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Abstract

Scenery reconstruction is the problem of recovering a text which has been mixed
up by a random walk. To recreate the text, one disposes exclusively of the obser-
vations made by a random walker. This topic stems from questions by Benjamini,
Keane, Kesten, den Hollander, and others. The field of scenery reconstruction has
been highly active quite recently. There exists a large variety of different techniques.
Some of them are easy, some can be rather inaccessible. We describe where the dif-
ferent techniques are employed and explain several of the methods contained in the
inaccessible papers. A reading guide to scenery reconstruction is provided. Most
scenery papers will soon be available on the web: www.math.gatech.edumatzi

1 Introduction

The scenery reconstruction problem investigates whether one can identify a coloring of
the integers, using only the color record seen along a random walk path. The problem
originates from questions by Benjamini, Keane, Kesten, den Hollander, and others.

Specification of the problem. A (one dimensional) scenery is a coloring & of the
integers Z with Cj colors {1,...,Cy}. Two sceneries are called equivalent if one of them
is obtained from the other by a translation or reflection. Let (S(t));>o be a recurrent
random walk on the integers. Observing the scenery £ along the path of this random
walk, one sees the color x(t) := £(S(t)) at time t. The scenery reconstruction problem is
to retrieve the scenery &, given only the sequence of observations y.

This problem can also be formulated as follows:

Does one path realization of the process {x(t)}:>o uniquely determine £? The answer
in those general terms is “no”. However, under appropriate restrictions, the answer will
become “yes”. Let us explain these restrictions: First, if £ and §~ are equivalent, we can
in general not distinguish whether the observations come from & or from é . Thus, we

!E-mail: matzi@math.gatech.edu Supported by SFB701 A3
2Supported by the Estonian Science Foundation Grant nr.5694 and SFB701 A3



can only reconstruct £ up to equivalence. Second, the reconstruction can obviously work
at best almost surely. Moreover, Lindenstrauss in [18] exhibits sceneries which can not
be reconstructed. However, “typical” sceneries can be reconstructed up to equivalence
(a.s.). We take the scenery & to be a realization of a random process (random scenery),
and prove that almost every realization can be reconstructed a.s. up to equivalence.
Most scenery reconstruction results assume that random scenery ¢ and random walk S
are independent of each other and distributed according to given laws p and v. Let us
write £ ~ 1) when the sceneries £ and 1) are equivalent. Scenery reconstruction results are
formally formulated as follows:

Given that £ and S are independent and follow the laws pu, respectively v, there exists a
measurable function

A:CY — CZ

such that
P(A(x)=¢)=1.

The methods used for scenery reconstruction change entirely when one modifies the num-
ber of colors in the scenery. (Except for [20], all scenery reconstruction papers so far,
assume the scenery to be i.i.d.). Furthermore, taking another distribution for the random
walk can completely modify the relation between x and £. The scenery reconstruction
methods are thus manifold. This is one of the reasons, why this subfield has become very
active recently.

2 History

The first positive result about scenery reconstruction is Matzinger’s Ph.D. Thesis [22].
This thesis was written under the supervision of Harry Kesten. Later Kesten noticed
that the result [22] heavily relies on the skip-free property and the one-dimensionality
of the random walk. This remark triggered intense research on the topic of scenery
reconstruction. During the next three years at the Eurandom institute in Eindhoven,
Jiiri Lember, Mathias Lowe, Heinrich Matzinger, Franz Merkl and Silke Rolles devoted
a large part of their time to scenery reconstruction. Later they all the worked in the
group of Friedrich Goétze in Bielefeld and continued devotin time to the subject of scenery
reconstruction.

Recently, scenery reconstruction was also a topic present in Latin America: Andrew Hart,
from Servet Martinez’s Nucleo Millenio, worked in the area whilst Popov and Pichon from
the [5].

Motivations coming from ergodic theory. Scenery reconstruction is part of the re-
search area which investigates the ergodic properties of the color record x. One of the
motivations comes from ergodic theory, for example via the T,7~! problem. The ori-
gin of this problem is a famous conjecture by Kolmogorov. He demonstrated that every
Bernoulli shift 7" has a trivial tail-field (let us call the class of all transformations having



a trivial tail-field IC) and conjectured that also the converse is true. This was proved to
be wrong by Ornstein, who presented an example of a transformation which is I but
not Bernoulli. Evidently his transformation was constructed for the particular purpose
to resolve Kolmogorov’s conjecture. In 1971, Ornstein, Adler, and Weiss came up with a
very natural example which is K but appeared not to be Bernoulli. This was the 7", 7 !-
transformation, and the 7,7 !-problem was to show that it was not Bernoulli. In a
celebrated paper [10], Kalikow showed that the T, T~ !-transformation is not even loosely
Bernoulli and therefore solved the T, 7 !'-problem. A generalization of this result was
recently proved by den Hollander and Steif [2].

The T, T~ !-transformation gives rise to a random process of pairs. The first coordinate
of these pairs can be regarded as the position of a realization of simple random walk
on the integers at time 7. The second coordinate tells which color the walker would read
at time 1, if the integers were colored by an i.i.d. process with black and white in advance.

Observations of a random media by a random walk constitute a natural and impor-
tant class of distributions. It is very differently behaved from most standard ergodic
processes. The ergodic properties of the observations x were investigated by Heicklen,
Hoffman, Rudolph in [6], Kesten and Spitzer in [14], Keane and den Hollander in [11],
den Hollander in [3], and den Hollander and Steif in [2].

A related topic: distinguishing sceneries. A related important problem is to dis-
tinguish sceneries: Let 7; and ns be two given sceneries. Assume that either n; or 7y is
observed along a random walk path, but we do not know which one. Can we figure out
which of the two sceneries was taken? The problem of distinguishing two sceneries which
differ only in one point is called “detecting a single defect in a scenery”. Benjamini, den
Hollander, and Keane independently asked whether all non-equivalent sceneries could be
distinguished. Kesten and Benjamini [1] proved that one can distinguish almost every
pair of realizations of two independent random sceneries even in two dimensions and with
only two colors. Before that, Howard had proven in [7, 8, 9] that any two periodic one
dimensional non-equivalent sceneries are distinguishable, and that one can almost surely
distinguish single defects in periodic sceneries. Kesten in [12] proved that one can a.s.
recognize a single defect in a random scenery with at least five colors. He asked whether
one can distinguish a single defect even if there are only two colors in the scenery.
Kesten’s question was answered by the following result, proved in Matzinger’s Ph.D. The-
sis [22]: Almost every 2-color scenery can be reconstructed, a.s.. In [23], Matzinger proves
that almost every 3-color scenery can be reconstructed, a.s..



3 Overview

3.1 3-color scenery seen along a simple random walk

In this subsection, we discuss the case presented in [23]. The assumptions for [23] as well
as for this subsection are:

e The scenery ¢ has three colors, so that & : Z — {0,1,2}. The scenery is i.i.d. and
the three colors are equiprobable.

e The random walk S is a simple random walk, starting at the origin.

First, we need some notations:
For z <y, let £¥ denote the piece of scenery & between the points z and y:

& =E@)E(r+1)...£(y).

For s,t € N with s < ¢, let x! denote the observations between time s and time ¢:

Xe = x(s)x(s+1) ... x(t).

Assume that the random walk crosses between time s and ¢ from point z to y. By this
we mean that

S(s)=z,8(t)=y (3.1)
and for all time r € (s,t), it holds

z < S(r) <y. (3.2)

We can imagine that x’ is obtained after copying the original information £/ incorrectly.
The question is how much of the information of ¥ is still contained in x%? It turns out
that there is a large amount of information contained in the original sequence &Y, which
can always be recovered if we are only given the observations .

