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Abstract. Let X1, . . . , Xn and Y1, . . . , Yn be two independent sequences of i.i.d Bernoulli
variables with parameter ε > 0. Let X designate the string X := X1X2 . . . Xn and let
Y := Y1Y2 . . . Yn. Let Ln designate the length of the longest common subsequence (LCS)
of X and Y . We prove that for a constant c > 0, VAR[Ln] > cn if ε > 0 is taken small
enough. Hence for small ε, the order of magnitude of VAR[Ln] is Θ(n). For small ε,

this rejects the Chvatal-Sankoff conjecture that VAR[Ln] = o(n
2
3 ) in [7] and answers to

Waterman’s question, whether the linear bound on VAR[Ln] can be improved [14].
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1 Introduction

Throughout this paper X1, X2, . . . and Y1, Y2, . . . are two independent sequence of i.i.d.
Bernoulli variables with parameter 0.5 ≥ ε > 0:

ε = P (Xi = 1) = P (Yi = 1) = 1− P (Xi = 0) = 1− P (Yi = 0).

Let X := X1X2 . . . Xn, Y := Y1Y2 . . . Yn. A common subsequence of X and Y is a
subsequence that is contained in X and in Y . Formally, a common subsequence of X and
Y consists of two subsets of indices {i1, . . . , ik}, {j1, . . . , jk} ⊂ {1, . . . , n} such that

Xi1 = Yi1 , Xi2 = Yi2 , . . . , Xik = Yik .

∗Supported by the Estonian Science Foundation Grant nr. 5694 and SFB 701 of Bielefeld University

1



The length of such a common subsequence is k. The longest common subsequence (LCS)
of X and Y is any common subsequence that has the longest possible length, denoted by
Ln. The random variable Ln is the main object of the paper.

Example. Take the two words: X = fanthastic and Y = fntastique. These two words are very similar.
They were obtained from the English word “fantastic” and the French word “fantastique” by adding
spelling mistakes. We would like the computer to recognize the similarity. If the computer compares
letter by letter,

f a n t h a s t h a s t i c
f n t a s t i q u e

it finds that only one letter coincides. So comparing the i-th letter of the first word with the i-th letter
of the second word for all the letters is not a good way to recognize the great similarity. The reason is
that in the words there are missing letters. So the position of the letters in the words got shifted.
To take into account the missing letters or added letters, we align the two words allowing for gaps. We
allow only the same letter to be matched with each other. In such a way, we obtain a sequence of letters
that is contained in X as well as in Y . Such a subsequence is a common subsequence of X and Y . Hence,
the longest common subsequence is the maximum number of same letters we can align allowing caps. In
our example the maximum is given by the alignment

f a n t h a s t i c
f n t a s t i q u e

(1.1)

Hence f, n, t, a, s, t, i is the longest common subsequence of the two words and the length of the longest
common subsequence, Ln, is 7. This indicates that the two words are very similar.

The longest common subsequence is a very important tool in computational biology, where
it is used for comparing the DNA- and protein-alignments (see, e.g. [13, 15, 2]). It is also
used in many other areas like computational linguistics, speech recognition and so on. In
all those applications, when two strings have a relatively long common subsequence, then
they are considered to be somehow related. On the other hand, it is clear that also two
independent random strings have a longest common subsequence with length Ln. To be
able to distinguish the related pairs from a random match, the asymptotic behavior of Ln

(the length of the LCS of two independent random string) should be studied. For that
reason the random variable Ln has been attracted the interests already for many decades.
However, despite the relatively long history, its behavior is to large extent still unknown.
In their pioneering paper [7], Chvatal and Sankoff prove that the limit

γ := lim
n→∞

ELn

n
(1.2)

exists. In [1], Alexander investigated the rate of the convergence in (1.2) and showed that
for a constant C, ELn − nγ ≥ C

√
n ln n. Moreover, by subadditivity argument

Ln

n
→ γ a.s and in L1. (1.3)

(see, e.g. [1, 15]). The constant γ is called the Chvatal-Sankoff constant and its value
is unknown for even as simple cases as i.i.d. Bernoulli sequences. In this case, the value
of γ obviously depends on the Bernoulli parameter ε. When ε = 0.5, the various bounds
indicate that γ ≈ 0.81 [12, 9, 3]. For a smaller ε, γ is even bigger. Thus the proportion
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of a common subsequence for two independent Bernoulli sequences is relatively big and,
hence, to do some inferences, the information about the variance VAR[Ln] is essential.
Unfortunately, not much is known about VAR[Ln] and its asymptotic order of the fluc-
tuation is one of the main long standing open problems concerning LCS. Monte-Carlo
simulations lead Chvatal and Sankoff in [7] to their famous conjecture that for ε = 0.5,

VAR[Ln] = o(n
2
3 ). Using an Efron-Stein type of inequality, Steele [12] proved that in this

case, VAR[Ln] ≤ P(X1 6= Y1)n. In [14], Waterman asks whether the linear bound can be
improved. He performs several simulations which indicate that this is not the case and
VAR[Ln] grows linearly in n, indeed. Boutet de Monvel [6] interprets his simulation in
that way too. On the other hand, for a closely related Bernoulli matching model, Ma-
jumdar and Nechaev [11] obtained faster rate O(n

2
3 ).

In a series of papers, we investigate the asymptotic behavior of VAR[Ln] in various setup.
The goal is to answer to the Waterman’s question and show that the linear bound cannot
be improved. More precisely, we conjecture the existence of a constant c > 0 such that
nP(X1 6= Y1) ≥ VAR[Ln] ≥ cn. This is written VAR[Ln] = Θ(n). The simulations
[5] indicate that except maybe for ε very close to 0.5, the conjecture holds true. In [4],
Bonetto and Matzinger consider the asymmetric case where the random variables in X
are Bernoulli with 1/2, but the ones in Y can take 3 symbols. They prove that in this
case VAR[Ln] = Θ(n). In [8], the asymptotic behavior of the longest common increasing
subsequence of two independent Bernoulli sequences was considered. This means that the
common subsequences of interest must be increasing. Under this additional restriction,
it is shown that n−1/2(Ln −ELn) converges in law, so that VAR[Ln] = Θ(n) holds again.
In [10], it was showed that VAR[Ln] = Θ(n) also when Y is a non-random periodic bi-
nary sequence and X consists of iid Bernoulli 1/2 random variables. This results gives
an insight that the linear growth might also hold for the case X and Y are both random
(with arbitrary ε). Indeed, regarding Ln as a function of X and Y , by conditioning on Y ,
one obtains that VAR[Ln(X,Y )] ≥ E

(
VAR[Ln(X, Y )|Y ]

)
. So, to show that there exists

a constant c > 0 such that VAR[Ln] ≥ cn, it suffices to show that VAR[Ln(X,Y )|Y ] ≥ cn
holds for every possible outcome of Y . If Y consists of ones, only, then Ln is the num-
ber of ones in X and VAR[Ln] = ε(1 − ε)n. If Y is such that Y1 = · · · = Yn

2
= 1 and

Yn
2
+1 = · · · = Yn = 0, then it is intuitively clear that a longest common subsequence

basically matches the ones in the first half of X and zeros in the second half and therefore
the growth of VAR[Ln(X, Y )|Y ] is linear as well. Here the reason of the linear growth
of the variation is that, though Y has fifty percent ones, they are all gathered together
so that Y has long unicolor blocks. A periodic Y has totally opposite nature – the ones
and zeros are mixed as much as possible. As mentioned above, the desired constant c
still exists. For a random Y , both considered realizations are highly untypical. However,
since they represent, in some sense, extreme cases, we have a reason to believe that the
linear growth of variance also holds for a typical realization, so that VAR[Ln] ≥ cn. In
the present paper, we prove it when ε is sufficiently small.

The relatively long history shows that determining the exact order of the fluctuation
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of Ln is a difficult problem. In fact, as noted in [1, 2], the LCS-problem can be reformu-
lated as a non-standard First Passage Percolation (FPP) problem on an oriented graph
with correlated weights. But for standard FPP, the question of the exact order of the
fluctuation has been open for decades.

2 The main result

The main result of this paper, theorem 2.1, asserts that when ε > 0 is small, then there
exists a constant c > 0 such that VAR[Ln] > cn. Then VAR[Ln] = Θ(n).

Theorem 2.1 There exists ε0 > 0 such that for every ε < ε0, there exists a constant
c > 0 depending on ε but not depending on n that satisfies

V AR[Ln] ≥ c(ε)n, ∀n.

One of the main tools used in this paper is a map that we picks an one in the text X or
Y at random and changes it into a zero. Let X̃ and Ỹ be the texts obtained in this way.

Example. Let n = 6, X = 001000 and Y = 101000. The total number of ones in the two texts is
3. Hence, we pick one of these three ones at random with equal probability and switch it into a zero.
Assume we pick the second one in text Y . Then X̃ = 001000 and Ỹ = 100000.

Let us define X̃ and Ỹ rigorously. For a binary string x = x1x2 . . . xn, we denote by Nx
1

the total number of ones in x. So Nx
1 :=

∑n
i=1 xi. Similarly, Ny

1 is the total number
of ones in y = y1y2 . . . yn. Let, for given strings x and y, U be a random variable with
uniform distribution in {1, 2, . . . , Nx

1 + Ny
1 }. Let x̃ = x̃1x̃2 . . . x̃n and ỹ = ỹ1ỹ2 . . . ỹn be 2

random vectors defined as follows

x̃j := xjI{
∑j

i=1 xi 6=U}, ỹj := yjI{
∑j

i=1 yi 6=U−Nx
1 }

, j = 1, . . . , n, .

Apply now the transformation˜ to the random vectors X and Y so that the additional
randomness U depends on X and Y through Nx

1 and Ny
1 , only. So, the binary random

vectors X̃ and Ỹ are such that

n∑
i=1

(X̃i + Ỹi) =

{ ∑n
i=1(Xi + Yi)− 1, if

∑n
i=1(Xi + Yi) > 0 ;

0, else.

