore, we assume

Eij = N (0,
σiσj√
n

)

for all i, j ∈ {1, 2, . . . , p}. So, in other words, we have a sequence of non-random values: σ1 > σ2 > . . . >
σp and the entry Eij can be viewed as a standard normal time the constant σiσj/

√
n. So we have

E =
1√
n


σ1 0 0 . . . 0
0 σ2 0 . . . 0
0 0 σ3 . . . 0

. . .
0 0 0 . . . σp

 ·

N11 N12 N13 . . . N1p

N21 N22 N23 . . . N2p

N31 N32 N33 . . . N3p

. . .
Np1 Np2 Np3 . . . Npp

 ·


σ1 0 0 . . . 0
0 σ2 0 . . . 0
0 0 σ3 . . . 0

. . .
0 0 0 . . . σp


Where Nij with i ≤ j ≤ p are standard normal independent of each other and Nij = Nji for all i, j ≤ p.
Let Dσ denote the following diagonal matrix:

Dσ :=


σ1 0 0 . . . 0
0 σ2 0 . . . 0
0 0 σ3 . . . 0

. . .
0 0 0 . . . σp


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Let E∗ denote the symmetric matrix with the normalized normal entries:

E∗ =


N11 N12 N13 . . . N1p

N21 N22 N23 . . . N2p

N31 N32 N33 . . . N3p

. . .
Np1 Np2 Np3 . . . Npp


Then, we have for any ~µ ∈ Sp−1, that

|~µTE~µ| = |~µTDE∗D~µ| = |~µD|2 ·
∣∣∣∣ ~µT|~µD| · E∗ · ~µ

|~µD|

∣∣∣∣ ≤ |~µD|2 · |E∗| (4.12)

where we used the fact that the renormalized vector

~y :=
~µD

|~µD|

has norm 1, and hence ~yTE∗~y is less than the spectral norm |E∗| of E∗. But, clearly, since ~µ has norm
1, we get that |~µD| ≤ σ1. Applying the last inequality to 4.12, yields,

|~µTE~µ| ≤ σ2
1 |E∗|

Taking the supremum of the last inequality for ~µ ranging over Sp−1 yields:

|E| ≤ |E∗|σ2
1 .

Hence,
|E∗| ≤ constantε ×

√
p + s

implies
|E| ≤ σ2

1(constantε ×
√
p + s).

In terms of the probabilities we thus have

P (|E| ≥ σ2
1(constantε ×

√
p + s)) ≤ P(|E∗| ≥ constantε ×

√
p + s) (4.13)

We can now use the bound 4.11, but apply it to the matrix E∗ instead of E, since now the matrix E∗ is
the one with the standard normal entries. Together with the inequality 4.13 we find

P (P (|E| ≥ σ2
1(constantε ×

√
p + s)) ≤ exp(−s2/2).

The same approach leads to a similar lower bound. So, this gives us the next theorem:

Theorem 4.4 Let E be a p × p symmetric matrix with zero expectation and normal entries which are
independent of each other above the diagonal. Assume also that σ1 > σ2 > . . . > σp ≥ 0 are non-random
numbers and assume that Eij has standard deviation equal to σiσj√

n
for all i, j ∈ {1, 2, . . . , p}. Then we

have

P (|E| ≥ σ2
1√
n

(constantε ×
√
p + s)) ≤ exp(−s2/2)

and

P (|E| ≤
σ2
pc0√
n
· √p) ≤ exp(−c1p)

The above corrolarry gives the correct order of the spectral norm of |E| up to a constant when σ1 and
σp are of the same order. (Equal to each other up to a constant). Now, in many situations this will not
be the case: we saw in our simple models to explain factor analysis that there will be a few eigenvalues
of much bigger order then the other eigenvalues. Non-the-less, the above corollary will be very useful to
calculating the exact order in the realistic case where there are eigenvalues of different order. This will
be seen in subsection 4.5.
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4.3 Precise proof for bounds for the spectral norm of the per-
turbation matrix when estimating the covariance matrix

Let us assume that ~X = (X1, X2, . . . , Xp) is a normal vector with independent components and 0 expec-
tation

E[X1] = E[X2] = . . . = E[Xp] = 0.

. We can always make a change of coordinates to get independent components. Now, we assume that we
have many independent copies of the vector ~X Hence,

~X, ~X1, ~X2, . . .

is an i.i.d. sequence of normal vectors where

~Xi = (Xi1, Xi2, . . . , Xip).

Let X denotes the n × p random matrix having its i-th row equal to ~Xi. So, we have a sample of size
n of random vectors of dimension p. We use this sample to estimate the covariance matrix. Since, the
expectation is 0, we have

C0V [Xi, Xj ] = E[XiXj ]

for all i, j ≤ p. Hence, we can use as estimate of the covariance of Xi with Xj , the following:

ˆCOV (Xi, Xj) =
X1iX1j +X2iX2j + . . .+XniXnj

n
.

for any pair i, j ≤ p. So, estimating each entry of the covariance matrix of ~X, gives our estimate of the
covariance matrix which can also be expressed in terms of the matrix X as follows:

ˆCOV [ ~X] = ( ˆCOV (Xi, Xj))i,j =
1
n
XtX.

In the previous section on the “small dimensional case” (Section 3), we took p fixed and let n go to
infinity. Here, we will be in the case, where we let n and p both go to infinity at the same time. Typically
we assume that there is a constant C so that n = Cp. Now, if C < 1 that is n < p then the estimated
covariance matrix does not have full rank. Thus, if for example we would be in the portfolio problem,
and we would use the estimated covariance matrix instead of the real one with n < p we would find
erornously an investement oportunity with 0 estimated variance.....
Now, in the Section 3 on the “low dimensional case”, we saw that the approximation error of the random
matrix behaves roughly like an symmetric matrix with independent normal entries above the diagonal.
Such a matrix has full rank, and hence “behaves entirely different” from the estimated covariance matrix
in the case when n < p. But, for a constant C not depending on n which is quite a bit bigger than 1, it
is our understanding that if we put n = Cp, there is almost no difference for practical puposes between
the symmetric matrix with with independent normal entries like given in formula 3.2. and reality. So
for practical purposes, if n = Cp and C >> 1, then (in our understanding) most of the times you can
assume that the estimated covariance matrix is obtrained from the original one by adding a symmetric
matrix with i.i.d. normal entries above the diagonal. But, this is not a proof, but so far a heuristic
argument. So, in this current section we are going to prove a formula like we obtained in the previous
subsection bounding the spectral norm of the estimation error for the covariance matrix. The idea is
very similar, but slightly more complicated though the approach is the same. We start with assuming
that all the entries of the random vector have same standard deviation equal to 1. (Until recently for the
case when the entries had different standard deviation, the order of magnitude of the spectral norm of
the covariance matrix approximation error was not known.....and still to this day, there is a forumal by
Koltschinksii and Lounici which is only up to a constant the constant being not known. We are currently
working on this.) So, let us start with the case where all the components have standard deviation 1:
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Theorem 4.5 Let X be a random n × p-matrix with i.i.d. standard normal entries. Let E be the
estimation error of the covariance matrix:

E :=
1
n
Xt ·X − I

where I is the p × p identity matrix. Then there exists a constant c3 > 0 not depending on p so that if
n ≥ c3p, we have that, with high probability, the order of the spectral norm of the error-matrix is no more
than

√
p/
√
n times a constant. let ε be a constant such that 0 < ε < 0.5.

Let us formulate our theorem more precisely:
there exists c3 > 0 not depending on p, so that if n ≥ c3p we have:

P

(
|E| ≥ c3

1− 2ε
·
√
p
√
n

)
≤ exp(−p)

Proof. We are going to bound the spectral norm of the matrix

n · E = XtX − nI (4.14)

where I represents the p×p identity matrix. So we want to show that the matrix E has typically spectral
norm no bigger than order

√
p/
√
n times a constant. So, this means we want to prove for the symmetric

matrix n ·E that typically the spectral norm is not bigger than
√
p
√
n. As, we did in the previous section,

we use the fact that for a symmetric matrix, to find the order of the spectral norm, we work with a ε-net
N p
ε of minimum cardinality. So, let N p

ε ⊂ Sp−1 be such a set. Thus we have according to formula 4.7 in
Lemma 4.2, that

|N p
ε | ≤

(
1 +

2
ε

)p
(4.15)

Let now ~µ = (µ1, µ2, . . . , µp) be a vector of N p
ε . Hence, ~µ is a Euclidian unit vector. So, the spectral

norm of nE is given by

|nE| = max
~µ∈Sp−1

|~µT (nE)~µ| = max
~µ∈Sp−1

|~µT
(
XTX − nI

)
~µ| (4.16)

Again, according to Lemma 4.1, when we take the maximum above for ~µ ranging over the ε-net N p
ε ,

instead of all of Sp−1 we get the same order of magnitude up to a constant. So, we are going to find a
likely bound for the maximum like in ??, but where ~µ ranges over the ε-net N p