In what follows, we describe a word, which depends only on £Y and can be recovered from
X% We call this word the fingerprint of £¥. The fingerprint is characteristic for the original
sequence &Y and does not depend on the random walk path. The fingerprint is obtained
by replacing in the words &Y any substring of the form aba by a, (where a,b € {0, 1,2}).
We proceed until there is no more substring aba to be replaced. The final word obtained
is defined to be the fingerprint of £¢Y. The order in which we process the different parts of
the original word £Y does not matter, the result is always the same.

If we process the observations x% using the same method, we obtain the same fingerprint
as for €Y. Hence, the fingerprint of £¥ can always be reconstructed if we are only given Y.
Let us formalize these fundamental properties:

e The observations X and the original sequence & are in the same equivalence class
modulo @ = aba, when (3.1) and (3.2) both hold.



e Every equivalence class mudolo a = aba has exactly one minimal element.

The first property guarantees that given only x%, we can recover the fingerprint of &¢. The
second property above states that the fingerprint is well defined. So, the fingerprint can
be viewed as the smallest element of the modulo a = aba equivalence class in the free
semi-group over the three symbols 0, 1, 2.

Let us look at a numerical example: Take the scenery £ between 0 and 6 to be equal to:
£(2) | ... 00201001
z | .. 001 2 3 4 5 6

Assume that the random walk goes in ten steps from 0 to point 5 choosing the following path:
(5(0),5(1),5(2),...,5(10)) = (0,1,2,1,2,3,4,3,4,5,6).
This means that the color record observed by the random walk between time 0 and time 10 is:
x(0)x(1)...x(10) = 02020101001.

Let us process the piece of scenery £5. By replacing stings aba by a, we obtain successively:

0 0
6 N N
& = 02010 01 — 020 01 — 001.

The string 001 can not be further processed. Hence 001 is our fingerprint. Let us process £§ in a different

order:
0 0

6 = ~~
& = 020 1001 — 010 01 — 001.

We note that whatever processing order we chose, we always obtain the same final result 001.
Next, we process the observations x3:
0 0 0 0
10 o ~ = ~ = ~ =
Xo = 02020101001 — 020 101001 — 010 1001 — 010 01 — 001.

the end result is the word 001. This is the same as the fingerprint of £§. This shows how we can
reconstruct the fingerprint of £§ given only the observations yi’. When the scenery contains many
colors the fingerprint is not too different from the scenery. We first reconstruct the “fingeprint” of the
whole scenery. Then we use statistical methods to fill in the gaps and reconstruct the scenery from the

fingerprint.

3.2 2-color scenery seen along a simple random walk with hold-
ing
In this subsection, we discuss the case presented in Matzinger’s thesis [22], as well as in

the articles: [25, 7, 26]. The assumptions for [25, 22, 7, 26] as well as for this subsection
are the following:

e The scenery ¢ has two colors, so that £ : Z — {0,1}. Furthermore the random
scenery is assumed to be i.i.d. with P({(z) =0) = P({(z) =1) =1/2 for all z € Z.



e The random walk S is a simple random walk with holding, starting at the origin,
ie.
P(S(t+1) = 8() = 1) = P(S(t +1) = §(t) = 1) = P(S(t + 1)~ §() =0) = ;
for all t € N.
Let x € Z be such that £(z) # &(z + 1). In the case presented in the present subsection,
the random walk can generate any observations by just hoping back and forth between
the points z and z 4+ 1. Since the scenery is i.i.d., about half of the points z contained in
a large interval satisfy £(z) # £(z 4+ 1). This implies that in many places in the scenery
&, the random walk can generate any pattern. Hence, in general, the observations do not
contain “absolute sure information” about the underlying scenery.
This situation is similar to the typical situation encountered in statistics: We test a hy-
pothesis, but we can not be sure whether the hypothesis holds or not. Rather, we decide
if a hypothesis is likely or not given the observed data. For our scenery problem, this
means the following:
Given Y% we can infer certain features of the underlying piece of scenery £¥. Conditional
on the observations, £Y might have very high likelihood to present certain features.
This situation is thus fundamentally different from the case presented in the last subsec-
tion, where we could reconstruct the fingerprint with certainty.

Let us illustrate the above remark by a numerical example. Take the scenery & between 0 and 6 to be
equal to:
&z)] .. 0111001
z | ... 001 2 3 4 5 6

Note that £(0) # £(1). Hence, the random walk can generate any possible observation by just hoping
back and forth between 0 and 1. Take the sequence 010001. The random walk can generate this sequence
by following the path:

(S(0), (1), S(2), S(3), S(4), S(5),...) = (0,1,0,0,0,1,...).

Similarly, we have that £(3) # £(4). Hence the random walk can generate any observations by moving
only between the points 3 and 4. Assume that at time ¢ the random walk is located on point 4: S(t) = 4.
To generate the finite string 010001 directly after time ¢, the random walk can follow the path:

(S(t), S(t+1),S(t+2),S(t+3),S(t+4),S(t+5)) = (4,3,4,4,4,3).

At first sight, the combinatorial method presented in the previous subsection seems com-
pletely useless for the present case. However, in his Ph.D. Thesis [22], Matzinger dis-
covered that the algebraic-combinatorial structure explained in the previous subsection
plays also an important role for the present case. More precisely, he discovered that the
combinatorial structure of last section is contained in a hidden form in the conditional dis-
tribution of the observations y given the scenery £. All the papers cited at the beginning
of this subsection proceed in two steps:

e Given the observations x, try to determine (approximately) the conditional distri-
bution:

L(x[8)- (3.3)



e Given the conditional distribution (3.3), determine the scenery &, (up to equiva-
lence).

None of the papers cited in the beginning of this subsection are easily accessible. So, we
decided to give the main idea of how to reconstruct ¢ if we are given the conditional dis-
tribution (3.3) in Section 5. In this section, we also show how the conditional distribution
(3.3) can be estimated with the help of only one realization of x.

3.3 The development of the subfield of scenery reconstruction

The development of the subfield of scenery reconstruction took mainly place in three
phases. In each phase, it become possible to reconstruct sceneries in a more complicated
setting.

1. Combinatorial case: Multicolor scenery, simple random walk. This is the
easiest situation. It occurs for example, when we observe a scenery with two or more
colors along a simple random walk path. (The random scenery being i.i.d.). Subsec-
tion 3.1 has presented an example of the behavior typical in this setting: FROM FINITE
MANY OBSERVATIONS, IT IS POSSIBLE TO RETRIEVE SOME INFORMATION ABOUT THE
UNDERLYING SCENERY. THIS INFORMATION HOLDS WITH CERTAINTY, AS OPPOSED
TO BE JUST “LIKELY”. The situation in the 2-color and 3-color scenery reconstruction
papers [24] and [23] are typical for this “combinatorial case”. Although the methods in
[24] and [23] are very different from each other, they are both based on some “ algebraic
approach”. In [21] Matzinger, Merkl and Loewe, consider the case where the number of
colors is strictly larger than the number of possibilities the random walk has at each step.
This situation also belongs to the “combinatorial case”. However, the reconstruction al-
gorithm in [21] is not based on an algebraic approach.

Some very general ideas on scenery reconstruction like the zero-one-law for scenery re-
construction (see Subsection 4.6) and the stopping time replacement approach (see Sub-
sections 4.4 and 4.5) valid for any type of scenery reconstruction, are presented in [21].
Difficult problems like the 2-dimensional reconstruction [19], heavily rely on these general
ideas.

It is still an open problem to characterize the (joint) distributions of £ and S which make
the “combinatorial case” occur. (By this we mean: Which create a situation, where a
finite number of observations contain sure information about the underlying scenery).
We conjecture that the entropy in the scenery needs to exceeds the entropy of that of the
random walk.