P(X̃i 6= Xi|X = x, Y = y) =

{
0 if xi = 0 ;

1
Nx

1 +Ny
1
, else. ,

P(Ỹi 6= Yi|X = x, Y = y) =

{
0 if yi = 0 ;

1
Nx

1 +Ny
1
, else.

Let L̃n denote the length of the longest common subsequence of X̃ and Ỹ . When we
change one bit in X or Y and flip it to the opposite value, then the length of the LCS
changes by at most one. The next theorem shows that in this case the length of the LCS
Ln is more likely to increase by one unit than to decrease by one unit.
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Theorem 2.2 There exist constants α1 and α2, α1 > α2 and a set Bn ⊂ {0, 1}n×{0, 1}n

such that for all (x, y) ∈ Bn

P(L̃− L = 1|X = x, Y = y) ≥ α1, (2.1)

P(L̃− L = −1|X = x, Y = y) ≤ α2. (2.2)

Moreover, there exists an ε0 > 0 such that for every ε ≤ εo there exist a constant c1 > 0,
depending on ε but not depending on n such that

P((X, Y ) ∈ Bn) ≥ 1− e−c1n, (2.3)

provided n is sufficiently big.

In section 3 we prove that theorem 2.2 implies theorem 2.1.

Let us give a heuristic argument for why theorem 2.2 holds. Let N1 denote the total
number of ones in both texts, X and Y , N1 :=

∑n
i=1 Xi +

∑n
i=1 Yi. Recall that we take

ε > 0 small. Hence, in the texts X and Y there is a small proportions of ones. This
implies that only a small percentage of ones can figure in a LCS. It will turn out that
the number of ones in a LCS is typically of order ε2n. This is much less than the total
number of ones in the texts X and Y , which is of order 2εn. It follows that the majority
of ones in the texts X and Y constitute a “net loss” for the score Ln. Hence the number
of ones tends to influence the score Ln negatively. Changing one randomly picked one into
zero reduces the number of ones and, most likely, increases the score. It can decrease the
score only if the chosen one is used in the longest common subsequence. The proportion
of such ones is small. The heuristic argument for theorem 2.1 is now also clear: Ln is
approximately n − εN1. Since, N1 has variance of order n it follows that Ln must have
the same order for its variance.

Example. Let X = 00010000100000000000001, Y = 00010000000010000100000. The longest common
subsequence Z is Z = 000100000000000000000. An alignment corresponding to Z is

X 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Y 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
Z 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The optimal solution is obtained by matching all the zeros, and the first one in both texts, but discarding
all other ones. We see the general phenomena: since there are few ones, sometimes by chance some ones
appear in respective positions in the two texts where they can be matched. The other ones in text X

and Y appear in places in the text where we can not match them with a one. If we would match them
we would loose too many zeros. That is why, most ones can not be used in the LCS. And hence the total
number of ones appearing in the texts tends to be negatively correlated with Ln.

The argument in the previous numerical example gives a first idea of what is happening.
However, proving anything rigorously is difficult. The reason is as follows. We take ε
small but fixed and let then n tend to infinity. The optimal alignment (optimal alignment
is the alignment which defined the LCS) is then going to be a global alignment. Which
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means that typically some parts of the text X will be connected with parts of the text
Y that are ”far away”. This introduces extremely complicated correlations between the
different part of the optimal alignment.

3 Theorem 2.2 implies theorem 2.1. The proof

In this section, we prove that theorem 2.2 implies theorem 2.1. We use some of the
techniques developed in [4].
Recall that N1 is the total number of ones in the two strings X and Y . We going define
a random pair of strings Xk, Y k, k ∈ [0, 2n] recursively. The strings X2n and Y 2n consist
only of 1’s. We pick a 1 in the strings X2nY 2n at random and change it into a 0. This
way we obtain (X2n−1, Y 2n−1). For general k, we obtain (Xk−1, Y k−1) from (Xk, Y k) by
choosing a 1 at random in XkY k and changing it to the opposite value. In other words,
we apply the transformation ˜, so that

Xk−1 := X̃k, Y k−1 := Ỹ k.

In this way, we find that the distribution of (Xk, Y k) is equal to the distribution of (X, Y )
conditional on N1 = k,

L(Xk, Y k) = L(X,Y |N1 = k), (3.1)

where L(W ) designates the distribution of the random variable W .
Let L(k) designate the length of the LCS of Xk and Y k. Picking now N1 according
to its distribution and proceeding in the above described manner gives us random vec-
tor (XN1 , Y N1) that have same distribution as (X,Y ). Therefore, the length of LCS of
(XN1 , Y N1), L(N1), has the same distribution as Ln. Hence

VAR[Ln] = VAR[L(N1)].

Recall that our aim is to bound VAR[L(N1)] below. The variance of L(N1) has two
sources: the random number of ones N1 and the random mapping L. In the following,
we show that N1 has such a big influence on L(N1), so that the variance VAR[L(N1)] is
essentially bounded by the variance of N1. The latter is, obviously, linear on n.
Recall that for any variables V and W we have

VAR[V ] = VAR[E[V |W ]] + E[VAR[V |W ]] ≥ E[VAR[V |W ]], (3.2)

where VAR[V |W ] designate the variance of the conditional distribution L(V |W ). Apply-
ing (3.2) to our case, we find:

VAR[L(N1)] ≥ E[ VAR[L(N1) |L(.)], (3.3)

where L(·) is the (random) map k 7→ L(k). The law of total probability implies that

E[VAR[L(N1)|L(·)] =

E[VAR[L(N1)|L(·), N1 ∈ I] ·P(N1 ∈ I) + E[VAR[L(N1)|L(·), N1 /∈ I] ·P(N1 /∈ I),
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where I is the interval

I := [2εn−
√

ε(1− ε)2n, 2εn +
√

ε(1− ε)2n]. (3.4)

The last equality above together with (3.3) implies

VAR[L(N1)] ≥ E[ VAR[L(N1)|L(·), N1 ∈ I] ]P(N1 ∈ I). (3.5)

Assume that f : R → R is map such that, for a constant c > 0, f ′(x) > c for all x ∈ R.
Then, for any random variable Y , we have

VAR[f(Y )] ≥ c2VAR[Y ]. (3.6)

(See [4] for the proof). Hence, if the map L(·) would have positive slope everywhere larger
than c > 0, is would follow that VAR[L(N1)] ≥ c · VAR[N1]. Typically, the (random)
map k 7→ L(k) does not strictly increase for every k ∈ [0, n]. But it is likely that in I it
increases by a linear quantity. We are next going to formulate a lemma, proven on [4],
which is a modification of inequality (3.6), for when the map f(·) does not increase every
k, but has a tendency to increase on some scale.

Lemma 3.1 Let c, m > 0 be two constants. Let f : Z → Z be a non decreasing map such
that:

• for all i < j:
f(j)− f(i) ≤ (j − i) (3.7)

• for all i, j such that i + m ≤ j:

f(j)− f(i) ≥ c · (j − i). (3.8)

Let B be an integer random variable such that E|f(B)| < ∞. Then

VAR[f(B)] ≥ c2

(
1− 2m

c
√

VAR[B]

)
VAR[B]. (3.9)

Recall the definition of I in (3.4). Let α1 and α2 be the constants from theorem 2.2 and
let En

slope designate the event that ∀i, j ∈ I, such that i + n0.1 ≤ j, it holds

L(j)− L(i) ≥ α3|i− j|, (3.10)

where

α3 =
α1 − α2

2
.

In other words, the event En
slope says that L(·) has a slope of at least α3 on I, when we

look only at points which are at least n0.1 away from each other. The next lemma shows
that if theorem 2.2 holds, then the event En

slope has high probability.
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Lemma 3.2 Assume that theorem 2.2 holds. Then for a constant c4 > 0,

P(En
slope) ≥ 1− ec4·n0.1

, (3.11)

provided n is sufficiently big.

Proof. Let Ak
n denote the event that the random vector (Xk, Y k) takes the values in the

set Bn from theorem 2.2. So

Ak
n := {(Xk, Y k) ⊂ Bn}.

Let Aall
n be the event

Aall
n :=

⋂
k∈I

Ak
n.

Let

∆k :=

{
L(k − 1)− L(k), when Ak

n holds;
1, else.

.

We consider the random variable

j∑
k=i+1

∆k, i < j.

Let Xj, Y j be given. Then ∆j = 1, when (Xj, Y j) 6∈ Aj
n, otherwise it depends on a

random variable Uj taking values on {1, . . . , j} with equal probabilities. The random
variable Uj determines Xj−1, Y j−1, which together with a random variable Uj−1 that is
independent of Uj and takes values on {1, . . . , j − 1} with equal probabilities, determine
∆j−1 = 1 and so on. Hence,

j∑
k=i+1

∆k = g(Ui+1, . . . , Uj),

where Ui+1, . . . , Uj are independent random variables, the distribution of Uk is uniform
on {1, . . . , k}. The function g depends on Xj, Y j. As noted before, by changing an Uk,
the value of g(Ui+1, . . . , Uj) can change at most 1. Hence, by McDiarmid’s inequality,

P
(
g(Ui+1, . . . , Uj)− Eg(Ui+1, . . . , Uj) < −c

)
≤ exp[− 2c2

(j − i)
]. (3.12)

When (Xk, Y k) = (x, y) ∈ Bk
n, then theorem 2.2 says that, with k ≤ j,

P(∆k = 1|Xk = x, Y k = y, Xj, Y j) = P(∆k = 1|Xk = x, Y k = y) ≥ α1,

P(∆k = −1|Xk = x, Y k = y, Xj, Y j) = P(∆k = 1|Xk = x, Y k = y) ≤ α2.

From the last inequalities, we get

P(∆k = 1|Ak
n, X

j, Y j) ≥ α1, P(∆k = −1|Ak
n, X

j, Y j) ≤ α2,
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implying that E[∆k|Ak
n, X

j, Y j] ≥ α1 − α2. Since E[∆k|(Ak
n)c] = 1 > α1 − α2, we get

E(∆k|Xj, Y j) ≥ α1 − α2.