ε instead of Sp−1. So, for
one ~µ ∈ Sp−1, we need to bound the probability that

~µT (XTX − nI)~µ = ~µTXTX~µ− n~µT ~µ (4.17)

is big. Now, note that
E[XtX] = nI

and hence
E[~µT (XTX)~µ] = n~µT ~µ

So, the expression 4.17 is obtained from taking the random number

~µTXTX~µ (4.18)

and subtracting its expectation from it. Now, expression 4.18 is symply the Euclidian norm squared for
the random vector X~µ. But, this random vector consists of n independent standard normal entries so we
can write:

X~µ = (N1,N2, . . . ,Nn)T

where N1,N2, . . . ,Nn are i.i.d. standard normal entries. So expression 4.18 is a chi-square variable with
n degrees of freedom:

~µTXTX~µ = N 2
1 +N 2

2 + . . .+N 2
n
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subtracting its expectation amounts to the same as subtracting from each N 2
1 one unit. So, we find:

~µTXTX~µ− n~µTX~µ = ~µTXTX~µ− E[~µTXTX~µ] = (N 2
1 − 1) + (N 2

2 − 1) + . . .+ (N 2
n − 1). (4.19)

The variables N 2
i don’t behave like normal in terms of their tail. Instead, they are merely subexponential.

So, we can use the large deviation result below in Lemma 4.4 for summs of centered subexponential
variables. We can apply thus Lemma 4.4 with K = 4. Let Yi = (X2

i − 1) With the help of equation 4.19,
we find:

P (~µTE~µ ≥ c3
√
p
√
n

) = P (~µTXTX~µ− n~µT ~µ ≥ c3
√
n
√
p) = (4.20)

P (Y1 + Y2 + . . .+ Yn ≥ c3n ·
√
p)
√
n

) ≤ (4.21)

≤ 2 exp(−c · c3(n(
√
p

4
√
n

)2) = 2 exp(−c · c3
p

16
)

(4.22)

where the very last inequality above was obtained with the help of Lemma 4.4 takine ε to be

ε :=
√
p
√
n
.

Note that according to Lemma 4.4, the last inequality above only holds when ε2/K2 ≤ 1. (Note that
when ε/K > 1, then the formula for the bound from Lemma 4.4 changes and is no longer useful for us.)
So, in other words we need n ≥ K2p for our inequality to hold. This is to say that we take n larger than
a certain constant number of times the dimension p of the space.....
Now, to find the probability upper bound for that

~µTE~µ ≤ c2
√
n
√
p

holds for all ~µ in our ε-net N p
ε we simply need to multiply the probability bound for one such ~µ by the

upper bound for the number of elements in the ε-net. So, we get:

P (∃~µ ∈ N p
ε , |~µTE~µ| ≥ c3

√
n
√
p)) ≤ |N p

ε | · exp(−c · c3
p

16
) ≤ (1 +

2
ε

)p exp(−c · c3
16
· p)

the bound on the right side of the last equation is less than exp(−p) as soon as c3 is big enough. More
precisely, just take c3 so that it satisfies

c3 >
1
c

(
16 ln(1 +

2
ε

) + 16
)

and then the bound becomes less or equal to 2 exp(−p). By lemma 4.1 when the maximum of |~µTE~µ| is
bound for ~µ ranging over the ε-net N p

ε , then we have to multiply that bound by 1
1−2ε in order to find a

bound for the maximum with ~µ ranging over all of Sp−1, This finishes the proof. then

heini

Lemma 4.4 Let Y1, Y2, . . . be i.i.d. sub-exponential variables with parameter K and expectation 0, we
have: for every ε > 0, we have:

P (
n∑
i=1

Yi| ≥ εn) ≤ 2 exp(−cmin
(
ε2

K2
,
ε

K

)
· n).

Proof.
compare the last lemma above to Azuma-Hoeffding for a sum of i.i.d.:
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Lemma 4.5 let Y1, Y2, . . . be i.i.d. random variables with 0 expecation which are bounded by the number
a:

P (|Yi| ≤ a) = 1.

Then, we have

P (|Y1 + Y2 + . . .+ Yn| ≥ εn) ≤ 2 exp(−nε
2

a2
).

Now above we have found the order for approximation error of the covariance matrix to be
√
p/
√
n

times constant. yBut this bound was only valid, when we deal with normal random vectors with standard
deviation one. Until recently, there was no tide bound for the order of magnitude of the spectral norm of
the approximation error when the standard deviations are of different orders. Recently, Koltschinksii and
klounici where able to obtain a fomula using a Talagrand-measure concentration inequality. However,
they do not provide a way to determine, a constant in front of their order, but merely give the fact that
such a universal constant whic does not depend on p exists. So, let us mention what there order is: For
this we still have

~X, ~X1, ~X2, . . . , ~Xn

is an i.i.d. sequence of normal random vectors with expectation 0. As before X is a n × p-matrix with
independent normal entries so that the i-th row of X is equal to ~Xi. But, this time the entries of X are
independent but not i.i.d. They are merely i.i.d. in each column. More precisely we assume that we have
σ1 > σ2 > . . . > σp are constants and the j-th entry of the random vector ~Xi has standard deviation σj .
In other words, all entries in column j of the random matrix X are i.i.d. normal with standard deviation
equal to σj . for that situation, the order found by Koltschinsky and Klounici for the spectral norm of
the approximation error matrix of the covariance matrix is given by the formula:

σ1

√
σ2

1 + σ2
2 + . . .+ σ2

p

which is the order up to a constant. But, again they do not provide a way to determine a constant to
put in front of that order, but merely provide an existence proof. Let us state their result in a theorem:

Theorem 4.6

4.4 Precise coordinate-wise understanding of the error made in
estimating the eigenvectors of covariance matrix in high-
dimensional case

Equation 3.5 was used to find an asymptotic expression for the error in estimating the eigenvectors of the
covariance matrix in the low dimensional case. That meant that we have p fixed and let n go to infinity.
In this subsection we are finding means of obtaining the same asymptotic formula but when both p and
n go to infinity at the same time. More precisely, we are interested in situations where there is a constant
C > 0 and n = Cp. When the dimension is not hold fixed as n goes to infinity, but rather grows at
the same time, then things become different. That is the approximation 3.6 which was obtained from
equation 3.5 by leaving out two smaller order terms is not apriori valid: small terms can not necessarily
be left out when their number grows to infinity. So, the matrix term which are left out because each of
the entry goes to 0 faster than 1/

√
n can no longer be left out apriori. (since they are part of a matrix

whos dimension goes to infinity. And a matrix with small entries but high dimension could potentially
have a large spectral norm and can hence not be automatically discarded)
So in the case the dimension p is not fixed, we can not leave out apriori the two “smaller order” terms
of equation 3.5. They might be small only in the low dimensional case. So, instead we are taking all of
equation 3.5 at first, without leaving out anything. So, we assume a three dimensional random vector with
independent normal entries ~X = (X,Y, Z) having each expectation 0. We take a three dimensional vector
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~X to simplify notation, but the formulas obtained will remain valid for a p dimensional random vector
with independent components. We assume that the standard deviations are decreasing: σX > σY > σZ .
The covariance matrix we consider is hence

COV [ ~X] =

 σ2
X 0 0
0 σ2

Y 0
0 0 σ2

Z

 (4.23)

which corresponds to the matrix A in formula 3.5. Now, we want at first an exact formula and not an
approximation. So, instead of Nij we will have the exact values denoted by N̂ij := 1

σiσj
Eij for i 6= j.