2. Semi-combinatorial case: 2-color scenery, simple random walk with hold-
ing. This is the situation described in Subsection 3.2. In the semi-combinatorial case,
the method presented in Subsection 3.1 still plays an important role: the conditional
distribution £(x|¢) contains a hidden combinatorial structure similar to the one in Sub-
section 3.1.



The first reconstruction result for this situation was presented in Matzinger’s thesis [22].
Later, Rolles and Matzinger [?, 26, 25] showed that it is possible to reconstruct a finite
piece of scenery in polynomial time. They prove their result in the case of a simple
random walk with holding and a 2-color scenery. The question about polynomial time
reconstruction originated from Bejamini.

There is no easy accessible paper for the semi-combinatorial case. We present a rough
sketch of some of the main ideas in Section 5.

3. Purely statistical case: Random walk with jumps and 2-color scenery. We
say that the random walk S jumps if

P(S(t+1)—St) e {-1,0,1}) # L. (3.4)

The purely statistical case, occurs when the random walk S jumps and when £ is a 2-color
i.i.d. scenery. In this situation, the combinatorial methods developed for the simple ran-
dom walk are useless. Furthermore, the techniques developed for the random walk with
holding do not work either: the conditional distribution £(x|€) is completely intractable
when the random walk is allowed to jump (we explane this in Subsection 6.1). It is a
very uneasy task to reconstruct sceneries in this setting. In [15, ?], Matzinger and Lem-
ber solve the reconstruction problem in the 2-color, jump case. They use an information
theoretical approach:

Instead of trying to reconstruct the scenery right away, they first ask what amount of
information the observations contain about the underlying scenery. More precisely, they
give a lower bound for the mutual information of the observations X82 and the underlying
piece of scenery 7. They prove [15] that I(x2", &) is larger than order Inn. This is a
very small bound considering that H({}) = n + 1.

In [?], Lember and Matzinger prove that the lower bound for the mutual information
I (X82, £" ), implies that £ can be a.s. reconstructed up to equivalence.

Let us mention other cases, which are strongly different from the three above.

Scenery reconstruction given disturbed input data. In [27], Matzinger and Rolles
adapted the method proposed by Lowe, Merkl and Matzinger to the case where random
errors occur in the observed color record. They show that the scenery can still be recon-
structed provided the probability of the errors is small enough. When the observations
are seen with random errors, the reconstruction of sceneries is closely related to some
coin tossing problems. These have been investigated by Harris and Keane [4] and Levin,
Pemantle and Peres [16]. The paper [27] on reconstruction with errors was motivated by
their work and by a question of Peres: He asked for generalizations of the existing results
on random coin tossing for the case of many biased coins. Hart and Matzinger [5] solve
part of the reconstruction problem for a two color scenery seen along a random walk with
bounded jumps when the observations are error corrupted.



Periodic scenery reconstruction Lember and Matzinger considered the problem of
a periodic scenery seen along a random walk with jumps. This problem originated in a
question by Benjamini and Kesten. The techniques used for this situation is very different
from all other cases. It is related to the work of Levin and Peres [17]. They consider a
scenery with only a finite numbers of one’s. Furthermore, they take the observations to
be error corrupted.

Scenery reconstruction in two dimensions. In [19], Lowe and Matzinger proved
that sceneries in two dimensions can be reconstructed provided there are sufficiently many
colors. Most researchers working on related problems, were surprised that scenery recon-
struction is possible in two dimensions. The reason for this is the recurrence behavior of
the random walk.

The scenery-reconstruction reading guide First we recommend the overview article
by Kesten [13]. Then, we highly recommend all the articles on related topics which we
cite, (as well as those which we might have forgotten).

The reader interested specifically in scenery reconstruction should probably start with
the present review article. The two articles [23] and [24] for reconstrution with a simple
random walk (the combinatorial case) are relatively easy and self contained. For the simple
random walk with holding and a 2-color scenery (the semi-combinatorial case), there is no
easy paper. For the purely statistical case, we advice to start with the simplified example
at the beginning of [15]. For the purely statistical case, it might also be interesting to
read [?]. Eventually we recommend the first section of [21]. This article is very rigorous,
and the general structure of the paper can be used in many other contexts. Some aspects
of the 2-dimensional reconstruction are nicely explained in [19] and should not be too
difficult.

4 Basics

In this section, we explain some basic ideas and steps behind any scenery reconstruction
approach: Constructing a finite piece of scenery, assembling the words, working with the
stopping times, and a zero-one law.

4.1 What means “to reconstruct a finite piece”?

Every scenery reconstruction is based on some algorithms that reconstruct finite pieces
of the scenery. In this subsection, we give an easy numerical example to explain what is
meant by “reconstructing a finite piece of scenery”. This simple example does not convey
an idea on how the methods in more difficult situations works.

Let S designate a simple random walk starting at the origin. I want to test the scenery reconstruction
ability of my friend Mr. Scenery Reconstruction (Mr. S.R.). For this I flip a fair coin several times in



order to create a 2-color scenery & (or at least a finite portion of it). Here is what I obtain:

) ]...] 0|1 ]ofof1]1]0]0]...
s | =2 =tfo[1|2[3 4[5]...

Then, I flip a coin several times to determine the path of the simple random walk S. T obtain:

The observations made by the random walker are:
x = (0,1,0,0,0,0,1,1,0,0,0,...)

I decide to give Mr. S.R. only the first 11 observations: (0,1,0,0,0,0,1,1,0,0,0). What can he do with
this 7 Of course, I know ¢ and the path of S but he does not. He knows however that S is a simple
random walk starting at the origin. After several hour of thinking, Mr. S.R. comes back and tells me: the
finite piece of scenery (i.e. binary word) 001100 is contained in the scenery £. My answer to him is: your
statement is trivially correct: since the scenery £ is i.i.d. every finite pattern will appear infinitely often
in £, thus also 001100. Mr. S.R. sits back over his problem and after another hour of thinking makes the
following statement: the finite piece 001100 is contained in the scenery ¢ in the interval [—9,9]. (This
means that 001100 is a sub-word of the word £(—9)&(—8)...£(8)£(9).)

The way he could reach his conclusion is the following: a simple random walk can only generate the
pattern 001100 if it walks in a straight way over the pattern 001100 in the scenery. (“Straight way”
means: taking only steps in one direction.) But in the observations between time ¢t = 4 and ¢t = 9, we see
the pattern 001100. Hence during that time, the random walk goes in a straight way over a place in the
scenery £ where that pattern appears. Now, up to time ¢t = 9, the random walk remains in the interval
[—9,9]. It follows that the pattern 001100 appears in [—9,9].

The goal of the finite piece reconstruction is to construct a piece which is located in
some given interval around the origin. The exact location of a finite piece cannot, in
general, be determined from Y.

4.2 How to reconstruct a finite piece of £7

Again, we start with a simplified example. The main idea here however is important and
appears often in more complicated settings.