Hence,

Eg(Ui+1, . . . , Uj) = E
( j∑

k=i+1

∆k|Xj, Y j
)
≥ (α1 − α2)(j − i). (3.13)

With c = (α1−α2

2
)(j − i), (3.12) and (3.13) yield

P
(
g(Ui+1, . . . , Uj) < (

α1 − α2

2
)(j − i)

)
≤

P
(
g(Ui+1, . . . , Uj)− Eg(Ui+1, . . . , Uj) < −(

α1 − α2

2
)(j − i)

)
≤ exp[−α(j − i)],

where α = 2(α1−α2

2
)2. The right side of the last inequality does not depend on Xj, Y j, so

P
( j∑

k=i+1

∆k < α3(j − i)
)
≤ exp[−α(j − i)]. (3.14)

Let En
∆ slope be the event that ∀i, j ∈ I, such that 2εn < i < j ≤ 2εn+

√
n and i+n0.1 ≤ j,

we have:
j∑

k=i

∆k ≥ α3|i− j|. (3.15)

By (3.14), for n big enough, there exists a constant c2 > 0 such that

P
(
(En

∆ slope)
c
)
≤ n exp[−(α)n0.1] ≤ exp[−c2 · n0.1],

so
P(En

∆ slope) ≥ 1− e−c2·n0.1

, (3.16)

When the event Aall
n holds, then En

slope and En
∆ slope are equivalent. Hence

Aall
n ∩ En

∆ slope ⊂ En
slope,

which implies
P(Enc

slope) ≤ P
(
(Aall

n )c
)

+ P(Enc
∆ slope). (3.17)

Note

P
(
(Aall

n )c
)
≤
∑
k∈I

P (Akc
n ) =

∑
k∈I

P(Ac
n|N1 = k) ≤

∑
k∈I

P(Ac
n)

P(N1 = k)
, (3.18)

where
An := {(X, Y ) ∈ Bn}. (3.19)
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By the local central limit theorem, there exists c3 > 0 such that for all k ∈ I

P (N1 = k) ≥ 1/c3√
n

.

Applying the last inequality to (3.18), yields

P
(
(Aall

n )c
)
≤
√

2nc3P(Ac
n). (3.20)

Now the inequalities (3.16), (3.20) and (3.17) yields

P(Enc
slope) ≤

√
2nc3P(Ac

n) + e−c2·n0.1

. (3.21)

By theorem 2.2, we have that P(Ac
n) ≤ Ce−c1n. Applying this to (3.21) gives

P(Enc
slope) ≤ c3

√
2ne−c1n + e−c2·n0.1

,

which finishes the proof.

Conditioning on En
slope and using the law of total probability with the fact that variance

is non negative, inequality (3.5) becomes

VAR[L(N1)] ≥ E[ VAR[L(N1)|L(·), N1 ∈ I] | En
slope ]P(En

slope)P(N1 ∈ I). (3.22)

However, when En
slope holds, then the map

L : I → N
satisfies the conditions of lemma 3.1 with m = n0.1. Hence, when En

slope holds, then

VAR[L(N1)|L(·), N1 ∈ I] ≥ α3
2

(
1− 2n0.1

α3

√
VAR[N1|N1 ∈ I]

)
VAR[N1|N1 ∈ I].

Plugging the last inequality into (3.22) yields

VAR[L(N1)] ≥ α2
3

(
1− 2n0.1

α3

√
VAR[N1|N1 ∈ I]

)
VAR[N1|N1 ∈ I]P(En

slope)P(N1 ∈ I).

(3.23)
By the central limit theorem, P(N1 ∈ I) converges to

P(N (0, 1) ∈ [−1, 1]) > 0.

as n →∞. (Here N (0, 1) designate the standard normal variable.)
Note that N1 is a binomial variable with parameters 2n and ε. Hence, by the central limit
theorem,

VAR[N1|N1 ∈ I]

n
→ 2ε(1− ε)P(N (0, 1) ∈ [−1, 1])−1

∫ 1

−1

φ(x)x2dx,

where φ is the standard normal density. Together with lemma 3.2, this implies that the
right side of inequality (3.23) divided by n converges to

α2
32ε(1− ε)

∫ 1

−1

φ(x)x2dx > 0.

This finishes the proof.
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4 Aligning the ones

Introducing the right notation to define the “alignments of ones” is a key ingredient to
the solution of our problem. The best way is to start with simple numerical examples.

Example. Take the two texts X = 1000001 and Y = 1001. The LCS of X and Y is Z = 1001. It is
obtained by aligning the first one in both text and the last one and for the rest aligning as many zeros
as possible. Text X contains 5 zeros and text Y contains 2. The maximum number of aligned zeros is
thus min{2, 5} = 2. There are many alignments corresponding to the LCS Z = 1001. Let us present two
alignments corresponding to this LCS:

X 1 0 0 0 0 0 1
Y 1 0 0 1

or another possibility:
X 1 0 0 0 0 0 1
Y 1 0 0 1

How the zeros are aligned between the ones is not important as long as we align the maximum of zeros
between the ones. Hence in general we will only describe which ones are aligned and assume the between
ones we align the maximum number of zeros. Let us give a further example to illustrate this. Take the
sequences:

X = 101010101
Y = 11010001

A LCS of X and Y is 1101001. This LCS can be obtained with the following alignment:

X 1 0 1 0 1 0 1 0 1
Y 1 1 0 1 0 0 0 1

(4.1)

We call the portions between aligned ones cells.
The first cell of alignment (4.1) is:

1
1

.

The first cell is an exception. It is the only cell which is not comprised between two pairs of aligned ones.
Instead it consists of the first pari of aligned ones and everything to the left there of. We only introduce
this special cell in order to simplify notations later on.
The second cell of alignment (4.1) is

0 1
1 1

The third cell of alignment (4.1) is
0 1
0 1

The fourth cell of alignment (4.1) is
0 1 0 1
0 0 0 1

.

Note that in the last example above, the second cell has one more zero in the X-part than in the Y -part.
The third cell has the same amount of zeros in both parts. The fourth cell has two zeros in the X-part
and three zeros in the Y -part. Hence the X-part has one zero less. The difference of zeros between the
X-part and the Y -part for cell 2,3 and 4 in this order is 1, 0 and −1. Cell number 1 has no zeros. Hence
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the difference of zeros for cell number number 1 is equal to zero. The notation we are going to use is
to write the sequence (v1, v2, v3, v4) = (0, 1, 0,−1) for the alignment 4.1. More precisely, which one’s get
aligned with each other will be defined by indicating the differences of number of ones for each cell.

Let X and Y be given. As explained above, to every alignment (between X and Y )
corresponds a vector v := (v1, . . . , vk) that shows the number of cells in the alignment - k -
and the difference of zeros in the cells. And, vice versa, to each vector v = (v1, . . . , vk) ∈ Zk

corresponds a (possible empty) family of alignments. The alignments associated with
given v have the same pairs of aligned ones. Between consecutive pairs of aligned ones,
they align a maximum number of zeros. Hence, all the alignments associated with one
v have the same score. In a slight imprecision we will often speak of one alignment for
the whole family associated with v. The number vi indicates the difference in the number
of zero’s in cell number i. Of course, the alignment associated with v might in some
cases not be feasible because it attempt to align ones from the sequences X1, X2, . . . and
Y1, Y2, . . . which are outside the strings X and Y . (Hence they might align an Xi with an
Yj for which i > n or j > n.)
Let us next define rigourously how v = (v1, . . . , vk) ∈ Zk defines an alignment. Recall
that X and Y are fixed.

Definition 4.1 Let k ∈ N and let v = (v1, . . . , vk) ∈ Zk. We write |v| for the length of
v. Hence, if v ∈ Rk, then |v| = k.
Define π(i), ν(i) by induction on i

• start with: π(0) = ν(0) = 0

• for i < k, once π(i), ν(i) is defined, let (π(i + 1), ν(i + 1)) be the smallest (s, t) such
that all of the following three conditions are satisfied:

1. We have π(i) < s and ν(i) < t.

2. Xπ(i+1) = Yν(i+1) = 1

3. The difference between the the number of zeros of X in the interval [π(i), s]
and the number of zeros of Y in the interval [ν(i), t] is equal to vi+1. Hence,

vi+1 :=

(s− π(i))−
s∑

j=π(i)

Xπ(j)

−

(t− ν(i))−
s∑

j=ν(i)

Yν(j)

 .

The cell number i is equal to the pair of strings:

C(i) :=
(
(Xπ(i−1)+1, . . . , Xπ(i)) , (Yν(i−1)+1, . . . , Yν(i)

)
.

The number of aligned zeros in the cell C(i), denoted by Sv(i) is the minimum between
the the number of zeros in the string Xπ(i−1)+1Xπ(i)+1 . . . Xπ(i) and the number of zeros in
the string Yν(i−1)+1Yν(i)+1 . . . Yν(i).
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Hence, the number of aligned zeros is equal to

S(i) := min

(π(i)− π(i− 1))−
π(i)∑

j=π(i−1)+1

Xj , (ν(i)− ν(i− 1))−
ν(i)∑

j=ν(i−1)+1

Ys

 .

To show that all π(i), ν(i), C(i), S(i) depend on v, we write also

πv(i) := π(i), νv(i) :=, Cv(i) := C(i), Sv(i) := S(i).

To summarize: every v ∈ Zk defines an alignment of ones. This alignment corresponds
to aligning the one Xπv(i) with Yνv(i) for each i = 1, 2, . . . , k. Between the aligned ones
we assume that we align as many zeros as possible. Hence in cell number i, we align
Sv(i) zeros. Searching through all the alignment in ∪kZk defined in this way, yields the
optimal alignment. We have to take care of the zeros after the last cell. We denote by rv

the maximal number of zeros we can align, which come after the last cell. Hence when
v ∈ Zk is such that πv(k), νv(k) ≤ n, we define rv to be the minimum between the number
of zeros in the string Xπv(k) . . . Xn and the number of zeros in the string Yνv(k) . . . Yv(n).
The score obtained by the alignment πv, νv can be calculated as follows. Each cell gives
one aligned pair of ones. Hence, this part contributes |v|, the length of the alignment.