And N̂ii = 1
σ
X2
i

Eii where X1 = X,X2 = Y,X3 = Z. Again, as before here E denotes the noise matrix

E = ˆCOV [ ~X]− COV [ ~X],

and Eij is the ij-th entry of that covariance-estimation-error-matrix. So, now we can write equation 3.5
with A being the covariance matrix 4.23. We consider the eigenvector ~µ = (1, 0, 0) of A with eigenvalue
σ2
X . So, without leaving out terms, we find instead of the approximation 3.6, the following exact equation:

 0 0 0
0 σ2

Y − σ2
X −∆λ 0

0 0 σ2
Z − σ2

X −∆λ

 0
∆µY
∆µZ

 =

=
−1√
n

 σX2N̂11

σXσY N̂21

σXσZN̂31

+

 ∆λ
0
0

− 1√
n

 0 0 0
0 σY 2N̂22 σY σZN̂23

0 σY σZN̂32 σZ2N̂33

 0
∆µY
∆µZ

+

− 1√
n

 0 σXσY N̂12 σXσZN̂13

0 0 0
0 0 0

 0
∆µY
∆µZ


the above equation for matrices can be “separated into two parts”. First the single equation for ∆λ:

∆λ =
1√
n
σX2N̂11 +

σX√
n

(σY N̂12∆µY + σZN̂13∆µZ)

and then the p− 1 dimensional equation for ∆~µ given as follows:(
σ2
Y − σ2

X −∆λ 0
0 σ2

Z − σ2
X −∆λ

)(
∆µY
∆µZ

)
=

=
−1√
n

(
σXσY N̂21

σXσZN̂31

)
− 1√

n

(
σY 2N̂22 σY σZN̂23

σY σZN̂32 σZ2N̂33

)(
∆µY
∆µZ

)
If ∆λ is given we can solve the above equation for ∆~µ = (∆µY ,∆µZ) to find:

∆~µ =
(

∆µY
∆µZ

)
=(

I − −1√
n

(
1

σ2
Y −σ2

X−∆λ
0

0 1
σ2
Z−σ2

X−∆λ

)
·
(

σY 2N̂22 σY σZN̂23

σY σZN̂32 σZ2N̂33

))−1

· −1√
n

(
σXσY

σ2
Y −σ2

X−∆λ
N̂21

σXσZ
σ2
Z−σ2

X−∆λ
N̂31

)

where I is the identity matrix. Now, let D be the matrix

D :=
−1√
n

(
1

σ2
Y −σ2

X−∆λ
0

0 1
σ2
Z−σ2

X−∆λ

)
·
(

σY 2N̂22 σY σZN̂23

σY σZN̂32 σZ2N̂33

)
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We thus have

∆~µ =
(

∆µY
∆µZ

)
= − 1√

n
(I −D)−1

(
σXσY

σ2
Y −σ2

X−∆λ
N̂21

σXσZ
σ2
Z−σ2

X−∆λ
N̂31

)
Now when the spectral norm of D is less than 1, then we get the formual:

(I −D)−1 = I +D +D2 +D3 + . . .

In that case, (I −D)−1 can be approximated by I and we find

∆~µ =
(

∆µY
∆µZ

)
≈ − 1√

n

(
σXσY

σ2
Y −σ2

X−∆λ
N̂21

σXσZ
σ2
Z−σ2

X−∆λ
N̂31

)

with the relative error in that approximation being less than |D|
1−|D| . Note that this is our formula (with

additional ∆λ) from the finite dimensional approximation). We can now rewrite the above formula for a
general p dimensional random vector: ~X = (X1, X2, . . . , Xp) with independent normal entries all having
expectation 0. Let σi denote the standard deviation of Xi and we assume σ1 > σ2 > . . . > σp. Let E be
the p× p covariance-matrix-estimation-error-matrix:

E = ˆCOV [ ~X]− COV [ ~X].

Hence, the covariance matrix is the p× p-matrix, given by:

COV [ ~X] =


σ2

1 0 0 . . . 0
0 σ2

2 0 . . . 0
0 0 σ2

3 . . . 0
. . .

0 0 0 . . . σ2
p


and ~µ is the eigenvector of the above covariance matrix ~µ = (1, 0, 0, 0, . . . , 0) with eigenvalue σ2

1 . Let
E1 denote the (p − 1) × (p − 1)-matrix obtained from E by deleting the first row and the first column.
We can now write the formula for the change in the eigenvector ~µ when instead of taking the covariance
matrix, we take its estimate:

∆~µ =


∆µ2

∆µ3

. . .
∆µp

 = − 1√
n

(I −D)−1


σ1σ2

σ2
2−σ2

1−∆λ
N̂21

σ1σ3
σ2
3−σ2

1−∆λ
N̂31

. . .
σ1σp

σ2
p−σ2

1−∆λ
N̂p1


where N̂ij :=

√
n
Eij
σiσj

for all i 6= j with i, j ≤ p and

D := −


1

σ2
2−σ2

1−∆λ
0 0 . . . 0

0 1
σ2
3−σ2

1−∆λ
0 . . . 0

0 0 1
σ2
4−σ2

1−∆λ
. . . 0
. . .

0 0 0 . . . 1
σ2
p−σ2

1−∆λ

 · E1

So, we get the same formula for the approximation of the eigenvector change as soon as the spectral
norm of D is quite a bit less than 1. This is the case (sufficient condition, but not necessarily necessary
condition) when the number of sample is of order large constant times:

(σ2
1 − σ2

2)2 · σ2
2 · (σ2

2 + σ2
3 + . . .+ σ2

p)
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4.5 Bounds for the spectral norm of the estimation error in the
covariance matrix for models with eigenvalues of different
orders

5 Multivariate normal distribution

We will study the multivariate normal distribution. Assume for example H be the height of a human being
and R the ratio between the high and the hip width. The two variables might well be independent of each
other. Furthermore, if we believe that the height of an individual is due to a sum of little independent
contributions (food habits, genetics, illnesses,...) then according to the central limit theorem, H should
be approximately normal. Same thing for R. Let µH , resp. µR be the expectation of H and or R
respectively. Let σH and σR be the respective standard deviation. Then, the probability density function
of H is given by

fH(x) =
1√

2πσH
exp(−(x− µH)2/2σ2

H)

whilst the probability density function of R is given by

fR(x) =
1√

2πσR
exp(−(x− µR)2/2σ2

R)

The joint density function of two variables which are independent of each other is given by their product.
Hence,

f(H,R)(x1, x2) = fH(x1) · fR(x2) =
1

2πσH · σR
exp(−0.5(

(x1 − µH)2

σ2
H

+
(x2 − µR)2

σ2
R

))

Let us define the vector: ~x = (x1, x2)T where T is the symbol for transpose. Furthermore, let ~X be the
random vector equal to (R,H)T / Since, we assume H and R to be independent of each other, we find

that the covariance matrix of ~X =
(
x1

x2

)
is

Σ ~X :=
(
COV (H,H) COV (H,R)
COV (R,H) COV (R,R)

)
=
(
σ2
H 0
0 σ2

R

)
and hence the joint density of (H,R) can also be written in matrix/vector notation as:

f(H,R)(~x) =
1

2πσH · σR
exp(−0.5(~x− ~µ)TΣ−1

~X
(~x− ~µ)) (5.1)

where
~µ = (~µH , ~µR)T

and Σ−1
~X

designates the inverse of the covariance matrix of the random vector (H,R)T .
So far we have considered the case of two variables which are independent and each of them is normal.
Often times, like in discriminant analysis we will consider all linear combination of two variables. For
example we may have ~X = (H,B)T , but consider different linear combinations of the entries of ~X. We
could have

Za = a1H + a2B = (a1, a2) · ~X
and

Zb = b1H + b2B = (b1, b2) · ~X,

where the coefficients a1, a2, b1, b2 are fixed non-random. Let ~Z denote the random vector:

~Z =
(
Za
Zb

)
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Then, in matrix notation, we have
~Z = A ~X

where

A =
(
a1 a2

b1 b2

)
.

Equivalently we can write
~X = A−1 ~Z,

where A−1 is the inverse of the matrix A. Now we can apply the rule for finding the probability density
of a random vector ~Z given the density function of a random vector ~X, where ~Z is a linear transform of
~X. This rule says that the probability density of ~Z can be obtained from the probability density of ~X.
For, this we just take the density function of ~X and replace ~x by A−1~z. We also have to divide by the
determinant of A. This then yields

f~Z(~z) =
1

det(A)
f ~X(A−1~z) (5.2)

Now together 5.2 and 5.1, yield

f~Z(~z) =
1

2π det(A)σHσR
exp(−0.5(~z − ~µz)TA−1TΣ−1

~X
A−1(~Z − ~µz) (5.3)

where
~µZ = E[~Z] = E[A ~X] = AE[ ~X] = A~µ.

Note that the covariance matrix of ~Z is given by

Σ~Z = COV [~Z] = E[(~Z − E[~Z])(~Z − E[~Z])T ] = E[A( ~X − E[ ~X])( ~X − E[ ~X])TAT ] =

= AE[( ~X − E[ ~X])( ~X − E[ ~X])T ]AT = AΣ ~XA
T

and since (AB)−1 = B−1A−1, we find

Σ−1
~Z

= (AΣ ~XA
T )−1 = A−1TΣ−1

~X
A−1.

The last equation applied to 5.3 yields

f~Z(~z) =
1

2π det(A)σHσR
exp(−0.5(~z − µ~z)TΣ−1

~z (~z − ~µz)). (5.4)

Now note that det(Σ ~X) = σ2
R · σ2

H . Furthermore the determinant of a product is the product of the
determinants and the transpose does not change the determinant:

det(Σ~Z) = det(AΣ ~XA
T ) = det(A) det(Σ ~X) det(AT ) = det(A)2σ2

Hσ
2
R.