Assume for a moment that instead of being a two color scenery, £ would be a four color
scenery, i.e. £:7Z — {0,1,2,3}. Let us imagine furthermore, that there are two integers
x,y such that {(z) = 2 and &(y) = 3, but outside z and y the scenery has everywhere
color 0 or 1, (i.e. for all z € Z with z # x,y we have that {(z) € {0,1}.) The simple
random walk {S(k)}r>o can go with each step one unit to the right or one unit to the
left. This implies that the shortest possible time for the random walk {S(k)}r>o to go
from the point z to the point y is |z — y|. When the random walk {S(k)}r>0 goes in
shortest possible time from x to y, it goes in a straight way, which means that between
the time it is at x and until it reaches y, it only moves in one direction. During that
time, the random walk {S(k)}r>o reveals the portion of € lying between x and y. So, if

10



between time ¢; and ¢, the random walk goes in a straight way from z to y, (that is if
|ty —ta| = |z —y| and S(t1) = x, S(t2) = y), then the word x(¢1)x(t1 +1)...x(t2) is equal
to the word &(x)&(x + w)é(x + 2u) ... &¢(y), where u := (y — x)/|y — x|. Since the random
walk {S(k)}r>0 is recurrent, it goes at least once in the shortest possible way from the
point x to the point y, a.s.. Because we are given infinitely many observations, we can
then (a.s.) figure out the distance between x and y. Indeed, the distance between z and
y is the shortest time laps that a “3” will ever appear in the observations y after a “2”.
When, on the other hand, a “3” appears in the observations y in shortest possible time
after a “2”, then between the time we see that “2” and until we see the next “3”, we
observe a copy of £(z)&(x 4+ u)é(x 4+ 2u)...&(y) in the observations y. This fact allows us
to reconstruct the finite piece £(2)&(z + u)é(x + 2u) ...&(y) of the scenery: Choose any
couple of integers t, to with t5 > 1, minimizing |ts —¢;| under the condition that (1) = 2
and x(t2) = 3. Then x(t1)x(t1 + 1) ... x(t2) is equal to {(2)€(x +u)é(x +2u) ... E(y), a.s..

Let the scenery & be such that: £(—2) =0, £(—1) =2,£(0) =0, &(1) =1,£(2) =1, £(3) = 3, £(4) = 0.
Assume furthermore that the scenery £ has a 2 and a 3 nowhere else then in the points —1 and 3. Imagine
that x the observation given to us would start as follows:

x =(0,2,0,1,0,1,3,0,3,1,1,1,1,0,2,0,1,1,3,...)

By looking at all of x we would see that the shortest time a 3 occurs after a 2 in the observations is 4. In
the first observations given above there is however already a 3 only four time units after a 2. The binary
word appearing in that place , between the 2 and the 3 is 011. We deduce from this that between the
place of the 2 and the 3 the scenery must look like: 011.

In reality, the scenery we want to reconstruct is i.i.d. and does not have a 2 and a 3
occurring in only one place . So, instead of the 2 and the 3 in the example above, we
will use a special pattern in the observations which will tell us when the random walk
is back at the same spot. One possibility (although not yet the one we will eventually
use) would be to use binary words of the form: 001100 and 110011. As mentioned in
the previous subsection, the only possibility for the word 001100, resp. 110011 to appear
in the observations, is when the same word 001100, resp. 110011 occurs in the scenery
and the random walk reads it. So, imagine (to give another example of a simplified case)
the scenery would be such that in a place x there occurs the word 001100, and in the
place y there occurs the word 110011 , but these two words occur in no other place in the
scenery. These words can then be used as markers: Consider the place in the observations,
where the word 110011 occurs in shortest time after the word 001100. In that place in
the observations we see a copy of the piece of the scenery & comprised between 110011
and 001100. The very last simplified example is unrealistic in at least two reasons. At
first, the scenery is an outcome of an i.i.d. random scenery. Thus, any word will occur
infinitely often in the scenery. Secondly, if the random walk S is with holding, it can
generate any pattern in very many places (for every z such that £(z) # (2 + 1)).

So, the simple markers described above are not suitable for practice, and we use more
sophisticated markers instead. Moreover, in most cases, these markers have to be subtle
“localization tests”. The techniques use to build efficient markers depend heavily on the
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number of colors of ¢ and the distribution of S, and they differ very much. The nature
of the marker technique basically determines the nature and approach of the scenery
reconstruction as explained in Subsection 3.3.

4.3 Assembling pieces of scenery

Most scenery reconstruction algorithms work as follows: They first reconstruct an in-
creasing sequence of finite pieces of £. Then, these finite pieces are assembled. The limit
when the size of the pieces goes to infinity is a scenery which one proves to be equivalent
to &. In the previous two subsections, we briefly explained the problem of reconstructing
of a finite piece of scenery. In the present subsection, we try to explain the basics of the
assembling.

For the assembling to work, each piece needs to be contained in only one place in the
next piece. (Or at least this should hold a.s. for all but a finite number of pieces). Let us
explain what is meant by “contained in only one place”:

Let v and w be two finite words (sequences). We say that v occurs in a unique place in
w and write v <1 w if there is exactly one subword of w equal to v or v*. (The transpose
of v is designated by v".)

I give Mr S.R. more observations. Using some advanced reconstruction skills of his, he reconstructs two
additional finite pieces of £&. He proudly shows them to me:

v? = 101001100

and
v3 = 010100110010.

(Let v! the first piece of scenery Mr. S.R. has reconstructed. Hence v! := 001100). Mr. S.R. notices that
in each of these pieces the previous one occurs only in one place. He uses this to assemble his pieces. He
first puts down v', then v2, then v3. Every time he places the next word over the previous one so that
they coincide. Here is what Mr. S.R. gets after placing down the word v!:

0 01 1 00
-6 -5 4 -3 -2 -1 01 2 3 45 6 7 8 9
After placing the word vy “over v;” Mr. S.R. obtains:
1 0 1 00 1 1 00
-6 -5 -4 -3 -2 -1 0 1 2 4 5 6 7 8 9
After putting v over v?:
0 1 0 1 00 1 1 0010
-6 -5 4 -3 -2 -1 01 2 3 45 6 7 8 9

To reconstruct the whole scenery £ up to equivalence, Mr. S.R. has to keep reconstructing bigger and
bigger words and assemble them. The end result after infinite time should be a scenery equivalent to &.
For this he needs (among others) the pieces to be contained in one another in a unique place.
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Let v™ designate the m-th finite piece reconstructed. Our assembling procedure yields
a.s. as limit a scenery equivalent to &, if there exists 7,,,m € N a positive increasing
sequence such that

lim ¢, = +o00

m—00

and such that all the three following conditions are satisfied for all but (possibly) a finite
number of m’s:

e The piece v™ is contained in a unique place in v™*!

o™ < v (4.1)
e The piece v™ is a piece of £ located close to the origin. More precisely:
CHEST f(_im)f(_im + 1) - f(lm) (42)

e The pieces v have to become “larger and larger”, so as to cover the whole scenery
¢ in the end. This condition can be expressed as follows:

E(—im)&(—im+1) . i) <1 0™ (4.3)

Hence, the problem of reconstructing & up to equivalence is reduced to constructing a
sequence of finite pieces satisfying (4.1), (4.2) and (4.3):

Problem of reconstructing a sequence of finite piece of &: Find a
sequence of algorithms A!, A%, ..., A™, ... such that: if v™ designates the
finite piece of scenery (word) reconstructed by .A™, then conditions (4.1), (4.2)
and (4.3) hold a.s. for all but a finite number of m’s.

4.4 Stopping times

Another important problem for scenery reconstruction is to develop statistical tests to find
out when the random walk is close to the origin. If we know when the random walk is in
the vicinity of the origin, we can use this information to reconstruct a finite piece of & close
to the origin. If we are not able to determine when the random walk is close to the origin,
then the finite pieces which we reconstruct might be located far away form the origin.
This would imply that (4.2) is violated, and this might lead to a failure in reconstructing €.