Then we add for each cell the number of zeros aligned. This gives
∑|v|

i=1 Sv(i). Finally we
need to add the remaining amount of zeros rv which can be aligned but which come after
the last cell. Of course the alignment can only align letters from the text X = X1 . . . Xn

and Y = Y1 . . . Yn. Hence, if v ∈ Zk is an alignment, then πv(k) and νv(k) should not
fall outside the interval [0, n], i.e. πv(k) ≤ n and νv(k) ≤ n. Such an v ∈ Zk is called
admissible. Let V be the set of all admissible alignments, i.e.

V := {v ∈ ∪k>0Zk : π(|v|), ν(|v|) ≤ n}. (4.2)

The set V , obviously, depends on X and Y . The next statement trivially holds.

Proposition 4.1

Ln = max
v∈V

|v|+ |v|∑
i=1

Sv(i) + rv

 . (4.3)

The score of an alignment v ∈ V is defined the following way:

Sv := |v|+
|v|∑
i=1

Sv(i) + rv.

We say an alignment v is optimal if Sv = Ln.

Let now X1, X2, . . ., Y1, Y2, . . . be independent iid sequences of Bernoulli random variables
with parameter ε. Let v ∈

⋃
k>0 Zk be fixed and define |v| random cells Cv(1), . . . , Cv(|v|)

as in Definition 4.1. One of the main advantages of defining alignments the way described
is that the cells Cv(1), Cv(2), . . . , Cv(|v|) are independent so that we can use large deviation
techniques.
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4.1 An useful approach

In the sequel, we are often going to use the following way of modelling random sequences
X1, X2, . . . and Y1, Y2, . . .. Let ξ1, ξ2, . . . be the sequence of iid random variables with the
distribution of ξ being following:

P (ξ = ∅) = 1− ε, P (ξ = 1) = ε(1− ε), . . . P (ξ = n) = εn(1− ε), . . . .

So, the distribution of ξi is geometric. The random variables ξi model the number of 1’s
between the 0’s: ξ1 is the number of ones before the first 0, ξ2 is the number of ones between
the first and second 0 and so on. For example, if (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) = (∅, 2, ∅, ∅, 1, ∅),
then the corresponding sequence X1, X2, . . . begins with

∅, 0, 2, 0, ∅, 0, ∅, 0, 1, 0, ∅, 0 = 0, 1, 1, 0, 0, 0, 1, 0, 0.

Similarly, let η1, η2, . . . model the sequence Y1, Y2, . . . . With such construction, it is rel-
atively easy to model cells. Indeed, to get a 0 cell, we look for the smallest time i such
that ξi 6= ∅, ηi 6= ∅. So, the length of a 0-cell is modeled by the random variable T , where

T := min{i = 1, 2, . . . : ξi 6= ∅, ηi 6= ∅}. (4.4)

To model a −u cell (u > 0), we look for the smallest time T such that ξi 6= ∅ and ηu+i 6= ∅.
So, the length of a −u-cell is modeled by the random variable T , where

T := min{i = 1, 2, . . . : ξi 6= ∅, ηu+i 6= ∅}. (4.5)

5 Preliminary bounds

A rough lower bound for the typical length of the LCS, is obtained as follows.

1. First only align all the zeros you can. You get approximately a common subsequence
of length (1− ε)n consisting only of zero’s.

2. Having aligned as many zeros as you could in 1, take the ones which can be aligned
without disturbing the already aligned zeros. The sequence X has approximatively
εn one’s. The probability that a one in X can be matched with a one in Y without
disturbing the already existing alignment of zero’s is ε. Hence, the number of ones
we get to align in this way is about ε2n.

In the way described above we get a common subsequence of length about

[(1− ε) + ε2]n. (5.1)

To stay on the safe side, we bound Ln by a quantity that is little smaller than (5.1); we
take [(1− ε) + 0.9ε2]n.
Let E denote the event that the LCS is longer than

(
(1− ε) + 0.9ε2

)
n, i.e.

E := {Ln ≥
(
(1− ε) + 0.9ε2

)
n}.
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Lemma 5.1 For every 0.5 ≥ ε > 0 there exists a constant a(ε) > 0 such that

P(E) ≥ 1− 16e−an.

Proof. Let α ∈ (0, 0.5). Define the events (they depend on α)

Ex
2 :=

{
|

n∑
i=1

Xi − nε| ≤ αεn
}

Ey
2 :=

{
|

n∑
i=1

Yi − nε| ≤ αεn
}

.

When Ex
2 holds, then X1, . . . , Xn has at least (1− (1 + α)ε)n zeros and at least ε(1−α)n

ones. On Ey
2 , the same holds for Y1, . . . , Yn. Let

E2 := Ex
2 ∩ Ey

2 .

When E2 holds, then the longest common subsequence is at least (1− (1+α)ε)n, because
at least so many zeros can be aligned.
Let τx be the position of the last 0 in X1, . . . , Xn, let τy be the position of the last 0 in
Y1, . . . , Yn. Define

Ex
1 := {n− τx ≤ αεn}, Ey

1 := {n− τy ≤ αεn}, E1 := Ex
1 ∩ Ey

1 .

When E1 ∩ E2 holds, then X and Y both have at least ε(1 − α)n ones and at least
m := ε(1− 2α)n of them are located before the last 0. In terms of ξi’s and ηi’ as defined
in subsection 4.1, it means that

Ex
1 ∩ Ex

2 ⊂ {
Nx

0∑
i=1

ξi ≥ m}, Ey
1 ∩ Ey

2 ⊂ {
Ny

0∑
i=1

ηi ≥ m}, (5.2)

where Nx
0 and Ny

0 are the number of zero’s in X and Y respectively. Here ∅ is identified
with 0. We are interested in calculating the probability that among these m ones at least
ε(1−α)m can be aligned without destroying the already existing alignment of zero’s. This
event is E3 := Ex

3 ∩ Ey
3 , where

Ex
3 :=

{ Nx
0∑

i=1

ηiI{ηi≤ξi} ≥ mε(1− α)
}
, Ey

3 :=
{ Ny

0∑
i=1

ηiI{ξi≤ηi} ≥ mε(1− α)
}
.

(here, again ∅ is identified with 0). The event Ex
3 states that before the last zero in X,

at least ε(1− α)m ones can be aligned and the event Ey
3 states that before the last zero

in Y , at least ε(1− α)m ones can be aligned. If they both hold, then at least ε(1− α)m
ones before the last aligned zero can be aligned, so

E1 ∩ E2 ∩ E3 ⊂ {Ln ≥ (1− (1 + α)ε)n + ε(1− α)m} =: E(α).

Let us bound the probabilities. Clearly

P(Ey
1 ) = P(Ey

2 ) = 1− exp[αεn− 1].
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By Höffding’s inequality,

P
(
(Ex

2 )c
)
≤ 2 exp[−2(αε)2n], P

(
(Ey

2 )c
)
≤ 2 exp[−2(αε)2n].

Let X be such that at least m one’s are located before the last zero. Then, it is not hard
to see that

P
(
(Ex

3 )c|X) = P(
m∑

i=1

ζi < mε(1− α)) ≤ exp[−2(εα)2m],

where ζi are i.i.d. Bernoulli random variable with parameter ε. The last inequality
follows from Höffding’s inequality. Hence, from (5.2), it follows that P

(
(Ex

3 )c|Ex
1 ∩Ex

2

)
) ≤

exp[−2(εα)2m] and

P
(
(Ex

3 )c) ≤ exp[−2(εα)2m]+P(Exc
2 )+P(Exc

3 ) ≤ exp[−2(εα)2ε(1−2α)n]+4 exp[−2(αε)2n].

By symmetry, the same bound holds for P
(
(Ey

3 )c) and so

P(Ec(α)) ≤ 2 exp[−(αε)n] + 12 exp[−2(αε)2n] + 2 exp[−2(εα)2ε(1− 2α)n]

≤ 16 exp[−2(εα)2ε(1− 2α)n].

Let α(ε) be so small that (1− (1 + α)ε)n + ε(1− α)ε(1− 2α) > 1− ε + 0.9ε2, if α < αo.
So, if α < αo, then E(α) ⊂ E and

P(Ec) ≤ 16 exp[−2(εα)2ε(1− 2α)n] = 16 exp[−an],

where a(ε) = 2(εα)2ε(1− 2α).

Note that lemma 5.1 gives an lower bound to Chvatal-Sankoff constant: (1 − ε) + ε2.
For ε = 0.5, the lover bound is 0.75.

If 0 < α ≤ 0.8ε, then on E2

Nx
0 ≤ n[(1− ε) + 0.8ε2], Ny

0 ≤ n[(1− ε) + 0.8ε2], (5.3)

where Nx
0 and Ny

0 are the number of zeros’s in X and Y , respectively. So, if 0 < α ≤ 0.8
and E(α) ∩ E holds, then (5.3) and Ln ≥ (1− ε) + 0.9ε2 simultaneously hold. Then

N0

2
=

Nx
0 + Ny

0

2
≤
(
(1− ε) + (0.8ε2)

)
n <

(
(1− ε) + 0.9ε2

)
n ≤ Ln, (5.4)

where N0 is the number of 0’s in X and Y . Consider now an optimal alignment (v1, . . . , vk).
Then k is the number of aligned 1’s, and there is at least

∑k
i=1 |vi| not aligned 0’s. Hence,

the number of aligned 0’s is at most N0 −
∑k

i=1 |vi|, and so

Ln ≤
N0 −

∑k
i=1 |vi|

2
+ k =

N0

2
−
∑k

i=1 |vi|
2

+ k.
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The last equation together with (5.4) implies

k∑
i=1

|vi| < 2k. (5.5)

Thus, in this case any optimal alignment must satisfy (5.5).

Let us formalize the foregoing argument. We define V (k) ⊂ Zk as follows

V (k) = {(v1, v2, . . . , vk) ∈ Z | |v1|+ . . . + |vk| ≤ 2k}. (5.6)

We define the set Vn

Vn :=
⋃

k≥0.1ε2n

V (k). (5.7)

Lemma 5.2 There exists an event E4 such that

P(E4) ≥ 1− 16 exp[−an]− exp[−(0.8ε)2εn]

and on E4

Ln = max
v∈Vn∩V

(
|v|+

|v|∑
i=1

Lv(i) + rv

)
.