The last equation can be used in 5.4 to find the final formula for the probability density of ~Z:

f~Z(~z) =
1

2π
√
det(Σ~Z)

exp(−0.5(~z − µ~z)TΣ−1
~z (~z − ~µz)).

this shows that the probability density of the vector ~Z depends only on the covariance matrix and the
expectation and nothing else! The same formula for the density would hold if instead of a vector with 2
entires, the vector ~Z would have n entries. This means, that if a vector is a linear transform of a vector
with independent normal entries, then the distribution depends only on the covariance matrix and the
expectation. Such linear transform are called multivariate normal vectors. Let us give a precise definition:
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Definition 5.1 Let ~Z = (Z1, Z2, . . . , Zn) a random vector. Then ~Z is said to be normally or Gaussian
distributed if there exists a random vector (X1, X2, . . . , Xn) having independent normal entries and such
that there exists a n× n-matrix which is non-random such that ~Z = A ~X.

Immediate consequences are:

• Coefficients of a normal vector are normally distributed. This follows from the fact that the linear
combination of independent normals is again normal.

• Linear combinations of the components of a normal vector are normal again.

• The probability density of a normal vector depends only its covariance matrix and expectation.

5.1 Simple structure of conditional probability of normal vector

For any random variables we have that if X and Y are independent, then COV (X,Y ) = 0. But, in general
the reverse implication is not true: there are variables with covariance 0 which are not independent.
However, for normal variables when the covariance is 0, they must also be independence. This is the
content of the next lemmma:

Lemma 5.1 Let X and Y be jointly normal. Then if COV (X,Y ) = 0 we have that X and Y are
independent.

Proof. Assume that X and Y are jointly normal. Then X and Y both have a normal distribution so
that ~X = (X,Y ) is a normal vector. Let us simulate two independent normals N1 and N2. We take the
standard deviation and expectation of these two normals so that:

σN1 = σX , E[X] = E[N1]

and
σN2 = σY , E[Y ] = E[N2]

Note that then N1 and N∈ are jointly normal and hence

~N = (N1,N2)

is a normal vector. The covariance matrix of ~N is given by

COV [ ~N ] =
(
V AR[N1] 0

0 V AR[N2]

)
=
(
V AR[X 0]

0 V AR[Y ]

)
= COV [ ~X]

where we used the fact that the covariance of N1 and N2 must be 0 since they are independent of each
other. So, ~N and ~X have the same covariance matrix. They also have the same expectation. Since they
are both normal vectors they must have the same distribution. Indeed for normal vectors the distribution
only depends on the expectation and the covariance matrix. But, N1 and N2 are independent of each
other. Since, X and Y have the same joint distribution than N1 and N2, we find That X and Y must
also be independent of each other.

The above lemma allows to decompose a normal vector into independent parts. For this say ~X = (X,Y )
is a normal vector with 0 expectation. Let U be equal to

U = Y −X COV (X,Y )
COV (X,X)

.

Then we can see that U and X are uncorrelated:

COV (X,U) = COV (X,Y −X COV (X,Y )
COV (X,X)

) = COV (X,Y )− COV (X,X)
COV (X,Y )
COV (X,X)

= 0
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Hence, X and U have covariance 0, they must be independent. But, note that we can now write Y as

Y = U + aX

where a is the constant

a :=
COV (X,Y )
COV (X,X)

.

So basically this is to say, that Y is obtained from X, by multiplying X by a constant and adding
an independent normal part. This is a very simple “joint probability structure”. In non-normal joint
distributions, there can be way more complicated dependencies where the distribution of Y depends in a
very complicated manner on X. But for joint normal, the conditional distribution of Y given X is simple.
Thus, we have that there exists a non-random constant a which does not depend on x, so that:

L(Y |X = x) = ax+ L(N (0, σ2))

where L(Y |X = x) stands for the conditional distribution of Y given X = x and N (0, σ2) is a normal
random variable with expectation 0 and variance σ2. If we want to simulate the random vector (X,Y ),
we can thus first simulate X. Once we have the value x of X, we then simulate Y by simulating an
independent normal with expectation 0 and adding it to ax.
Let us think of an example: say X is the height of a human being and Y is the breadth of his/her
hip. Then, a would represent “a ratio between hip-breadth and height”. Then you could figure out
the expected hip-breadth of an individual if you know his/her height being x: the expected hip breadth
is then ax, and his actual hip breadth is obtained from there by adding a random error term U with
0 expectation. If there are different “types of body structures” in the population then obviously this
model does not apply. There could for example be five body types corresponding to five such ratios:
a1, a2, a3, a4, a5. To model the hip-breadth, given the height, we would first throw a five sided die to
determine the coefficient ai. Then we would add the random error term U , so as to get Y = aIx + U ,
where I ∈ {1, 2, 3, 4, 5} is the random variable corresponding to selecting the body type. When we
also select the coefficient a at random, then we do not have a joint normal distribution!
Instead we would have a mixture of normals. That means that given the coefficient ai,
the conditional distribution of the hip-breadth is normal. Hence, once the coefficient ai is
determined, then the hip breadth conditional on the height is normal.

In principal, we are going to decompose a sequence of jointly variables into independent parts. This is
the same idea as Graham Schmidt decomposition for vectors: say you have three (non-random) vectors
~x, ~y, ~z. Then one can find orthogonal unit vectors ~u1, ~u2, ~u3 so that:
I) ~x and ~u1 are co-linear: there exists a coefficient b11 so that ~x = b11~u1. Indeed, since ~u1 is a unit vector,

|~x| = |b11~u1| = |b11| · |~u1| = |b11|.

Hence, b11 is the renormalization coefficient for ~x.
II) There exist coefficients b21 and b22 so that

~y = b21~u1 + b22~u2. (5.5)

In other words, ~u2 corresponds to the direction of orthogonally projecting ~y onto the line defined by ~x.
The coefficient b21 is determined by multiplying equation 5.5 by ~u1 yielding

~y · ~u1 = b21~u1 · ~u1 = b21.

From there we determine ~u2 by first calculating

b22~u2 = ~y − b21~u1

and then remormalising the right side of the last equation above. This then yields ~u2. (Recall that
renormalizing simply means to divide by the norm of a vector. This corresponds to taking the vector of
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same direction but with length 1.)
III) There exists coefficients b31, b32, b33 so that

~z = b31~u1 + b32~u2 + b33~u3. (5.6)

These coefficients b31 can be determined by multiplying (dot product) equation 5.6 by ~u1:

~z · ~u1 = b31~u1 · ~u1 + b32~u2 · ~u1 + b33~u1 · ~u3 = b31~u1 · ~u1 = b31,

where we used that ~u1 is orthogonal to ~u2 and ~u3. Similarly b32 = ~z · ~u2. Once one has determined the
coefficients b31 and b32, then we get the direction of projecting ~z onto the plan spanned by ~x and ~y. This
direction is given as:

b33~u3 = ~z − b31~u1 + b32~y.

The coefficient b33 is then the norm of the expression on the right side of the last equation above and ~u3

is obtained by renormalizing ~z − b31~u1 + b32~y i.e. dividing that expression by its norm.

In matrix notation this leads to b11 0 0
b21 b22 0
b31 b32 b33

 ~u1

~u2

~u3

 =

 ~x
~y
~z


Next we will apply the same approach to our jointly normal random variables.

The covariance behaves like the dot product: it is bilinear, and positive. So, we can view it like a dot
product: uncorrelated random variables can be seen as orthogonal. Hence, we apply the same scheme as
with vectors to our random variables. So, let X, Y and Z be three jointly normal random variables with
expectation 0. Then, there exists three uncorrelated (and hence independent) standard normal variables
U1, U2, U3 so that there exists a lower triangular matrix B of non-random coefficients

B =

 b11 0 0
b21 b22 0
b31 b32 b33

 (5.7)

so that
b11U1 = X
b21U1 + b22U2 = Y
b31U1 + b32U2 + b33U3 = Z

(5.8)

To determine these coefficients proceed inductively. First b11 is simply equal to σX . (In other words,

U1 := X/σX (5.9)

. Note that dividing any random variable by its finite standard deviation, makes the standard deviation
equal to 1).
Then, take the covariance of the second equation with U1 yielding

b21COV (U1, U1) + b22COV (U2, U1) = COV (Y,U1)

and hence b21 = COV (Y,U1
COV (U1,U1) = COV (Y,U1). Having determine b21, we get that b22U2 can be determined

by the following equation:
b22U2 = Y − b21U1

From there U2 is determine by renormalizing b22U2, that is dividing by its standard deviation:

U2 =
Y − b21U1√

V AR[Y − b21U1]
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(Note that the variance is the covariance of the variable with itself. So, using equation 5.9 and the fact
that the variance is the covariance of the variable with itself, we get:

V AR[Y −b21U1] = V AR[Y − b21

σX
X] = COV (Y − b21

σX
X,Y − b21

σX
X) = COV (Y, Y )−2

b21

σX
COV (X,Y )+b21.)

The next step, is to determine b31 and b32 by taking the covariance with U1 resp. U2 of the equation
b31U1 + b32U2 + b33U3 = Z. With the fact that the Ui’s are uncorrelated to each other, we get

b31 = COV (Z,X) , b32 = COV (Y,U2).