I decide to play on with Mr. S.R. I use the same scenery &, but determine a new path of S. Also this time
I decide to give him 100 observations, instead of just 11. The random walk goes between time ¢t = 95 and
t = 100 from point 0 to point 5. Hence the observations during the time interval [95,100] are

x(95)X(96)x(97)x (98)x(99)x(100) = 001100.
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Assume that the pattern 001100 does not occur in the observations before time t = 95. Mr. S.R. deduces
that the word 001100 appears in the scenery ¢ within the interval [—100,100]. This is a rather small
amount of information: The pattern 001100 has six digits. With our i.i.d. scenery made of Bernoulli
variables with parameter 0.5, this pattern has a probability of (1/2)¢ = 1/64. Therefore, the probability
that 001100 appears somewhere in a given interval of length 200 is thus rather large.

I decide to help Mr. S.R. by giving him extra information. I tell him that at time ¢t = 40, 66, and 95,
the random walk is at the origin. (Hence S(40) = S(66) = S(95) = 0.) After receiving this information
Mr. S.R. deduces that the word 001100 appears in & in the interval [—5, +5]. Assume that I would have
given him, less information. I could say to him that at time 7 = 40, 75 = 66, and 73 = 95 the random
walk is in the interval [—8,8]. (Hence S(40), 5(66),S(95) € [—8,8].) From this, he could have deduced
that the word 001100 appears somewhere in £ in the interval [—13,13].

We see how useful it is to have some information about the times when the random walk
stays close to the origin. In fact, it is even necessary to determine times when the random
walk is close to the origin, in order to reconstruct a finite piece of scenery. Let us explain
this with the help of an example. Assume that one tries to reconstruct a piece of £ located
in the interval [—5, 5] using the first hundred observations of y only. It is very likely that
the random walk spends most time before ¢ = 100, outside the interval [—5, 5]. Since the
scenery £ is i.i.d., the observations made outside [—5, 5] do not contain any information
about ¢ inside [—5,5]. Hence to reconstruct some information about the piece of scenery
¢|[=5, 5], we need to be able to determine when the random walk stays in the interval
[—5,5].

In many scenery papers, the problem of reconstructing of a finite piece of scenery is
decomposed into two sub-problems:

1. The problem of determining from observations the times 7; indicating when the
random walk is close to the origin. We require that the decision that at time ¢, the
random walk is close to the origin, depends only on the observations x(1),..., x(t),
only. Hence, the times 7; are o,-adapted stopping times, where o, stands for the
filtration o, = U250 (x(0), x(1),. .., x(2)).

2. The problem of reconstructing a finite piece of £ located close to the origin with
the help of x and the stopping times 7; (the additional information about the times
when the random walk is close to the origin).

In a previous Mr. S.R. example, we used the fact that the random walk had performed
after the time 73 a “straight walk” of 6 steps. This idea will be used in actual scenery
reconstruction: We make sure that having enough stopping times 7;, with high probability,
some of them will be followed by a little piece of straight walk.

4.5 Solving the stopping-time-problem

In the previous subsection, we saw that the reconstruction of a finite piece of scenery can
be decomposed into two parts:
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1. Construct an increasing sequence of o,-adapted stopping times 7; which all “stop”
the random walk close to the origin.

2. Using x and the 7;-s, in order to reconstruct a finite pieces of £ close to the origin.

In the early papers, the stopping time problem is often the more difficult one. An impor-
tant progress was made in [21], where it was showed that the stopping time problem can
actually be solved with the solution to the second problem. This seems very strange at
first sight, since the second problem is to reconstruct a piece of £ with the help of stopping
times. However, we can discover when the random walk is close to the origin, using a
reconstruction algorithm for a finite piece of £&. And paradoxically, the reconstruction
algorithm used to construct the stopping times, requires itself to be feed with stopping
times.

Let us go back to the Mr. S.R. example to see how a reconstruction algorithm can be used to tell us when
the random walk is close to the origin. Recall that Mr. S.R. using only the hundred first observations
x(0)...x(99) reconstructed the finite piece vs:

v3 = 010100110010.

Let us thus assume that the reconstruction algorithms A™ work with finite input instead of using the
whole of x. Here for example, Mr. S.R. using his algorithm A? with the input x(0)...x(99) obtains the
piece of scenery v3, hence:

A3 (X(O) . ..X(gg)) — .

Let s > 100 be a relatively large (non-random) number. We ask Mr. S.R. if he thinks that at time s the
random walk was “close” to the origin. He has only the observations x to base his guess upon. Mr. S.R.
applies the reconstruction algorithm A® to the first hundred observations after time s. Imagine that he
finds:

A3 (X(s)x(s +1)...x(s+100 — 1)) =3,
He is surprised to see that he obtains the same result as when he applied the algorithm .43 to x(0) . .. x(99).
From this he deduces that with high probability

S(s) € [—200, 200].

His reasoning goes as follows: If we would have that S(s) ¢ [—200,200], then during the time interval
[$, s+ 100 — 1] the simple random walk S would remain outside the interval [-100, 100]. The observations
x(s)x(s+1)...x(s+100) would then only depend on (§(z))2¢[_200_200} and the path of S. Hence,

these observations would be independent of (¢ (z))z €[-100,100]° In this case, since the scenery £ is i.i.d.,
A3 (X(s) ox(s+ 100)) is independent of (5(2))26[_100’100]. But vz is a piece of (5(2))26[_100’100]. It
follows that if S(s) ¢ [—200,200], then v* is independent of A3 (X(s) ...x(s+100 — 1)) and it would be

an unlikely coincidence if v® would be exactly equal to A3 (X(s) ox(s+ 100)) . (By “if S ¢ [—200, 200]”,
we mean conditional on S(s) ¢ [—200,200].)

4.6 Zero-one law for scenery reconstruction

In [21], Matzinger introduces a zero-one law for scenery reconstruction. The exact formu-
lation goes as follows: Assume that there is an event A depending only on the observations
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x and such that the probability to reconstruct £ correctly given A is strictely larger than
1/2 then the scenery can be almost surely reconstructed. In many cases this is useful be-
cause it implies that we can assume for the reconstruction that we know a finite portion
of the scenery to start with.

5 The semi-combinatorial case.

In this section, we consider the case where S is a simple random walk with holding (see
Subsection 3.2) and the scenery & has two colors. We explained in Subsection 3.2, how
the combinatorial methods in this case fail. In this section, we show how to reconstruct &
given the conditional distribution £(x|€). For this we use the combinatorial methods for
the simple random walk and apply them to £(x|¢).

5.1 Conditional distribution of the observed blocks

A block is a substring of maximal length containing only zeros or ones. For a random walk
with no jumps, each observed block of x is generated on exactly one block of £&. Let B;
denote the i-th block of y and let | B;| denote its length. Roughly speaking, the following
holds:

If B; is generated on a block of £ of length m, then |B;| is distributed like the first hitting
time of {—1,m} by the random walk S. (Recall that S starts at the origin).

Let us look at a numerical example. Let x be

X(0)x(1)x(2)x(3)x(4)x(5)x(6)x(7) ... = 00111001 ....

We adopt the following convention: the first bits of y, which are equal to each other, are not counted as
a block. (This convention is made to simplify notations later). In our present example, this means that
x(0)x(1) does not count as a block. Hence, the first block B; of x consists of the first three ones which

come directly after x(0)x(1):
B

~~
00 111 001....

The block B consists of three digits and is hence of length 3, so that |B;| = 3. The block By starts after
x(1) and ends just before x(5). We sometimes identify a block with its start point and end point. In this
example, this gives that B; would get identified with the pair (1,5). Since the block By consists of ones,
we say that is has color 1. The second block Bs corresponds to the two zeros after Bi:
B2
=
00111 00 1....

The block Bs consists of two digits and has therefore length 2, so that |Bs| = 2. Start point and end
point are 4 and 7, so that we can identify the block Ba, with the pair: (4, 7).