Proof. Take E4 := E2(0.8ε) ∩ E. By (5.5), every optimal v such that |v| = k belongs to
V (k). So, all optimal alignments belong to ∪kV (k). From (5.4)

Ln −
N0

2
≥ 0.1ε2n,

implying that the optimal alignment must have at least 0.1ε2n 1′s. So, k must be greater
that 0.1ε2n. So, all optimal alignments belong to ∪k≥0.1ε2V (k) = Vn. Proposition 4.1 now
finishes the proof.

Lemma 5.3
|V (k)| < 2kC3k

k < 16k, (5.8)

Proof. Let
V +(k) = {(v1, . . . , vk) ∈ Z+ : v1 + · · ·+ vk ≤ 2k},

where Z+ = {0, 1, . . .}. Thus, |V +(k)| is number of k-dimensional vectors with compo-
nents being non-negative integers and summing up at most 2k. By adding one more
component, we get that |V +(k)| is number of k + 1-dimensional vectors with components
being non-negative integers and summing up exactly 2k. The number of such vectors is
C2k+k+1−1

k+1−1 = C3k
k . So,

|V +(k)| = C3k
k < 23k.

For every k-dimensional vector, there are at most 2k ways to assign the signs. So

V (k) ≤ 2kC3k
k < 24k = 16k.
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6 The effect of changing a one into a zero

6.1 The events Bn and An

In this subsection we explain why theorem 2.2 holds. We want to show, that typically,
when changing a randomly picked one into a zero, the score Ln tends to increase.

Example. Take the two texts X = 01000001 and Y = 0010101. An optimal alignment is given by

X 0 1 0 0 0 0 0 1
Y 0 0 1 0 1 0 1

The first cell in this alignment is
0 1

0 0 1

whilst the second cell is:
0 0 0 0 0 1
0 1 0 1

Assume that the one which we switch into a zero is Y5. This is a “non-aligned” one contained in the
Y -part of cell number two. By switching Y5 into a zero the LCS increases by one. The reason is that in
cell number two, we can now align three zeros instead of only two:

0 0 0 0 0 1
0 0 0 1

In this example, the score gets increased because Y5 is on the side of the cell with strictly less zeros. We
say that Y5 is on the side of a cell with less zeros. Hence adding on zero on that side increases the score
by one. Let us imagine next that instead of Y5 the one chosen would be X2. This one is “used” in the
alignment and hence switching it could result in decreasing the optimal score Ln by one. (This is not
necessary though, since there could exist another alignment where the effect of switching X2 would not
be detrimental to the score.) We call the ones which are “used” in the alignment, ones that are matched
by the alignment”. In our example, the matched ones are: X2 is matched with Y3 and X8 is matched
with Y7, Y5 is not matched.

From our example, it should be clear what we need to do: To show that the score has
a tendency to increase when we switch a randomly picked one, we need to prove that
typically, there are many more ones which will increase the score than ones which will
decrease the score if switched. In other words, we need to show that in an optimal
alignment, there typically are much less aligned ones as the ones that are on a side of a
cell with less zeros.
Let N−

v (i) denote the number of ones on the side with less zeros in cell number i. Formally,
let k ∈ N and let v = (v1, . . . , vk) ∈ Zk. For i ∈ [0, k], we define

N−
v (i) :=


0, if vi = 0 (there is no side with less zeros);∑ν(i+1)−1

j=ν(i)+1 Yj, if vi > 0 (Y part has less zeros);∑π(i+1)−1
j=π(i)+1 Xj, if vi < 0 (X part has less zeros).
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The total number of ones on sides with less zeros is

N−
v :=

|v|∑
i=1

N−
v (i).

Recall now the set Bn from theorem 2.2. The set Bn contains the outcomes of X and Y
such that there exists an optimal alignment v having the proportion of matched ones below
α2, but more than α1% of ones on cell-sides with less zeros. More formally: (x, y) ∈ Bn

if there exists an v ∈ V (x, y) (v is admissible) such that

1. The alignment v is optimal: Lv = Ln;

2. The proportion of aligned ones is below α2: |v| ≤ α2N1, where N1 is the total
number of ones in x and y;

3. The proportions of ones on sides with less ones is above α1: N−
v ≥ α1N1.

From what we explained it follows directly that when (x, y) ∈ Bn then

P(L̃− L = 1|X = x, Y = y) ≥ α1 and P(L̃− L = −1|X = x, Y = y) ≤ α2

i.e. (2.1) and (2.2) hold. Hence, what is left to prove is that the event {(X, Y ) ∈ Bn} has
big probability. In other words, theorem 2.2 is proven if we show that

P(An) ≥ 1− exp[−c1n], where c1 > 0, An := {(X, Y ) ∈ Bn}. (6.1)

6.2 Breaking cells

The rest of the paper is devoted to proving (6.1). The main problem is that we could
easily not have enough ones on the sides with less zeros. Let us look at an example.

Example. Take the texts X = 00101001001001 and Y = 00100100010101. Take the following opti-
mal alignment

X 0 0 1 0 1 0 0 1 0 0 1 0 0 1
Y 0 0 1 0 0 1 0 0 0 1 0 1 0 1

The first cell is
0 0 1
0 0 1

The second cell is
0 1 0 0 1 0 0 1
0 0 1 0 0 0 1

The third cell is
0 0 1
0 1 0 1

All the cell in the above alignment have the same number of zeros. Hence N−
v = 0. Now there is a way

to remedy to this problem. Take cell number two. There are two ones which are “quasi” aligned: X8

and Y6. These two ones are only one position away from being aligned. So, if we align them, instead of
the pair of zeros X7 and Y7. The score remains the same. When we align the pair of ones X8 and Y6
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instead of the pair of zeros X7 and Y7, we split cell number two into two cells. This is what happens to
cell number two:

0 1 0 0 1 0 0 1
0 0 1 0 0 0 1

The old cell number two is split into two cells: The new cell number two and the new cell number 3. The
old cell number three does not change but i s renamed and becomes cell number 4. The new cell number
two is equal to:

0 1 0 0 1
0 0 1

The new cell number three is
0 0 1
0 0 0 1

The advantage of breaking up a cell into two in this way, is that the new cells have different number of
zeros on each side. Hence, N−

v increases in the process whilst Lv remains the same. Hence the breaking
up process can help up get ride of the problem of having to may cells with the same number of zeros.

Let us define what we say in the previous numerical example in a precise fashion.

Definition 6.1 Let k ∈ N, v ∈ Zk, i ≤ k and vi = 0. We say that cell i of v can be
broken up if there exists j and j′ satisfying all of the following

1. Xj = Yj′ = 1

2. π(i) < j < π(i + 1) and ν(i) < j′ < ν(i + 1)

3. The difference between the number of zeros in the strings

Xπ(i)+1Xπ(i)+2 . . . Xj−1

and
Yν(i)+1Yν(i)+2 . . . Yj′−1

is one or minus one. Hence

1 =

∣∣∣∣∣∣
j − π(i)−

j∑
l=π(i)+1

Xl

−

j′ − ν(i)−
j′∑

l=ν(i)+1

Yl

∣∣∣∣∣∣
A cell which has different number of zeros in its X-part and in its Y -part is called a
non-zero cell. We say that an alignment v ∈ Zk has more than 1% non-zero cells if

|{ i ∈ [1, k] | vi 6= 0 }| ≥ 0.01k.

Recall the definition of Vn in (5.7). Let V1% be the subset of Vn consisting of the alignments
of V which have at least 1% of non-zero cells, i.e.

V1% := {v ∈ Vn | v has more than 1% non− zero cells} .

Let
V c

1% := V − V1%.
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6.3 The events

Recall that for a vector v we associate |v| random cells Cv(1), . . . , Cv(|v|) defined as a
function of random i.i.d, Bernoulli random sequences X1, X2, . . . and Y1, Y2, . . .. In the
following we define some events that capture the typical behavior of these random cells.

Definition 6.2

• Let D be the event that for all v ∈ V c
1%, we have that at least 1% of the cells can be

broken up. So,

D :=
⋂

v∈V c
1%

Dv,

where Dv is the event that at least 1% of the cells Cv(1), . . . , Cv(|v|) can be broken
up.

• Let F be the event that every v ∈ V1% has at least 2α1% of ones in Cv(1), . . . Cv(|v|)
on a side of less zeros. Hence,

F :=
⋂

v∈V1%

Fv,

where Fv is the event that

N−
v ≥ 2α1

(πv(|v|)∑
j=1

Xj +

νv(|v|)∑
j=1

Yj

)
.

• Let G be the event that every v ∈ V1% has not more than α2% of matched ones.
Hence

G :=
⋂

v∈V1%

Gv,

where Gv is the event that

|v| ≤ α2

(πv(|v|)∑
j=1

Xj +

νv(|v|)∑
j=1

Yj

)
.

• Let K be the event that for every optimal alignment v we have that the number of
ones after the last cell is less than 0.1α1% of the total number of ones. Hence,

K =
⋂

v∈V ∗

Kv,

where V ∗ is the set of optimal alignments and Kv is the event that

Rv :=
n∑

j=π(|v|)+1

Xj +
n∑

j=ν(|v|)+1

Yj ≤ α1

(
n∑

j=1

Xj +
n∑

j=1

Yj

)
.
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Recall that v is optimal if Ln = Lv and v is admissible, i.e. v ∈ V or, equivalently,
πv(|v|), νv(|v|) ≤ n.

In the next section, we shall prove that all the defined events hold with high probability.
Note the importance of the breaking up notion. The events F and G together with the
event K basically prove (2.1) and (2.2) for the case when the optimal alignment has at
least 1% non-zero cell, i.e it belongs to V1%. But every optimal alignment need not belong
to V1%. However, the event D ensures that for every alignment from V c

1%, there exists
another alignment v′ ∈ V1% with the same score. So, when the event D holds, we can
restrict the search space to V1% instead of using the whole set Vn.