Then b33U3 is determined by
b33U3 = Z − b31U1 + b32U2 (5.10)

and U3 is determine from there by renormalising:

U33 =
Z − b31U1 + b32U2√

V AR[Z − b31U1 + b32U2]

whilst b33 is the standard deviation of the right side of 5.10. So, we have in matrix notation:

B~U = ~X (5.11)

where ~U = (U1, U2, U3)T and ~X = (X,Y, Z)T . Also, the matrix B is given in 5.7. We can multiply both
sides of equation 5.11 by B−1 and obtain:

~U = A ~X (5.12)

where A designates the inverse B−1 of the matrix B. Again, A is lower-triangular. So, in other words
we have coefficients aij which are non random so that

U1 = a11X

U2 = a21X + a22Y

U3 = a31X + a32Y + a33Z

here

A =

 a11 0 0
a21 a22 0
a31 a32 a33


This means that if we know for example the values of X and Y , then Z is obtained by taking a linear
combination of these values and adding a normal error term with 0 expectation. This follows from the
equation:

Z =
1
a33

U3 −
a31

a33
X − a32

a33
Y.

so, if we know that X took as value x and Y took y, then Z is obtained by adding the independent
normal term U3

a33
to the linear combination

−a31

a33
x− a32

a33
y. (5.13)

This means that to simulate Z once we have simulated X and Y and obtained the values x and y for
them, we proceed as follows:
we simulate independently on what the values x and y are a normal with expectation 0 and standard
deviation 1/a33. Then we add this term to expression 5.13 in order to obtain a value for Z.

The same approach for normal random vectors with more than three entries. this is the the result of the
next lemma:
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Lemma 5.2 Assume that ~X = (X1, X2, . . . , Xn)T is a normal vector with 0 expectation: E[Xi] = 0 for
all i = 1, 2, 3, . . . , n. Then there exists independent standard normal variables

U1, U2, . . . , Un

and a lower triangular n× n matrix A = (aij) with non-random coefficients so that we have:

~U = A ~X

where ~U = (U1, U2, . . . , Un)T . Hence Ui is independent of X1, X2, . . . , Xi−1 and Xi+1 is obtained from
X1, X2, . . . , Xi by taking a linear combination with non-random coefficients:

Xi =

i−1∑
j=1

Xj
aij
aii

+
Ui
aii
.

So, the conditional distribution of Xi+1 given X1, X2, . . . , Xi−1 is normal with an expectation being a
linear combination of the previous Xj’s:

L(Xi|X1 = x1, X2 = x2, . . . , Xi−1 = xi−1) = L

N (µ =
i−1∑
j=1

xj
aij
aii

, σ2 =
1
a2
ii

 .

Proof.

6 Linear discriminant analysis

Assume that we find a skeleton from a person that has been murdered. We are only given the height
and the breadth of the hip to guess if it was a man or a women. the height say was 171.4 and the hip
measurement for the diseased was 26. To solve our mystery, we are given the measurements of ten people
in the same community and whether they are man or women. This ten people are our training data.
Here is the data:

Hip Height Gender
26.5 171.5 1
28.6 173.0 1
29.3 176.0 1
27.5 176.0 1
28.0 180.5 1
28.7 167.6 0
25.9 154.9 0
31.5 175.3 0
27.5 171.4 0
26.8 157.5 0

Here 1 stands for man, and 0 for women. We could try to guess if your skeleton is a man or a women
just based on the height. But we may feel that it would be safer to use both the hip measurements and
the height. How do we proceed? Let Hight be the height and Hip be the breath of the hip. Typically
a taller person is likely to be a man. Whilst a broader hip tends to be associated with women. We want
to find a linear function of the type Z = a1Hip + a2Height where a1 and a2 are constant, so that base
on this “Z-score” we can distinguish well between men and women. We take a1 > 0 and a2 < 0, because
large Hip tends to imply a women, whilst on the opposite a large height tends to imply that it is a man.
Also, a1 and a2 should bring hip and height to a similar scale since otherwise if one of them is much
bigger, then the other wouldn’t work. Indeed, if one is much smaller, then it would not have a lot of
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effect, and in that case it would be like just using only one of the variables. So, let us take for example
a1 = 0.62 and a2 = −0.12. This then leads to the following table:

a1Hip + a2Hight Hip Height Gender
−4.15 26.5 171.5 1
−3.02 28.6 173.0 1
−2.95 29.3 176.0 1
−4.07 27.5 176.0 1
−4.3 28.0 180.5 1
−2.31 28.7 167.6 0
−2.53 25.9 154.9 0
−1.50 31.5 175.3 0
−3.51 27.5 171.4 0
−2.28 26.8 157.5 0

Now, we can look at a strip chart of Z to see if it separates women from men well. This can be seen in
figure 2. Indeed it seems that men and women are well separated by Z. Take the rule z < −2.95 gives

Figure 2:

man, and with that rule you classify all but one point correctly in our training data. So, we can now
apply this rule to the skeleton which was found. the hip was 26 and the height 171.4. This leads to a
score of

a1 · 26 + a2 · 171.4 = −4.448
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this value is clearly below −2.95, so we classify the skeleton as having belonged to a man.
Now, a training sample of ten is not enough in reality to have a good estimate for the misclassification
probability. The procedure we showed here would work well provided we have enough training data.
In reality we will work with more points in the training data set. Also, we will ”optimize” the coefficients
a1 and a2 so that they separate the man from the women optimally in the following sence:
we calculate the values for constants a1 and a2 that are best in terms of separating man and women
average of Z whilst maintain the intergroupe variance bounded.. That is we want the mean to be far
away but the standard deviation for each group to be small. We assume at first that the covariance
matrix for men and women is the same. So, this leads to the following optimization problem:
find constants a1 and a2 so as to maximize

E[a1H + a2B|Y = male]− E[a1H + a2B|Y = female]

under the constrain
V AR[a1H + a2B|Y = male] ≤ constant

. Now,

V AR[a1H+a2B|Y = male] = a2
1V AR[H|Y = male]+2a1a2COV (H,B|Y = male)+a2

2V AR[B|Y = male]

Let the difference between the expected values of the two groups be designated by

∆~µ = (µ1, µ2)

where
µ1 = E[H|Y = male]− E[H|Y = female]

and
µ2 = E[B|Y = male]− E[B|Y = female]

So, in other words, we want to find a1, a2 to maximize

h(a1, a2) = (a1, a2) ·∆~µ

under the constrain

g(a1, a2) = a2
1V AR[H|Y = male] + 2a1a2COV (H,B|Y = male) + a2

2V AR[B|Y = male]

is constant. We are going to solve this problem by using Lagrange multipliers. For this, we have to
calculate the gradient of h and the gradient of g and set them to be collinear. So, we find the gradient
of h to be equal to:

~grad h = (µ1, µ2)

whilst
~grad g = (a1, a2),

(
COV (H,H) COV (H,B)
COV (B,H COV (B,B)

)
So, setting the two gradients to point in the same direction, yields

~grad g = λ ~grad h

for a constant λ. This yields

(a1, a2) = (µ1, µ2)
(
COV (H,H) COV (H,B)
COV (B,H) COV (B,B)

)−1

(6.1)
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where we only need to determine the vector (a1, a2) up to a constant factor. Now, the covariance and the
difference in expectations are not exactly known. So, instead we will take their estimates and put them
into formula 6.1:

(â1, â2) = (µ1, µ2)
( ˆCOV (H,H) ˆCOV (H,B)

ˆCOV (B,H) ˆCOV (B,B)

)−1

Now assume that instead of two measurements like hip width and height with have a whole collection
of them. We can measure many things from cranial dimensions, to wrist. Say we would have a rather
big data set with maybe about 500 women and men. Then, we could try to discriminate using height
and a hip parameter. But, typically we would expect that as we add more of the measurements, the
separation between women and men becomes better and better until it is close to 100%. The reason is
that after all when we add enough information it should become possible to tell if we are dealing with a
man or a women. so, first we take as discriminant function only the height. The result can be seen in
figure 3. In figure 1, we have that 91 out of 507 are classified’s. That gives a percentage of about 17%.
Thus, if we use only height to discriminate between women and men, we estimate that the classification
probability is about 17%. Then, we use all the 24 variables available to us. Now, with two variables it is
often possible to find which linear combination makes sense for discrimination without big math formula.
But with 24 variables, we need 24 four coefficients. So, it is better to use our “official” formula based on
the inverse of the covariance matrix. We did it and found an almost perfect separation between men and
women with less than 1 percent error. This can be seen in figure 4.