We define the multicolor scenery v : Z — N to be the double-infinite sequence consisting
of the lengths of the blocks of . ( These lengths are taken in the order as they appear in §).
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Let us take the following numerical example for &:

0
[2[3[4]

We numerate the blocks of £ from left to right. The block at the origin is defined to be the 0-th block. This
gives for our numerical example, that £(0)£(1) is the 0-th block of £. (This block can also be represented
as the pair (—1,2)). The block (—1,2) has length 2, so that ¢/(0) = 2. The first block to the right of the
0-th block, is the 1-st block of £. In this case, this is the block consisting of the two ones: £(2)£(3). This
block has length two, and thus ¥(1) = 2. The block immediately to the right of the first block of &, is
the 2-nd block of . In this example, it consist of three zeroes. Hence 1(2) = 3. The block immediately
to the left of the zero-th block is block number —1. Here, it consists of one 1 and has therefore length 1.
It follows, that 1(—1) = 1. The multicolor scenery 1 in this case is equal to:

v || 1 [2]2]3]...
ER BN I R R

) ...] 0|1 ]o]o[1]1]
1

0
= | [-2]-1]0] 5

0]1]...
6]7]...

Let D be an integer interval. A path r : D — Z is called a nearest neighbor walk if r takes
only steps of one unit. More precisely, r : D — 7 is a nearest neighbor walk, if and only
ifforallt,t+1€ D

r(t+1) —r(t) e {—1,1}.

Let R be the nearest neighbor walk describing in which order the random walk S visits
the blocks of &: if the t-th block visited by S is block number z of £, then R(t) = z. Since
S(0) = 0 and we discard the first identical bits of x, it holds Therefore R(1) € {—1,1}.

Assume that the beginning of the path of S is given by:
(5(0),5(1),5(2), 5(3),5(4), 5(5),5(6),5(7), S(8)) = (0,1,2,2,2,1,1,2).
With the scenery we consider in this example of this subsection, this gives the observations:

x(0)...x(7) = 00111001.

Note that the first block By in the observations is x(2)x(3)x(4). This block is generated on the block
number 1 of the scenery. (This means that for time ¢ = 2,3, 4 the random walk stays in the block number
1 of £&.) Hence, R(1) = 1. The second block Bs of the observations is x(5)x(6). This block is generated
when S is in block number 0 of £. Hence R(2) = 0.

Let TI(¢t) denote the length of the block of & on which B, was generated. We can de-
scribe TI(t) to be the observation made by R of ¢ at time ¢:

Hence the color record TI(1),T1(2), ... corresponds to the observations of the scenery v
made by the nearest neighbor walk R.

Next, we determine the joint distribution of the |B;|’s given £. For this we need a few
definitions. Let T,, denote the first hitting time of {—1,m} by the random walk S:
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T = min{k > 0: S, € {—1,m}}. (Recall that S starts at the origin.) Let \™ denote
the infinite dimensional vector which defines the distribution of 7™:

Let A* and A" be the two defective distributions which decompose A\™ into two parts
according to whether the random walk first hits on —1 or on m. We have:

\N'i=(PTn=1,53, =-1),P(T, =25, =-1),P(T,,=3,5, =—1),...)
and

A= (P(T, = 1,57, =m), P(T,, =2,5r,, =m), P(T,, = 3,51, =m),...).
We get: A™ = A" + A\

The length of an observed block given that it is generated on a block of £ of length m
has distribution \™. When, additionally, we ask that the random walk crosses the block
of &, the conditional defective distribution of the length of the observed block equals A"
When we ask that the random walk S enters and exists the block on the same side, the
conditional defective distribution equals A}".

Roughly speaking, we have the following situation:

If the block B, is generated on a block of € of length m, then | B,| has conditional distribu-
tion AJ". But when & and R are given, then B; is generated on a block of length ¥(R(t)).
Hence, given & and R, we have that |B;| has distribution A7, where m, = ¢ (R(t)). Simi-
larly, the joint conditional distributions of the |B;|’s, given £ and R, is the direct product
of )\T;(t), where the sequence 7(1),7(2),... is equal to ¥(R(1)),¥(R(2)),.... This is the
content of the next lemma.

Lemma 5.1 Let r : [1,k] — Z denote a nearest neighbor walk starting at +1 or —1.
Then, we have that the conditional joint distribution of the lengths of the observed blocks:

L(|Bil, 1B, .-, |Bil|&, R =)
18 equal, up to a positive constant to

MO NP @ AT®

Iy I

where for all t € [1, k|, we have

and
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(In the lemma above, by R = r, we mean that R(0)R(1)...R(k) =r(0)r(1)...r(k).)

Let & be
z)|... 0 1 1 0 1 0 1 00111100110 0
z |... 8 T -6 -5 -4 -3 =2 -1 01 2 3 4567 89 10

We have that (0,5) is the first block of £&. This block has length 4 and hence (1) = 4. (This block
correspond to the four ones £(1)£(2)£(3)€(4)). The next block to the right is (4,7). This is the second
block of £ and has length 2, so that (2) = 2. The third block of £ consists of the two zeros £(7)&(8).
This block has length 2, so that ¥(3) = 2. The zero-th block of £ consists of the two zeros £(—1)&(0).
Hence, 1(0) = 2. Furthermore, we have that 1(—1) = 1, since the first block to the left of block zero has
length one.

Assume next that the random walk S makes the following first steps:

6 5 4

S(t) | 3 45
7 8 9 10 11 12

t ]

0 -1 01 2 3 4
0 1 2 3 4 5 6

the observations in this case are:

1111110 0 0 1
345 6 7 8 9 10 11 12

In this case the first block in the observations x is (2,9). (Note that the first three 1’s of x do not count
as a block. The block (2,9) of x is of length 6 and of color 1. The second block of x is of length 3 and
color 0. It is the block (8,12). The first block of x is generated by the random walk S on the block (0, 5)
of £. Tt is generated when the random walk S crosses (0,5). By this we mean that S enters the block
(0,5) on one side and exists on the other side. The second block of x is generated by S on the block (4,7)
of £. But this time the block is generated in a different way: S enters on one end of (4,7) and exists on
the same side.

Let By denote the k-th block of x and let |Bg| denote the length of that block. In our numerical example
we find By = (2,9) and |B1| = 6. Furthermore, By = (8,12) and |Bz| = 3.

Next we want to try to understand what the conditional distribution of |B;| is, (conditional on ). Let
E denote the event that S hits on 1 before it hits on —2. When E holds the block Bj is generated on
(0,5). When E does not hold then Bj is generated on (—3,—1). Let T designate the first hitting time
of {1,—2} by S. Let b, , resp. b denote the left end, resp. the right end of the block By. Thus, By, is
equal to the block (b b)) of x. When the scenery ¢ is like in our example, we find T = b + 1. When
furthermore E holds we get :

e S(by)=0and S(b] +1)=1

e b is the first hitting time of {0,5} by S after time b, + 1. Thus, in this case bj = min{t >
by +1]S(t) € {0,5}}.

This implies that the conditional distribution of |B;| = b —b; — 1 given the scenery ¢ and conditional on
E is like the distribution of the first exit time by S of an interval of length 5. This conditional distribution
in the case of our example, equals:

L(Bi]l & E) ="

We see that the conditional distribution of the length of an block of x is A”. In this case, m designates
the length of the block of £ on which the block of x was generated.