The main combinatorial lemma of this paper is

Lemma 6.1
E4 ∩D ∩ F ∩G ∩K ⊂ An. (6.2)

Proof. When E4 holds, then by lemma 5.2 any optimal alignment belongs to the set Vn,
i.e. V ∗ ⊂ V ∩Vn. Let v ∈ V ∗ be optimal. Suppose that v ∈ V ∩V c

1%. If Dv holds, then at
least 1% of the cells can be broken up. That means, there exists another v′ ∈ V1% with
the same score, i.e. Lv = Lv′ . Hence, we can assume v ∈ V ∩ V1%. If Fv ∩Kv holds, then
N1, the number of ones in X and Y satisfies

N1 = Rv +

πv(|v|)∑
j=1

Xj +

νv(|v|)∑
j=1

Yj ≤ α1N1 +

πv(|v|)∑
j=1

Xj +

νv(|v|)∑
j=1

Yj ≤ α1N1 +
N−

v

2α1

implying that
N−

v ≥ (1− α1)2α1N1 ≥ α1N1,

because α1 ≤ 2
3
. Then P(L̃ − L = 1|X = x, Y = y) ≥ α1 i.e. (2.2) holds. If Gv holds,

then P(L̃− L = −1|X = x, Y = y) ≤ α2 i.e. (2.1) holds.

7 Bounding the probabilities

From (6.2) it follows that

P(Ac
n) ≤ P(Ec

4) + P(Dc) + P(F c) + P(Gc) + P(Kc) (7.1)

By lemma 5.2, P(Ec
4) is exponentially small in n. So, it only remains to prove that P(Dc),

P(F c), P(Gc) and P(Kc) are exponentially small in n, provided ε is sufficiently small. In
the following we show the existence of finite constants CD, CF , CG, CK as well as positive
constants cD, cF , cG, cK that all depend on ε such that

P(Dc) ≤ CD exp[−cDn], P(F c) ≤ CF exp[−cF n]

P(Gc) ≤ CG exp[−cGn], P(Kc) ≤ CK exp[−cKn].

(Lemmas 7.3, 7.8, 7.9,7.10, respectively.) Moreover, the bound P(Gc) ≤ CG exp[−cGn]
holds only for ε being sufficiently small. With lemma 5.2, this finishes the proof of theorem
2.2.
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7.1 Combinatorics

Let
I(v1, . . . , vk) = |{i ∈ {0, . . . , k} : vi 6= 0}|.

Lemma 7.1

|V c
1%(k)| ≤ exp[(2.01 · 0.0315 + 0.7 · 0.01)k] = exp[(0.063315 + 0.007)k] = exp[0.070315k],

(7.2)
where

V c
1%(k) := V (k) ∩ {(v1, . . . , vk) ∈ Z : I(v1, . . . , vk) ≤ 0.01k}.

Proof. Without loss of generality assume that 0.01k is an integer. Consider the set of
0.01k-dimensional vectors with components being non-negative integers and summing up
at most 2k. Let this set be

W+(k) := {(w1, . . . , w0.01k) ∈ Z+0.01k
:

0.01k∑
i=1

wi ≤ 2k}.

We know that

|W+(k)| = C2k+0.01k+1−1
0.01k+1−1 = C2.01k

0.01k = C2.01k
0.01
2.01

(2.01)k
< 22.01kH( 0.01

2.01
) < 22.01H(0.005)k,

where H is the binary entropy function. There is 20.01k ways to assign the signs. So,

|W (k)| = 2((2.01)H(0.005)+0.01)k,

where

W (k) := {(w1, . . . , w0.01k) ∈ Z0.01k :
0.01k∑
i=1

wi ≤ 2k}.

Obviously,
|V c

10%(k)| = |W (k)|.

So

|V c
1%(k)| = 2((2.01)H(0.005)+0.01)k = exp[ln 2(2.01H(0.005) + 0.01)k]

= exp[(2.01He(0.005) + ln 2(0.01))k].

Since (ln 2)H(0.005) = He(0.005) ≤ 0.0315 and ln 2 < 0.7, we get (7.2).

7.2 The event D

Recall that Dv denotes the event that 1% of the cells of the alignment v can be broken
up.
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Lemma 7.2 Let v ∈ V c
1%(k). Then

P(Dc
v) ≤ exp[−0.089k]. (7.3)

Proof. Let us calculate the probability that a 0-cell is breakable. For this, we use the
approach introduced in subsection 4.1. Recall the definition of T in (4.4). With this
construction, being breakable means the existence of (ξi, ηi), (ξi+1, ηi+1) such that

ξi 6= ∅, ηi = ∅, ξi+1 = ∅, ηi 6= ∅

or
ξi = ∅, ηi 6= ∅, ξi+1 6= ∅, ηi = ∅.

Let

U1 : = min{i = 2, . . . : ξi−1 6= ∅, ηi−1 = ∅, ξi = ∅, ηi 6= ∅}
U2 : = min{i = 2, . . . : ξi−1 = ∅, ηi−1 6= ∅, ξi 6= ∅, ηi = ∅},
U : = U1 ∧ U2.

Let
X := {∅, 1, 2, . . .}, X+ := {1, 2, . . .}.

With those stopping times, the probability that a 0 cell is breakable is P(U < T ). Let us
estimate it (from below).
An easy way is to consider the disjoint pairs of indexes (1, 2), (3, 4), . . . , (2j−1, 2j), . . . and
restrict the stopping time U take the even integers only. So, we define the independent
random vectors

Zj = (ξ2j−1, η2j−1, ξ2j, η2j), j = 1, 2, . . .

U ′
1 : = min{j = 1, 2, . . . : ξ2j−1 6= ∅, η2j−1 = ∅, ξ2j = ∅, η2j 6= ∅} = min{j = 1, 2, . . . : Zj ∈ A1}

U ′
2 : = min{i = 1, 2, . . . : ξ2j−1 = ∅, η2j−1 6= ∅, ξ2j 6= ∅, η2j = ∅} = min{j = 1, 2, . . . : Zj ∈ A2},

U ′ : = U ′
1 ∧ U ′

2 = min{j = 1, 2, . . . : Zj ∈ A2 ∪ A1},
T ′ : = {j = 1, 2, . . . : Zj ∈ B1 ∪B2},

where

A1 := X+×∅×∅×X+, A2 := ∅×X+×X+×∅, B1 = X+×X+×X×X , B2 = X×X×X+×X+.

Clearly,
U ′ ≥ U, P(U < T ) ≥ P(U ′ < T ) = P(U ′ < T ′).

Since the random variables Zj are independent, the latter probability is easy to calculate:

P(U ′ < T ′) =
P(Z1 ∈ A2 ∪ A1)

P(Z1 ∈ A2 ∪ A1) + P(Z1 ∈ B2 ∪B1)
=

2ε2(1− ε)2

2ε2(1− ε)2 + 2ε2 − ε4
=

2(1− ε)2

2(1− ε)2 + 2− ε2
.
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It is easy to check that the function

ε 7→ q(ε) :=
2(1− ε)2

2(1− ε)2 + 2− ε2

is decreasing in [0, 1
2
], so

q(ε) ≥
2(1

2
)2

2(1
2
)2 + 2− (1

2
)2

=
2

9
.

Let v = (v1, . . . , vk) ∈ V c
1%. This means that the number of zero cells m is at least 0.99k.

Let J be the index set of zero-cells and let for every j ∈ J , Ij be the Bernoulli variable
that is one if and only if the cell vj is breakable. Clearly, the random variables Ij are iid
and p(ε) := P (Ij = 1) ≥ q(ε). Let

c(ε) := q(ε)− 0.01 ≥ 2

9
− 0.01 =: c.

With this notation, using Höffding’s inequality

P(Dc
v) = P

(∑
j∈J Ij

m
< 0.01

)
= P

(∑
j∈J Ij

m
− p(ε) < 0.01− p(ε)

)
≤ P

(∑
j∈J Ij

m
− p(ε) < 0.01− q(ε)

)
= P

(∑
j∈J Ij

m
− p(ε) < −c(ε)

)
≤ exp[−2c2(ε)m]

≤ exp[−2c2(ε)0.99k] = exp[−1.98c2(ε)k] ≤ exp[−1.98c2k] ≤ exp[−0.089k].

Lemma 7.3 There exists CD < ∞ such that

P(Dc) ≤ CD exp[−0.018685(0.1ε2)n]. (7.4)

Proof.
D(k) :=

⋂
v∈V c

1%

Dv.

With (7.2) and (7.3), we get

P(Dc(k)) ≤
∑

v∈V c
1%

(k)

P(Dc
v) ≤ exp[(0.070315− 0.089)k] = exp[−0.018685k].

Since we consider k ≥ (0.1ε2)n,

P(Dc) ≤
∑

k≥(0.1ε2)n

P(Dc(k)) ≤
∑

k≥(0.1ε2)n

exp[−0.018685k] = CD exp[−0.018685(0.1ε2)n],

where
CD :=

(
1− exp[−0.018685]

)−1
.

25



7.3 The event F

In the following, we use the following large deviation result proven in Appendix.

Lemma 7.4 (A large deviation for geometric random variables)
Let G1, . . . , Gm be iid random variables with geometric distribution G(p). There exists
0 < α0 < 1 such that for every α ≤ α0, it holds

P
( m∑

i=1

Gi ≤
α

p
m
)
≤ exp[−300m] ∀m (7.5)

Moreover, for every C > 0 there exists 1 < A0(C) < ∞ such that for every A > A0

P
( m∑

i=1

Gi >
A

p
m
)
≤ exp[−Cm] ∀m. (7.6)

Let u be a non-negative integer. Let us model an −u-cell. Recall the random variables
ξi and ηi as in subsection 4.1 and recall the random variable T as in (4.5), which is the
smallest time T such that ξi 6= ∅ and ηu+i 6= ∅. Let Tx(j) be the index of j-th ξi such that
ξi 6= ∅. So

Tx(1) = min{i ≥ 1 : ξi 6= ∅}, . . . , Tx(j + 1) = min{i > Ty(j) : ξi 6= ∅}.