Figure 3:

then, we use the linear discriminant for all the 23 variables available. This is then much more powerful
as can be seen in 4

45



Consider the case of a data of measurements of about 500 man and women. Different parameters
where measured. When we run a linear discriminant with all the available measurement we find:

Figure 4:

7 A first application of the spectral method: neigh-

borhood detection

Assume that we record the time people spend with each other on the phone. So, if we have n people we
will record that information in a n × n-matrix. We consider the problem where there are subgroups in
the community which are not known to us. By looking at the matrix with the phone call time should
allow us to tell if there are such subgroups which are closer to each other. Assume there are 10 people
the police investigates. Say the expected time during a week they spend on the phone with each other is
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given in the following matrix

Σ =



9 9 9 9 9 0 0 0 0 0
9 9 9 9 9 0 0 0 0 0
9 9 9 9 9 0 0 0 0 0
9 9 9 9 9 0 0 0 0 0
9 9 9 9 9 0 0 0 0 0
0 0 0 0 0 16 16 16 16 16
0 0 0 0 0 16 16 16 16 16
0 0 0 0 0 16 16 16 16 16
0 0 0 0 0 16 16 16 16 16
0 0 0 0 0 16 16 16 16 16


So we see that the first five people communicate with each other 9 minutes on average and the people
6 to 10 communicate with each other is 16 minutes. Between these two groups there is 0 expected
communication time. Now, when we consider the matrix Σ there are only two eigenvectors with non-zero
eigenvalues. These eigenvectors are given by

~x1 =



1
1
1
1
1
0
0
0
0
0


, ~x2 =



0
0
0
0
0
1
1
1
1
1


with corresponding eigenvalues λ1 = 45 and λ2 = 80. Now clearly the two eigenvectors ~x1 and ~x2

corresponds each to a group of people who communicate with each other a lot in our model. So, if we
would be given the eigenvectors ~x1 and ~x2 we could from there determine which people communicate
with each other a lot. But, why would that be needed? Indeed one could just look at the matrix Σ to
see which group of people communicate a lot with each other. But, here is the deal: in general we do
not directly observe the matrix Σ, which is the matrix of expected times people spend speaking to each
other. So, the actual time can fluctuate. And hence in general we will have that what we observe is the
actual time people speak to each other given by

Σ + E

where in the present case E is a symmetric matrix with independent entries above the diagonal with 0
expectation so that

E[Σ +A] = E[Σ] + E[E] = Σ.

So, we started with simulation a “noise” matrix with entries that are independent of each other in the
triangle above the diagonal and the entries have 0 expectation. The matrix we got is as follows:
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E =



4 −2 2 0 −6 2 6 −8 0 3
−2 −8 1 −2 −3 −1 7 −3 2 −4

2 1 11 −2 −4 4 −2 −5 13 6
0 −2 −2 4 −5 −3 −2 3 −4 −2
−6 −3 −4 −5 0 −4 3 4 −10 −3

2 −1 4 −3 −4 −8 2 −5 −2 −4
6 7 −2 −2 3 2 3 −3 1 −3
−8 −3 −5 3 4 −5 −3 0 8 4

0 2 13 −4 −10 −2 1 8 12 4
3 −4 6 −2 −3 −4 −3 4 4 0


Then we add to the original matrix of expected phone time the noise matrix and get

Σ + E =



13 7 11 9 3 2 6 −8 0 3
7 1 10 7 6 −1 7 −3 2 −4

11 10 20 7 5 4 −2 −5 13 6
9 7 7 13 4 −3 −2 3 −4 −2
3 6 5 4 9 −4 3 4 −10 −3
2 −1 4 −3 −4 8 18 11 14 12
6 7 −2 −2 3 18 19 13 17 13
−8 −3 −5 3 4 11 13 16 24 20

0 2 13 −4 −10 14 17 24 28 20
3 −4 6 −2 −3 12 13 20 20 16


the two eigenvectors corresponding to the biggest eigenvalues are

~̂x1 =



−0.51
−0.35
−0.61
−0.38
−0.22
0.01
−0.06
0.21
−0.02
0.03


, ~̂x2 =



−0.03
−0.02
−0.13
0.04
0.06
−0.34
−0.40
−0.43
−0.57
−0.44


We put the hat on the eigenvector because the eigenvectors of the perturbated matrix can be viewed as
estimates of the eigenvectors of the non-perturbated matrix.
Eigenvectors are defined only up to multiplication by a constant. This means that when we multiply an
eigenvactor by a non-zero scalar, we get again an eigenvector with the same eigenvalue. Now note that
the eigenvectors of the precturbated matrix Σ+E are close to the eigenvectors of the unperturbed matrix
Σ. But, we could also go into the matrix Σ + E and take a column: these columns are the columns of
Σ with added noise. And the columns of Σ in the present case are the eigenvectors. So, what is better:
taking the eigenvectors of Σ + E or the columns of Σ in order to figure out the original eigenvectors?
(Again the original eigenvectors tell us which group of people talk to each other a lot). In our case, to
compare the, two we are going to multiply each by a factor so as to get them close to the corresponding
eigenvector. Otherwise they would not be comparable. So, let us do this with the second eigenvector:
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the unperturbated eigenvector is

~x2 =



0
0
0
0
0
1
1
1
1
1


We multiply the eigenvector ~̂x2 by the coefficient −2.1748 (found by linear regression) to get a comparable
vector:

−2.1742 · ~̂x2 =



0.06
0.04

wh0.28
−0.08
−0.13
0.73
0.86
0.93
1.23
0.95


Instead, as mentioned, we could also have taken any of the column 6 to 10 in the matrix Σ + E. Let us
take for example the 9-th column C9:

C9 =



0
2
13
−4
−10
14
17
24
28
20


and we multiply C9 by the factor 0.0409 (which we found by linear regression) in order to approximate
the eigenvector ~x2. This yields:

0.0409 · C9 =



0
0.08
0.52
−0.16
−0.4
0.56
0.69
0.97
1.13
0.81


We can now compare which one of the two C9 · 0.0409 or −2.1742 · ~x2 comes closer to the eigenvector

~x2. We compute the standard deviation of the entries of the difference between each of them and the
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original unperturbed eigenvector ~x2. We find:

sd(0.0406 · C9− ~x2) = 0.29, sd(−2.1748 · ~̂x2 − ~x2) = 0.16

We see the eigenvector of the perturbated matrix is almost twice closer to the origina eigenvector ~x2. We
will see that in general with a finite structure and a random noise with independent entries
and 0 expectation, the precision is improved by a factor of order constant times

√
n. Here√

n denotes the size of the matrix. We will have to define what we mean by finite structure and
precision gets improved by a factor

√
n. The eigenvector of the perturbed matrix is better than a column

of σ +E for recovering the eigenvectors. Another way to see this in our example is if we round of to the
closest integer the entries in our vectors which are supposed to approximate ~x2. We find:

round(0.0409 · C9) =



0
0
1
0
0
1
1
1
1
1


, round(−2.1742 · ~̂x2) =



0
0
0
0
0
1
1
1
1
1


We see that rounding of −2.1742 · ~̂x2 we recover ~x2 exactly, whilst with the column C9 times 0.0409
we still get an error. In general, with bigger matrices this effect will be even more dramatic: from the
column we will not be able to recover the eigenvectors at all, whilst with the eigenvalues we will.
Let us next see an example with a somewhat bigger matrix:

7.1 An example with a bigger matrix

Let us assume that there are 24 people whos phone call we record with two groups of twelve which
communicate with each other a lot. The matrix of the expected time people communicate with each
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other be given by

Σ =



1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2


Now we are going to add to Σ a noise matrix E. The noise matrix is symmetric and has i.i.d entries with
expectation 0 above the diagonal. The eigenvectors are

~x1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

and
~x2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T

with corresponding eigenvalues λ1 = 12 and λ2 = 24. Now from the theory of symmetric matrices we
know that we can represent σ in terms of its rescaled eigenvectors and eigenvalues. We get

Σ =
λ1

~x2
1

~x1 · ~xT1 +
λ2

~x2
2

~x2 · ~XT
2

So, to reconstitute σ if we are only given Σ +E we take the eigenvectors of Σ +E and rewrite the above
formula. This gives us something which is closer to Σ than Σ + E. In other words, we take as estimate
for Σ the following

Σ̂ =
λ̂1

~̂x2
1

~̂x1 · ~̂xT1 +
λ̂2

~̂x2
2

~̂x2 · ~̂xT2

where ~̂x1 and ~̂x2 are the two eigenvectors with biggest eigenvalues of Σ+E and λ̂1 and λ̂2 are the non-zero
eigenvalues of Σ + E.
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7.2 The basic theory which makes it all work

7.3 Does it make sense to use spectral methods at all

8 Closest neighbor classification

9 The Multivariate T-test

Assume that we shoot with an artillery gun again. Say as usual ~X = (X,Y ) is the impact point of a
shell. To simplify notation let us assume that we shoot in the direction of the vector (1, 0) and hence
(X,Y ) are independent of each other. We also assume that both X and Y are normal. Say to start with
that σX = σY = 1. Summarizing:

Again, as before we assume a situation where the artillery gun shoots many rounds whilst staying
in the exact same position the tube oriented the same way. Furthermore, the meteo conditions remain
unchanged, so basically the rounds we shoot are i.i.d. Hence, ~X, ~X1 =, ~X2, . . . ae i.i.d. where (Xi, Yi) is
the i-th impact point. Now assume that we are like in world war one: a fixed battlefield where the fronts
to not move for weeks and the artillery guns remain in the same position for long times. Say, suddenly we
observe an impact point x = 3, y = 3. We can use our rule of thumb that variables take value most of the
times no further than 2 standard deviation from their expectation. here, both x and y are three standard
deviation away from the expected value. (If it was our artillery gun who had been shooting). So, it is
unlikely that it is our artillery gun which had been shooting, and we may designate that impact point
as an outlier. Next consider a point which is closer to the average impact point E[(X,Y )] = (0, 0). Say,
(x, y) = (1.8, 1.8). For this point each coordinate is closer than 2 standard deviation from the expected
value. So, if we only look at each coordinate separately we would not classify the point as outlier. But,
then again: both coordinates are pretty big, not exactly two, but not very far either. So, to have two
pretty big value at the same time might have a relatively small over all probability. And this in terms,
might allow us to classify this point as outlier maybe. More precisely, we are going to look at the points
which are too far from the center to be likely to be shoot by our gun, so it must have been another one.
So, we take the square distance of the impact point from (E[X], E[Y ]). In our case, this is X2 + Y 2.
With X and Y being independent standard normal, the distribution of that squared distance is called
chi-square distribution with 2 degrees of freedom. In general we define:

Definition 9.1 Let N1,N2, . . . be a sequence of i.i.d. standard normals. Then,

N 2
1 + . . .+N 2

n

is called a Chi-square with n degree of freedoms. It represents the Euclidean distance squared of the
random vector (N1, . . . ,Nn) to the origin.

Now, in our example, the distance square to the origin is

d2 = x2 + y2 = 1.82 + 1.82 = 6.48

We can now go into a chi-square table with 2-degrees of freedom and find that with 95% probability the
distance square to the origin is less than 5.991465:

P (χ2 ≥ 5.991465) ≤ 0.05

and hence
P (X2 + Y 2 ≥ 5.991465) ≤ 0.05

So, the chance to get a distance square bigger than 6.48 is less than 5%. Hence it is unlikely that the
point (1.8, 1.8) was shot by our artillery gun. If we want to use formal statistical parlance, we would say
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that we reject the hypothesis on the 5% significance level that our point x = 1.8 and y = 1.8 comes from
our artillery gun. (Assuming of course, that σX = σY = 1, COV (X,Y ) = 0 and E[X] = E[Y ] = 0. Also
assuming normality). In other words, we are 95%-confident that it was not our artillery gun which shot
this shell with impact point (1.8, 1.8). We could thus classify, this point as an outlier, despite each single
coordinate by itself not being big enough to qualify as an outlier.
Now, most of the time in artillery shooting we have σX 6= σY . What would we do in that case. So assume
again that X and Y are independent normal with expectation 0. But this time we have the covariance
matrix:

COV [ ~X] =
(
σ2
X 0
0 σ2

Y

)
, (E[X], E[Y ]) = (0, 0) (9.1)

Say for example that σX >> σY . Then the impact points will tend to lie in an ellipse and not in a circle
anymore: the spread in the x-direction will be much bigger than the spread in the y direction. So, to
check for an outlier it would not make sense to take the points outside a certain circle. Instead, we will
take ellipses. here is the idea. when we take a normal with 0 expectation and divide it by its standard
deviation we get a standard normal. In other words

(
X

σX
,
Y

σY
)

is a random vector with two independent standard normal entries. For such a random vector the distance
square to the origin is a chi-square variable. So,

X2

σ2
X

+
Y 2

σ2
Y

is a chi-square variable with two degrees of freedom. so, we have

P (
X2

σ2
X

+
Y 2

σ2
Y

≤ 5.991465) = 0.95.

But, not that the set of points (x, y) satisfying

x2

σ2
X

+
y2

σ2
Y

≤ 5.991465 (9.2)

constitutes an ellipse centered at the origin with principal direction (1, 0) and (0, 1). The ellipse cuts the
x coordinate line at σX ·

√
5.6 and the y-coordinate axis at σY ·

√
5.991465 ≈ σY · 2.44 so basically it is

a blow up by
√

5.991465 ≈ 2.44 of the ellipse centered in 0 having the x and y axis as coordinates and
having 2σX as maximum breadth and 2σY as maximal height. Now note that the inequality 9.2 can also
be written in matrix notation as

(X,Y )Σ−1

(
X
Y

)
≤ 5.991465

where Σ−1 designate the inverse of the covariance matrix. So, here the test statistic has a chi-square
distribution with degree of freedom equal to the dimension of the vector. This formula remains valid,
even in other coordinate system, then the coordinate system of the principal components.
We can now define formula a test: say we have a normal random vector ~X = (X1, X2, . . . , Xp)T with
known covariance matrix Σ. Let ~µ = (µ1, µ2, . . . , µp)T be a non-random vector (known to us). Assume
we want to test the hypothesis H0: E[ ~X] = ~µ at the significance level α ∈ (0, 1).
then we simply calculate

~XTΣ−1 ~X. (9.3)

We compare that value with the α-upperquantile of a chi-square with p degrees of freedom. If the value
is bigger than the quantil, then we reject the hypothesis H0.
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The precious case is when we know the covariance matrix. In artillery shooting you have tables with
the dispersion in shooting direction and perpendicular to it depending on the distance you shoot. So,
if it is about your own artillery gun you may be able to indeed know the covariance matrix. In many
cases, however you have to estimate the covariance matrix. In that case, you simply use the estimated
covariance matrix instead of the true one in the formula 9.3. So, you calculate the value

~XT Σ̂−1 ~X, (9.4)

instead of the test statistic given in 9.3. Now to point to an outlier, this test statistic needs to be even
a bit higher than for the case with the known covariance matrix. The reason is simple: if the estimated
covariance matrix is very wrongly estimated, then this could lead to a high value of the test statistic 9.4
not because the impact point lies far away, but because σ̂ is wrong. So, to manage to be highly confident
that the impact point is indeed far from the center, we need to raise the bar a little. This means that for
example in 2 dimensions when we want to have a significance level of 5% we can not just ask for 9.4 to
be bigger than 5.991465. We will use another table called the T 2-table instead. With many data point
there is however almost no difference between the true covariance matrix and the estimated one. So, in
that case of many data-points, even with an estimated covariance matrix, we could use the chi-square
distribution and for practical purposes, we would get the same result.
Now, if we observe only one impact point, of course we can not estimate the covariance matrix. So, in stead
imagine the following situation: we are shooting at an enemy bunker with coordinate ~µ = (µX , µy)T =
(200, 400)T Assume that we do not know the covariance matrix COV [ ~X] where ~X = (X,Y )T . We shoot
at the point ~µ. Again, (X,Y ) is the impact point. yesterday, we had the gun perfectly adjusted in the
correct direction:

(E[X], E[Y ]) = ~µT = (200, 400) (9.5)

That was yesterday. We did not move the direction of the gun, but today in the morning when we want to
start shooting, we don’t know if 9.5 still holds. So, we may have to adjust the direction in which the gun
is pointing. Why? Mainly because the meteorological conditions may change from one day to the next.
So, you shoot several rounds and then based on that you may adjust your artillery gun or not. Hence, in
the morning at dawn, first thing we shoot n rounds and get n impact points (X1, Y1), . . . , (Xn, Yn). We
then take the center of gravity of our round of shooting:

Center of gravity = (X̄, Ȳ)

where X̄ = (X1 + . . .+Xn)/n and Ȳ = (Y1 + . . .+ Yn)/n. If the center of gravity is close to the target
(200, 400) we don’t readjust. If it is far we need to readjust the artillery gun. but how far is far? In
principle, what we are going to do is a multivariate T -test: we can for example take the 5%-confidence
level. so, we test that E[X̄] = 200 and E[Ȳ ] = 400 on the 5% level. If we reject the hypothesis then
we have to readjust the gun. Otherwise we leave it. Why does one do in real artillery life such a test?
Because, due to the imprecision (dispersion) at least with classical artillery you rarely get exactly on
target. Most of the time you will be a little off. This does however not mean, that your mean trajectory
is off: this may just be due to the little impresistion called dispersion in artillery shooting. So, if every
time your shells fall a small distance away from the target, you would readjust, then this would not be
good: you would continuously readjust which is a lot of work. And you would readjust even when your
expected impact point (E[X], E[Y ]) are right on target. In other words, you readjust only when after
shooting a first round there is significant evidence that the gun is badly adjusted, meaning

(E[X], E[Y ]) 6= (200, 400).