What is the conditional joint distribution of the |Bg|’s given &7 Again we look at the case when the
scenery £ is like our numerical example. In this case the random walk S can for example cross the block
(0,5) then the block (4,7) and finally the block (6,9). If the random walk crosses these blocks in the
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above mentioned manner and order, the joint conditional distribution for |Bj|, |Bs|,|Bs| is proportional
to M ® A2 ® A\2. More precisely, if the scenery ¢ is like in our example, we get:

1

L (|Bi|,|Bzl,|Bs|| & S(bf) =5,5(b3) =7,5(b3) =9) = e

Moo\
(Here |\7*| := >, P(T},, = 4, St,, = m).) Another possibility for the random walk S is to first cross
the block (0,5) then the block (4,7) and finally enter the block (6,9) and exit on the same side. The
conditional joint distribution of |Bi|, |Bz|, |Bs| in this case is proportional to A2 ® A2 ® A\?. Then
1
L(|Bi],|Bal, |Bs|| £,5(b) =5,9(bF) =7,5(0b3) =6) = g Ar @ A2 @ AT
(| 1|a| 2|7| 3||§a (1) ’ (2) ’ (3) ) |)‘¢||)‘%||)‘12| r QAL QA
Yet another possibility for the random walk S would be to first cross the block (0,5) then enter the block
(4,7) and exit on the same side and finally cross the block (0,5) from right to left. In this case, the
conditional joint distribution of |B|, |Bz|, |Bs| is proportional to A\* ® A? ® AZ. Then
1
L(|B1l,|Bal,|Bs| € S(b]) = 5,5(b3) = 4,5(b3) =0) = W)é DA © A
T 1 r

The random walk can also choose to first visit the block to the left of zero. For example it could first
cross from right to left the block (—3, —1), then cross the block (—4, —2) and finally cross also from right
to left the block (—5,—3). In this case the defective conditional joint distribution of |Bj|,|Bs|,|Bs]| is
Al ® AL ® AL, There are many other possibilities. In total for the first three block crossed there are
2(23) different possibilities. The joint conditional distribution of | By |, |Bs|, |Bs| is obtained by adding the
defective distributions for all these different cases. The sum can be decomposed into two groups of cases:
the cases which start with S(b]) = 0 and those which start with S(b] ) = —1. For the numerical example
considered here, this gives

L(|B1|,|B2l,|Bs| |€§) = P(S(by) =0)- (A @ A2 @ N+ A @A @A + A @A @ Ar+...)
+P(S(h7)=-1) (M RANAN+A @A N +...)

With the scenery & of this example, v is equal to:

vE)|[... 1 2
z | -1 0

4 2 2
1 2 3
Let us analyze the different terms in the last sum above. The first term is

Mo A2 @\ (5.1)

This correspond to when R walks in a straight way from point 1 to 3, and hence R(1) = 1,R(2) =
2, R(3) = 3. In other words, the random walk S visits first block one of &, then block 2 before block 3.
The sequence of superscripts of (5.1) is 4,2,2. This corresponds to the length of the blocks visited. In
this case,

(4,2,2) = (¥(1),9(2), ¥(3)).

Take now the second term of the sum of conditional joint distribution of the |B;|’s. This term is
Mo A2 @A (5.2)

It corresponds to the random walk visiting first block 1 of £, then block 2 before going back to block
1. Hence, this corresponds to R(1) = 1, R(2) = 2, R(3) = 1. The sequence of superscripts of expression
(5.2) is the sequence of the lengths of the blocks visited by S. In this case the sequence 4, 2,2, is equal
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to Y(R(1)),v(R(2)),¥(R(3) for R(1)R(2)R(3) = 121.

In the sum of the conditional joint distribution of the |B;|’s, we observe that each term corresponds to
one possibility for the nearest neighbor walk R. So, we have to consider all nearest neighbor walk paths
starting at 1 or —1. Each one gives one term in our sum. The connection between the terms and the
corresponding nearest neighbor walks is the following: The sequence of superscripts of the term is equal to

the observations of ) made by the nearest neighbor walk. (By observations of ¢ made by r, we mean or).

Let us now formulate the essence of the last example. For this, some notations are
needed.

Let R* denote the set of all nearest neighbor walks R : [1,k] — Z such that R(1) €
{1, -1}. Let R%, resp. R* denote the set of all nearest neighbor walks in R* starting at
1, resp. at —1.

Let 7 € R*¥. We denote by 7, the observations made by r of . Thus, Vt € [1, k],

mp(t) = ¥(r(t)).

Let [,(t) be the variable which describes if the nearest neighbor walk at time ¢ moves back
to the point where it was at time ¢ — 1. More precisely, [,.(t) =l if r(t — 1) = r(t + 1)
and [.(t) = rif r(t — 1) # r(t +1). (Note that we use the same symbol r, for two very
different things: one is the nearest neighbor walk r. The other thing is just a symbol,
which tells us when the random walk S exits a block on the opposite side than where it
entered.) With this notation, we formalize the conditional distribution of the lengths of
the first & blocks.

Theorem 5.1 The joint conditional distribution
LBl |Bsl, .., Bl | )
1S equal to the sum
(1) mr(2) (k) (1) mr(2) (k)
Pl N ®N @ @A pa ) N @G @ @A) (5.3)
reRNT! reRFT!

where
p1:=P(R(1)=1), p_;:=P(R(1)=-1).

5.2 Reconstruction of ¢ from L(x|¢)

We want to reconstruct & given L£(x|¢), only.
Let W* be the set of all possible observations of 1) made by a nearest neighbor walk
belonging to R*:

W= {m|re R} .

Let W := U Wk,
Assume first that all the distribution-vectors A\;* and A" for m € N, are linearly indepen-
dent of each other. (This is not exactly the case, let us first imagine it.) We could linearly
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decompose L(|By], |Bal, ..., |Bk| |£) and find each term in the sum given in Theorem 5.1.
Each term in the sum is a direct product of distributions A\]* and A7*. For a given term,
taking the sequence of superscripts yields .. Hence, we would be able to determine all
the possible observations , of 1 made by a nearest neighbor walk r € R*. In other
words, we would obtain the set W,

In reality, not all distributions A\]* and A" for m € N, are independent of each other.
However many of them are. So, it is still possible determine all the terms in the sum
of Theorem 5.1 using the distributions £(|Bi], |Bal, ..., |Bk| |£) alone. For this, one uses
linear decomposition along some subspaces and heavy combinatorics. To explain the de-
tails, ugly and complicated notations are needed. This one of the reasons, why there are
no easily accessible papers about the reconstruction for a random walk with holding.
Next, note that the set W is the set of all possible observations of ¢ made by a nearest
neighbor walk belonging to R*. The nearest neighbor walks in R* are without holding.
Therefore, we can apply the techniques for the simple random walk, which were presented
in Subsection 3.1. Of course, in Subsection 3.1, we considered the case, where we have
only one realization of the observations. Here, W consists of all possible observations of
Y by ar € R¥. However, if instead of one observation, the set of all possible observations
is given, the reconstruction becomes much easier. Hence, with the techniques described
in Subsection 3.1, it is easy to reconstruct ¥ up to equivalence from the set W.

Since S starts at the origin, ¢ and x(0) determine £ up to equivalence.

An example to show how to reconstruct £ up to equivalence from 4 and x(0). Assume

(=1)=3,9(0) =2,4(1) = 1,¥(2) =3
and x(0) = 0. This then implies, that the scenery £ around the origin looks like this:

...01110010001 ...
Next, we describe the algorithm to reconstruct ¢ if we are given L£(x|¢).
Algorithm 5.1

1. Decompose

L(|Bil;- -, [ Bl[€)

linearly and use combinatorics to obtain the set W*. Do this for every k € N.