Let
ρ− := min{j = 1, 2, . . . : ηu+Tx(j) 6= ∅}. (7.7)

So, ρ− is the number of ξi’s (in the cell) that are not ∅. With this notation,

T = Tx(ρ
−).

For an −u cell, the number of 0-s in X is smaller then the number of 0’s in Y . Let us
estimate (below) the number of 1’s in X side, N−

1 . This number is clearly at least ρ−, so
N−

1 ≥ ρ−, where the equality holds if and only if

ξTx(j) = 1, j = 1, . . . , ρ−.

The random variable ρ− has geometric distribution with parameter ε. Indeed, since X
and Y are independent, from the right side of (7.7) follows

P(ρ− = n) = P(ηu+Tx(1) = ∅, . . . , ηu+Tx(n−1) = ∅, ηu+Tx(n) 6= ∅) = (1− ε)n−1ε.

Let v = (v1, . . . , vk). Let N−
v be the number of ones in the sides of fewer 0’s of non-0 cells.

Lemma 7.5 There exists a γ > 0 such that for every v = (v1, . . . , vk) ∈ V1% it holds

P(F c
1v) ≤ exp[−3k], where F1v = {N−

v ≥ γ

ε
k}. (7.8)
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Proof. Let v = (v1, . . . , vk) ∈ V1%. Let I be the index set of non 0-cells, |I| ≥ 0.01k. Let
us estimate (below) the number of 1’s in the side of fewer 0’s:

N−
v =

|v|∑
i=1

N−
v (i).

For a cell vi 6= 0, we have that N−
v (i) ≥ ρ−i , where ρ−i , i ∈ I are i.i.d. Geometrically

distributed random variables with parameter ε as in (7.7). So,

N−
v ≥

∑
i∈I

ρ−i . (7.9)

Let αo be as in Lemma 7.4. Take

m := 0.01k, γ := 100αo.

and apply Lemma 7.4:

P(F c
1v(γ, )) ≤ P

(∑
i∈I

ρ−i ≤
γ

ε
k
)

≤ P
(0.01k∑

i=1

ρ−i ≤
γ

ε
k
)

≤ P
( m∑

i=1

ρ−i ≤
γ

100ε
m
)

≤ P
( m∑

i=1

ρ−i ≤
αo

ε
m
)

≤ exp[−300(0.01)k]

= exp[−3k].

Let
F1(k) :=

⋂
v∈V1%∩V (k)

F1v, F1 :=
⋂

k≥(0.1ε2)n

F1(k).

By (5.8) and (7.8),

P(F1(k)c) ≤
∑

v∈V (k)

P(F c
v ) ≤ 16k exp[−3k] = exp[(ln 16− 3)k] ≤ exp[−0.2k].

Hence

P(F c
1 ) ≤

∑
k≥(0.1ε2)n

P(F1(k)c) ≤
∑

k≥(0.1ε2)n

exp[−0.2k] = C1,F exp[−0.2(0.1ε2)n], (7.10)
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where
C1,F := (1− exp[−0.2])−1.

Let v = (v1, . . . , vk) ∈ V (k) be given. Let Cv(1), . . . , Cv(k) be the corresponding cells.
Let ρ1, . . . , ρk be the number of non-empty ξi’ s in in the cell Cv(i). Clearly ρ1, . . . , ρk are
independent. The distribution of ρj is geometric with parameter ε, if vk ≤ 0. Otherwise,
there exists a Geometric random variable with parameter ε, say ρ−j such that ρ−j ≤ ρj ≤
ρ−j + vk. Since v ∈ V (k),

∑
j |vj| ≤ 2k. Let us estimate above ρv :=

∑k ρj.

Lemma 7.6 There exist constant B such that for every v = (v1, . . . , vk) ∈ V1% it holds

P(F c
2v) ≤ exp[−(ln 16 + 1)k], where F2v :=

{
ρv <

B

ε
k
}

.

Proof. Let B be such that B − 1 > A0(ln 16 + 1). By (7.6),

P(F c
2v) = P

( k∑
j=1

ρj ≥
B

ε
k
)

≤ P
( ∑

j:vj≤0

ρj +
∑

j:vj>0

(ρ−j + vj) ≥
B

ε
k
)

≤ P
( ∑

j:vj≤0

ρj +
∑

j:vj>0

ρ−j + 2k ≥ B

ε
k
)

≤ P
( ∑

j:vj≤0

ρj +
∑

j:vj>0

ρ−j ≥
B − 2ε

ε
k
)

≤ P
( ∑

j:vj≤0

ρj +
∑

j:vj>0

ρ−j ≥
B − 1

ε
k
)

≤ exp[−(ln 16 + 1)k].

Let

F2(k) :=
⋂

v∈V (k)

{
ρv <

B

ε
k
}

, F2 :=
⋂

k≥(0.1ε2)n

F2(k).

Then, by analogue of (7.10),

P(F c
2v) ≤

∑
v∈V (k)

P(F c
v3) ≤ exp

[
−k
(
(ln 16 + 1)− ln 16

)
] = exp[−k]

P(F c
2 ) ≤ C2F exp[−0.1ε2n],

where
C2F := (1− exp[−1])−1.

Next, we estimate above the random number of ones in the X side of a cells Cv(1), . . . , Cv(|v|).
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Lemma 7.7 There exists constant A < ∞ such that that for every v = (v1, . . . , vk) ∈ V1%

it holds

P

π(k)∑
j=1

Xj >
Ak

ε(1− ε)

 ≤ 2 exp[−(ln 16 + 1)k].

Proof. Let v = (v1, . . . , vk) ∈ V1%. Note

P(ξi = k|ξi 6= ∅) = εk−1(1− ε), k = 1, 2, . . . .

So, the number of 1’ s in X side of the cell Cv(j) is

ρ(j)∑
i=1

Gi, (7.11)

where Gi are iid Geometrically distributed r.v-s with parameter 1−ε independent of ρ(j).
Hence,

π(k)∑
j=1

Xj =

ρv∑
i=1

Gi. (7.12)

Let B be as in the previous lemma and let A be so big that

A

B
> Ao

(
(ln 16 + 1)ε

B

)
and define

F3v :=


B
ε

k∑
i=1

Gi <
A

ε(1− ε)
k

 .

From lemma 7.4 with m = B
ε
k

P(F c
3v) = P

( B
ε

k∑
i=1

Gi ≥
Ak

ε(1− ε)

)
= P

( B
ε

k∑
i=1

Gi ≥
k

(1− ε)

B

ε

A

B

)
= P

( m∑
i=1

Gi ≥
mA

B(1− ε)

)
≤ exp[−(ln 16 + 1)ε

B
m] = exp[−(ln 16 + 1)k].

Due to (7.12), for every v,

F2,v ∩ F3,v ⊂


π(k)∑
j=1

Xj ≤
Ak

ε(1− ε)

 =: F4,v.

Lemma 7.6 finishes the proof.

Let
F4(k) :=

⋂
v∈V (k)

F4v, F4 :=
⋂

k≥(0.1ε2)n

F3(k).
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Then, by analogue of (7.10),

P(F c
4 (k)) ≤

∑
v∈V (k)

P
( k∑

j=1

ρj ≥
B

ε
k
)
≤ 2 exp

[
−k
(
(ln 16 + 1)− ln 16

)
] = 2 exp[−k]

(7.13)

P(F c
4 ) ≤ 2C2F exp[−0.1(ε2)n]. (7.14)

Lemma 7.8 There exists α1 > 0 such that for a constant CF < ∞

P(F c) ≤ CF exp[−0.02ε2n].

Proof. It holds

F1,v ∩ F4,v ⊂
{

N−
v ≥ (1− ε)γ

A

π(k)∑
j=1

Xj

}
.

So,

F1 ∩ F4 ⊂
( ⋂

v∈V1%

F1,v

)
∩
( ⋂

v∈V1%

F4,v

)
=
⋂

v∈V1%

(
F1,v ∩ F4,v

)

⊂
⋂

v∈V1%

{
N−

v ≥ (1− ε)γ

A

π(k)∑
j=1

Xj

}
=: Fx

and by (7.10) and (7.14)

P(F c
x) ≤ P(F c

1 ) + P(F c
4 ) ≤ CF1 exp[−0.02ε2n] + 2CF2 exp[−0.1ε2n].

By symmetricity, P(F c
y ) ≤ CF1 exp[−0.02ε2n] + 2CF2 exp[−0.1ε2n], where

Fy :=
{

N−
v ≥ (1− ε)γ

A

π(k)∑
j=1

Yj

}
.

Thus

Fx ∩ Fy ⊂
{

2N−
v ≥ (1− ε)γ

A

π(k)∑
j=1

(Xj + Yj)
}
⊂
{

N−
v ≥ 2α1

π(k)∑
j=1

(Xj + Yj)
}

= F,

where

α1 :=
γ

8A
≤ (1− ε)γ

4A
, (7.15)

provided ε ≤ 0.5 and

P(F c) ≤ 2CF1 exp[−0.02ε2n] + 4CF2 exp[−0.1ε2n] < (2CF1 + 4CF2) exp[−0.02ε2n].
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7.4 The event G

We use the notations introduced in the previous subsection. Let α1 be as in (7.15). Fix
α2 < α1.

Lemma 7.9 There exists an constant CG < ∞ and εo(α2) > 0 such that for every ε ≤ εo

P(Gc) ≤ CG exp[−(300− ln 16)(0.1)ε2n].

Proof. Let v ∈ V (k). From (7.12)

π(k)∑
j=1

Xj =

ρv∑
j=1

Gi ≥ ρv =
k∑

i=1

ρj ≥
k∑

i=1

ρ−j .

Let

Gv :=
{

k ≤ 2α2

π(k)∑
j=1

Xj

}
=
{ k

2α2

≤
ρv∑
i=1

Gi

}
.

Then

P(Gc
v) ≤ P

( k∑
i=1

ρ−j <
k

2α2

)
= P

( k∑
i=1

ρ−j <
ε

2α2

1

ε
k
)
.