Now, how do we do the test? Note that the average impact point of our round of shooting (X̄, Ȳ ) has
same expectation as (X,Y ):

E[
X1 + . . .+Xn

n
=
E[X1 + . . .+Xn]

n
=
nE[X1]

n
= E[X1]
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and similarly E[Ȳ ] = E[Y ] The covariance matrix gets divided by a factor n when we consider (X̄, Ȳ )
instead of (X,Y ). So, basically we can just do our test using the center of gravity (X̄, Ȳ ) instead of
(X,Y ). The only difference will be that the covariance matrix gets divided by a factor n. And an
advantage is now that in case we do not know the covariance matrix, we can still do the test by using the
estimated covariance matrix. (With one point alone we can not estimated the covariance matrix). When
we estimate the covariance matrix we need to take instead of the chi-square distribution with p degrees
of freedom, a multivariate T 2-distribution, with n and p being he parameters of freedom. When n is
very large we could just use the chi-square distribution with p-degrees of freedom and it shouldn’t’t make
much of a difference. So, anyhow we calculate the following test statistic, called multivariate T 2-statistic:

T 2
0 := n · (X̄ − 200, Ȳ − 400)Σ̂−1

(
X̄ − 200
Ȳ − 400

)
(9.6)

where Σ̂ denotes the estimated covariance matrix. For n very large and p small, we can just use the
critical value for a chi-square table with p degrees of freedom. Otherwise we need to use a multivariate
T 2-table. This table is rare to find, because up to a linear transformation the T 2variable is equivalent to
an F variable. But we have

T 2
0 =

(n− 1)p
n− p

Fp,n−p

In other words you if you want the 95% quantil you go into the F table with p and n − p degree of
freedom. There you find that quantil which you multiply by the factor (n−1)p/(n−p) to get the critical
value for the multivariate T 2 statistic. That is this will be the number which you compare to the test
statistic given in 9.6. If the test statistic exceeds the value, you reject the hypothesis that E[X] = 200 and
E[Y ] = 400 and you readjust. Otherwise, you don’t need to readjust, because you don’t have significant
evidence that your artillery gun is not well adjusted (at the 5%-significance level.

10 Singular value decomposition

In principal component analysis we consider the eigenvectors of the covariance matrix. So, we have a
matrix with data X, then we had seen that 1

nXX
T is our estimate for the covariance matrix of the rows.

For this we assumed the rows of X to be i.i.d. and have expectation ~0. So, the estimated principal
components of the covariance matrix are then the eigenvectors of XXt. There are other situations
however than covariance matrix estimation where these eigenvectors can be of great importance. Let us
consider an example where X is a n × p matrix recording the house values in different zip-codes. Say
we have one value for each month for each zip-code. Each row of X corresponds to a neighborhood and
each row to one specific month. We can see a plot of this situation below in figure 5. In that figure
basically San Jose and Mountain view follow pretty much the same trend, except Mountain view being
more expensive. 5 So, for this take 1.72 times San Jose and you get almost the same plot as for Mountain
view. This can be seen in figure ?? below. 6 in the current case San jose and Moutain view are almost
the same up to a multiplicative coefficient: they follow the same trend, but one of this neighborhoods
is more expensive then the other. So, there is basically one function i 7→ f(i) where f(i) denotes the
average housing price say between these two neighborhoods, so that both the price evolution for San Jose
and moutain view can be obtained approximately from the function f(.) by multiplying by a constant.
So, there is a one-dimensional function behind both of these markets. Sometimes there could be more
than one. for example, f(.) could represent the general price trend in the US and g(.) could represent
employment in Silicon valley. Then, maybe all the price evolutions in these different neighborhoods could
be approximated by linear combinations of f(.) and g(.). In, other words we would have eight coefficients
c1, c2, c3, c4 and d1, d2, d3, d4 so that

Xij ≈ cjf(i) + djg(i). (10.1)

So, hence on the i month in the nighborhood j the avearge price is approximately cjf(i) + djg(i). The
coefficents cj and dj vary from one neighborhood to the other, because these neighborhoods may depend
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Figure 5:

to different degrees for example on the general market. Say at first to simplify a little bit, that the
approximation 10.1 is not an approximation but holds exactly. Then we would have that:

~Xj = cj ~f + dj~g (10.2)

where the vector ~Xj represents the j column of our matrix X. hence, ~Xj give the time evolution of the
house prices in the neighborhood i. Furthermore, ~f is the column vector of length n with i-th entry equal
to f(i). Similarly, ~g is the column vector of length n with i-th entry equal to g(i). So basically what we
have is that the columns of X are located (approximately) in a two dimensional linear space spanned by
~f and ~g. This implies then that the image space of X ·XT is generated by ~f and ~g. hence the eigenvectors
with non-zero eigenvalue of X ·XT are in the span of ~f and ~g. So to try to find the functions ~f and ~g, if
we are only given X we can go for the eigenvectors ~U1 and ~U2 with non-zero eigenvalue of X ·XT . We
then have that ~f and ~g are both linear combination of ~U1 and ~U2. This is for the case that equation 10.2
holds exactly. If instead of equation 10.2, we have only an approximation, ~Xj ≈ cj ~f + dj~g, then we will
merely be able to approximate ~f and ~g by linear combinations of the eigenvectors.
Now let us consider the Singular Value Decomposition of X. This is how it is defined. Recall first that
the matrix X has dimension n × p, where n ≥ p. One can always write the matrix X as a product of
three matrices:

X = UDV T

where D is diagonal matrix of dimension p× p, U is of dimension n× p and V is of dimension p× p. We
also ask that the columns of U are orthonormal and same for V . That is we ask UT · U = I where I
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Figure 6:

denotes the p× p identity matrix. Similarly we request that V columns be an orthonormal basis. Then
such a decomposition of X into a product of three matrices two of which are orthogonal, is called a
Singular Value Decompositin (SVD). Now, we have

X ·XT = UDV T · (UDV T )T = UDV TV DUT = UD2UT

In other words, if ~Ui denotes the i-th column of the matrix U we get that

X ·Xt =
∑

d2
ii
~Ui · ~UTi

this is the same formula as when we write the symmetric matrix X ·XT in terms of its eigenvectors and
eigenvalues. Hence, we find that the columns of U are the normalized eigenvectors of X ·XT . (There is
always still a question about the sign in front of each eigenvector). Furthermore, d2

ii is then an eigenvalue
of X · XT . Hence, the diagonal matrix D is obtained by putting the square roots of X · XT into the
diagonal. Usually we write the eigenvalues in decreasing order, and put the eigenvector also in the same
corresponding order.
Now a similar argument shows that the columns of V are eigenvectors of XTX:

XT ·X = (UDV T )T (UDV T ) = V DUTUDV T = V D2V T =
p∑
i=1

d2
ii
~Vi (10.3)

where the vector ~Vi denotes the i-th colum of the matrix V . Clearly, given the right most expression of
10.3, we get that the vectors ~Vi are eigenvectors of XT ·X.
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so, now say that we are back in the previous example with equation 10.2 holding approximately for every
colum j. Assume also that ~f and ~g are the eigenvectors. Then, the matrix U first two and second
colum are equal to ~f and ~g. The other columns will be eigenvectors which correspond to much smaller
eigenvalue, that is eigenvalue which are just noise and which we can leave out in a first approximation.
Now, when you consider the equation

X = UDV T = U(DV T )

you see that the matrix DV T gives us the coefficients cj and dj for each column j. So, if we want to for
example keep only two eigenvalues, then we compute instead of X the approximation matrix:

XII = UDIIV
T

where DII is the diagonal matrix which is obtained from D by keeping only the two biggest eigenvalues.
So, in this situation the columns of XII will be approximation of teh columns in X. So for each neigh-
borhood we will have such an approximation. Why would that be good for? Usually we approximate
something we don’t know and which would be difficult to calculate. But here we are given the matrix
X. Well here is the reason: say in one neighbor hood in month there were only three houses sold. And
in that month by chance these three houses were all foreclosure which makes the market price in that
neighboor hood look smaller than what it would be if we would buy another house. So, to some extend,
the hope is that XII can be more accurate than X and to some degree eliminate such a dip which is not
corresponding to the true enighborhood price, but which is just due to a momentarily noise. To know
how many such underlying functions like f(.) and g(.), we look and plot the singular values of D. (these
are the square roots fo the eigenvalues of X ·Xt). Then we see how many singular values there are which
are much bigger than the others. In our present case in figures ?? there is only one which stands out.
(Ellbow of polygone). ??

So, we decide to go for an approxiamtion leaving only one eigenvalue in D. Hence, we go for DI which
is obtained from D by leaving only the biggest eigenvalue. Then, our “denoised” X denoted by XI is
given by the formula:

XI = UDIV
T

. In figure ?? below, we can compare the original X and the one obtained by using only the one biggest
eigenvalue for the approximation. ( I do not yet add this figure because it is the project which is part fo
the final for extra credit).
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Figure 7:
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