Let αo be as in Lemma 7.4. Let εo < 2α2 be such that

εo

2α2

= αo.

Then, by Lemma 7.4, for every ε ≤ εo,

P(Gc
v) ≤ exp[−300k].

Let

G(k) :=
⋂

v∈V (k)

Gv,
⋂

k≥0.1ε2

G(k) =
⋂

v∈Vn

G(k) ⊂
⋂

v∈V1%

{
|v| ≤ 2α2

π(k)∑
j=1

Xj

}
=: Gx.

There exists a constant 0.5CG such that, for ε ≤ εo,

P(Gc
v(k)) ≤ exp[−(300− ln 16)k], P(Gc

x) ≤ 0.5CF exp[−(300− ln 16)(0.1ε2)n].

Similarly P(Gc
y) ≤ 0.5CG exp[−(300− ln 16)(0.1ε2)n], where

Gy :=
⋂

v∈V1%

{
|v| ≤ 2α2

π(k)∑
j=1

Yj

}
.

Since G := Gx ∩Gy, we have that

P(F c) ≤ CG exp[−(300− ln 16)(0.1ε2)n],

provided ε ≤ εo.
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7.5 The event K

Lemma 7.10 There exists a constant CK such that

P(Kc) ≤ CK exp[−cKn],

where cK > 0 is an constant, depending on ε.

Proof. Let v be an optimal alignment of X and Y . Consider the sequences after the last
cell:

Xπ(|v|)+1, Xπ(|v|)+2, . . . , Xn and Yν(|v|)+1, Yν(|v|)+2, . . . , Yn. (7.16)

Writing these sequences in terms of ξi and ηi, we note that there are no i such that ηi 6= ∅
and ξi 6= ∅. Otherwise there would be one more cell, which contradicts the optimality of
v. Hence, Xπ(|v|)+1, Xπ(|v|)+2, . . . , Xn and Yν(|v|)+1, Yν(|v|)+2, . . . , Yn can be written as

ξ1, 0, ξ2, 0, . . . , ξUx and η1, 0, η2, 0, . . . , ηUy

respectively, where Ux and Uy are the random times that satisfy Ux < T and Uy < T with
T being as in (4.4). Hence, conditioning on v, we note that the random number of ones
in the (7.16),

R :=
n∑

i=π(|v|)+1

Xi +
n∑

i=ν(|v|)+1

Yi,

is bounded by the number on ones in a 0-cell, i.e. P(R > r|v) ≤ P(ζ > r), r = 0, 1, 2, . . .,
where

ζ :=
T∑

i=1

(ξi + ηi).

(Here, by summing ∅ is identified with 0). Since the random variable R does not depend
on v, it holds

P(R > r) ≤ P(ζ > r) ∀r ∈ N. (7.17)

Let

N1v :=

π(|v|)∑
i=1

Xi +

ν(|v|)∑
i=1

Yi.

Hence, the total number of ones in X and Y , N1 = N1v + R. Clearly, R ≤ α1N1 =
α1(N1v + R) holds if and only if

R ≤ α1

1− α1

N1v.

Obviously N1v ≥ 2|v| implying that

P(Kc) ≤ P
(
R >

2α1

1− α1

|v|
)
.
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If E4 holds, then every optimal v satisfies |v| ≥ (0.1)ε2n. Hence, by (7.17),

P(E4 ∩Kc) ≤ P
(
R >

2β

1− β
(0.1)ε2n

)
≤ P

(
ζ >

2α1

1− α1

(0.1)ε2n
)
→ 0.

So

P(Kc) ≤ P
(
ζ >

2α1

1− α1

(0.1)ε2n
)
+P
(
Ec

4

)
.

By lemma 5.2, there is a constant a > 0, depending on ε, such that

P(Ec
4) ≤ 16 exp[−an]− exp[−(0.8ε)2εn].

It remains to show that P
(
ζ > 2α1

1−α1
(0.1)ε2n

)
decays exponentially fast. Since T corre-

sponds to 0-cell, the number of non-empty ξ’s before T , ρ, has G(ε) distribution. By
(7.11),

T∑
i=1

ξi =

ρ∑
i=1

Gi,

where G1, G2, . . . are i.i.d. random variables with G(1− ε) distribution independent of ρ.
Let A0(1) be as in lemma 7.4 and define

δ :=
β(1− ε)

2A0(1)
, β :=

2α1

1− α1

(0.1)ε2.

So

P
( T∑

i=1

ξi >
β

2
n
)

= P
( ρ∑

i=1

Gi >
β

2
n
)
≤ P(ρ > δn) + P

( δn∑
i=1

Gi >
β

2
n
)
.

Clearly
P(ρ > δn) = exp[ln(1− ε)δn]

and by lemma 7.4,

P
( δn∑

i=1

Gi >
β

2
n
)

= P
( δn∑

i=1

Gi >
A

1− ε
(δn)

)
≤ exp[−δn].

Similarly,

P
( T∑

i=1

ηi >
β

2
n
)
≤ exp[ln(1− ε)δn] + exp[−δn],

implying that

P(ζ > βn) ≤ 2 exp[ln(1− ε)δn] + 2 exp[−δn] ≤ 4 exp[ln(1− ε)δn].
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8 Appendix

Proof of lemma 7.4 Let us recall a large deviation result for Bernoulli random variables.
Let Xi ∼ B(1, p) be iid. Then

P
( n∑

i=1

Xi − np > nε
)
≤ exp

[
−
(
(p + ε) ln

p + ε

p
+ (1− (p + ε)) ln

1− (p + ε)

1− p

)
n
]
. (8.1)

If p > α, then (7.4) trivially holds. If p = α, then the probability in (7.4) equals
pm = exp[(ln α)m] = exp[− ln 1

α
m]. Hence, we consider the case p < α < 1, only. It

holds,

P
( m∑

i=1

Gi ≤
α

p
m
)

= P
( α

p
m∑

j=1

Yj ≥ m
)

= P
( α

p
m∑

j=1

Yj ≥
α

p
m

p

α

)
, (8.2)

where Yi are iid Bernoulli random variables with parameter p. With n := α
p
m and

p
α

= p + ε < 1, we have

(p + ε) ln
p + ε

p
+ (1− (p + ε)) ln

1− (p + ε)

1− p
=

p

α
ln

1

α
+ (1− p

α
) ln

1− p
α

1− p
, p < α.

So the right side of (8.1) is

exp
[
−
(
(p+ε) ln

p + ε

p
+(1−(p+ε)) ln

1− (p + ε)

1− p

)
n
]
= exp

[
−
(
ln

1

α
+(

α

p
−1) ln

1− p
α

1− p

)
m
]
.

Let

L(α, p) := ln
1

α
+ (

α

p
− 1) ln

1− p
α

1− p
.

Now, since

d

dp
ln

1− p
α

1− p
=

1− p

1− p
α

d

dp

(1− p
α

1− p

)
=
− 1

α
(1− p) + (1− p

α
)

(1− p)(1− p
α
)

=
1− 1

α

(1− p)(1− p
α
)
,

we have

d

dp
L(α, p) =

(
(
α

p
−1) ln

1− p
α

1− p

)′
= (

α

p
−1)′ ln

1− p
α

1− p
+

(α
p
− 1)(1− 1

α
)

(1− p)(1− p
α
)

=
α

p2
ln

1− p

1− p
α

+
1− 1

α
p
α
(1− p)

> 0,

because for y > 1, ln 1
y

> 1− y (follows from ln x ≤ x− 1) and so

ln
1− p

1− p
α

≥ 1−
1− p

α

1− p
=

p( 1
α
− 1)

1− p
.

So, for every α < 1, the function p 7→ L(α, p), p ∈ [0, α] is increasing with maximum
being L(α, α) = ln 1

α
and mimimum is L(α, 0) = ln 1

α
+ α − 1. Take α0 := exp[−301].
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Then, if α ≤ α0, it holds that L(α, p) ≥ L(α, 0) = ln 1
α
+α−1 > ln 1

α
−1 ≥ ln 1

α0
−1 = 300.

By large deviation, for A > 1

P

(
m∑

i=1

Gi >
A

p
m

)
= P

(
m∑

i=1

Gi −
A

p
m > 0

)
≤ exp[−ρ(A, p, s)m], (8.3)

where ρ(A, p, s) = − ln MA,p(s), s < ln 1
1−p

and MA,p(s) is the moment generating function

of G1 − A
p
,

MA,p(s) =
pes(1−A

p
)

1− (1− p)es
=

pe−
As
p

e−s − (1− p)
.

Hence

MA,p(
p

2
) =

pe−
A
2

e−
p
2 − (1− p)

.

Since( pe−
A
2

e−
p
2 − (1− p)

)′
= e−

A
2
e−

p
2 − (1− p) + p

2
e−

p
2 − p

(e−
p
2 − (1− p))2

= e−
A
2

e−
p
2 (1 + p

2
)− 1

(e−
p
2 − (1− p))2

≤ 0,

(because ex ≥ 1 + x, for x ≥ 0) the function p 7→ MA,p(
p
2
) is non-increasing. Since

lim
p→1

MA,p(
p

2
) = lim

p→0

pe−
A
2

e−
p
2 − (1− p)

= exp[
1

2
(1− A)]

lim
p→0

MA,p(
p

2
) = lim

p→0

pe−
A
2

e−
p
2 − (1− p)

= 2e−
A
2 ,

we have that the right side of (8.3) is smaller than exp[−Cm] as soon as A is so big that
2 exp[−A

2
] < exp[−C].

References

[1] Kenneth S. Alexander. The rate of convergence of the mean length of the longest
common subsequence. Ann. Appl. Probab., 4(4):1074–1082, 1994.

[2] Richard Arratia and Michael S. Waterman. A phase transition for the score in
matching random sequences allowing deletions. Ann. Appl. Probab., 4(1):200–225,
1994.
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[7] Václáv Chvatal and David Sankoff. Longest common subsequences of two random
sequences. J. Appl. Probability, 12:306–315, 1975.
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