2. Use the combinatorial methods for the simple random walk, to reconstruct ¥ from
the set of observations W.

3. From 1 and x(0) reconstruct & up to equivalence.

5.3 Approximation of L(x|¢)

In the previous subsection, we explained how to reconstruct £ provided, we are given
L(x|€). It remains to explain, how to obtain L£(x|{). To begin with, assume that on top
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of the observations x, we are given an increasing sequence (7;);en of o,-adapted stopping
times. Let each of these stopping times stop the random walk at the origin: S(7;) = 0 for
all 7 € N. Then, because of the strong Markov property of S, we have that the empirical
distribution of the first k£ observations after 7;, converges to

L(x(0)x(1)...x(k—=1)[&),

as the number of stopping times goes to infinity. In other words, the empirical distribution
of the color records

X(mi)x(mi+1)...x(m+k—=1)

where i € [1,n], converges to L(x(0)x(1)...x(k—1)[§) as n — oo.

In general, it is not possible to construct many o,-adapted stopping times which all tell
when S is exactly at the origin. It is only possible to construct stopping times which all
stop S in a given interval I. If we then take the empirical distribution of the observations
after the stopping time 7;, this will not be an approximation of L(x(0)x(1)...x(k—1)[¢).
Rather, it will be an approximation of the mixture

S aL(x[6), (5.4)

zel

where a, denotes the proportion of stopping times for which S(7;) = z and x. denote the
observations made by a random walk starting at z:

Xz = (£(2),€(z +5(1)),6(2 + 5(2)), ..., £(z + 5(k)).

Given the mixture (5.4), the reconstruction of ¢ is very similar to the reconstruction with
the help of L(x|¢).
For the construction of the stopping times we refer the reader to [22, 21] or [25].

6 The purely statistical case

6.1 Why the method for the semi-combinatorial case fails in the
purely statistical case

Here we explain why the method described in the previous section is impossible when the

random walk is allowed to jump. Recall the definition of the random walk with jumps in

(3.4). In this section, & is a 2-color scenery and S is a symmetric recurrent random walk

with jumps (the symmetry is assumed to simplify the notation). We assume that S has
bounded jump length L < oo, where

L := max{z|P(S(1) — S(0) = z) > 0}.

Let x and y be two points of N. We say that  and y are equivalent with respect to & if
there exist a possible path for the random walk S going from x to y and such that we
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observe only the same color during the whole trip from x to y. Formally: x and y are
equivalent with respect to £ if there exists 0 < s < ¢ such that

P(x(s) = x(s +1) = ... = x(1), 5(s) = 2, 5(t) = y|§) > 0.

An island is a maximal set of points in Z which are all equivalent with respect to £. If
the random walk has no jumps, then the island is a block.

Let € be

| t]1joj1jojojLfL
| —4[=3]-2]-1]0]1

Let S be such that

P(S(t+1)—S()=k)>0, ifandonlyifk=-2,-1,0,1,2.
Then L = 2. The following points are equivalent:

{—4,-3,-1},{-2,0,1},{2,3},{4,5,6,8,10},{7,9,11,12,13,14, 16}, {15,17,18,19}
and the islands of this example are
{-2,0,1},{2,3},{4,5,6,8,10},{7,9,11,12,13, 14, 16}.
Let S be such that
P(S(t+1)—S(t)=k) >0, ifandonlyifk=-3-2,-1,0,1,2,3.
So, the maximum step of S is at the length of 3, i.e. L = 3. Then the following points are equivalent:
{-4,-3,-1,2,3},{-2,0,1,4,5,6,8,10},{7,9,11,12,13,14, 16}, {15,17, 18,19}
and the only island in this example is
{7,9,11,12,13,14,16}.

Let S be such that

P(S(t+1)—S(t)=k)>0, ifandonlyifk=-3-1,0,1,3.
So, L = 3, but the moves with the length 2 are not allowed. Then the following points are equivalent:

{—4,-3,-1,2,3},{-2,0,1,4,5,6,8}, {10}, {7}, {9,11,12,13, 14}, {16}, {15,17, 18,19}
and the islands of this example are:
{10},{7},{9,11,12,13,14}, {16}.

We see, how the islands depend on the nature of S.

If the random walk can jump, then a block B of y is generated on an island of &£, but not
necessarily on a block of £. It turns out that this difference is crucial. Similarly to the
case for a random walk with no jumps, the conditional distribution

L(|B1],|Bal, ..., |Bxl |€)

can be written as a positive linear combination of direct product of distributions. These
distributions are now the conditional distributions of the length of an observed block given
the underlying island. However, there are important differences to the case of a random
walk with no jumps. The main differences are the following.
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1. There is no explicit formula for the conditional distribution of | B;| given the island
it was generated on. This conditional distribution depends on some eigenvalues for
which, in general, there is no explicit formula. Recall that in the case of no jumps,
there is a simple explicit expression for the distribution of |B;| given that it was
generated on a block of length m.

2. A block of length m has a fixed shape. If the random walk can jump, then, for
an island with m elements, there are exponentially many (in m) possible shapes.
Hence, there are exponentially many possible conditional distributions for |B;].

These differences cause the reasons why the approach from the previous section does not
work at all, if the random walk with can jump. The reasons are the following.

1. Scenery reconstruction is not just about reconstruction. It is also about proving that
the reconstruction works. Since we use an estimation of L£(|Byl,|Bsl, ..., |Bk| [€)
instead of L(|By],|Bal, ..., |Bx| |£) itself, we need to be able to bound the approxi-
mation error. In the linear decomposition, the approximation error depends on how
“linearly independent” the distributions A™ are of each other. Unfortunately, with-
out the explicit formulas it is not possible to show how “linearly independent”the
distributions A\™ are of each other. And then it is not possible to evaluate the effect
of the approximation error in our decomposition.

2. In the previous section, the linear decomposition of the approximation of
‘C(‘Bl|7 |BQ|> R ‘Bk‘ |€)

was possible, because the number of components was relatively small. With an expo-
nential number of distribution, it is not more possible to decompose our approxima-
tion of L(|Bi|,|Bal,...,|Bk| |£). Indeed, since there are so many possible distribu-
tions, many will be very close to each other and hence the approximation error will
make it impossible to recognize which one really appear in L(|B1|, |Ba|, ..., | Bkl |€).

The reasons above make the method form last section completely unsuitable for the
random walk with jump and a fundamental new approach was needed.

6.2 How to reconstruct a small amount of information

In Section 3.1, we introduced the concept of fingerprint. A fingerprint is a transforma-
tion of a piece of observation x* that gives us certain information about the underlying
piece of scenery £ on which x! was generated. In the setup considered in Section 3.1,
a fingerprint was a relatively easy defined and well understood transformation. In the
setup of the present section (2-color scenery observed along a random walk with jumps),
such fingerprints do not work. However, it is still possible to construct a transforma-
tion of a piece of observation that can be used as a fingerprint. The construction of
such fingerprints is more complicated and, as typical to the statistical approach of the
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scenery reconstruction, they reveal the desired information with certain probability, only.
However, these fingerprints constitute the basis of the scenery reconstruction in this setup.

In the following, we present the fingerprint existence theorem. This is the main result of
the paper [15].
Let us introduce and recall some notation. Recall that

Xo© =x(0)...x(m*), & =¢(0)...5m).

Let a =ay...ay, b = by...byy1 be two words with length N and N + 1, respectively.
We write a C b, if
a < {bl...bN,bg...bN+1}.

Thus, a C b holds if a can be obtained from b by "removing the first or the last element”.

Theorem 6.1 There exists constants ¢, > 0 not depending on n such that:
For every n > 0 big enough, there exist an integer m(n) satisfying

1 an
— exp <—> < m < exp(2n),
4 Inn

two maps

g:{0, 1} — {0,137+

g+ {01} = {01}
and an event E ok € 0(£(2)|z € [—cm, em]) such that all the following holds:
1) P(E") o) — 1 when n — 0.

2) For any scenery & € E™) ok, we have:
P (906) € 91| S(m?) = m,¢) > 3/4.

3) g(&r) is a random vector with (n*+1) components which are i.i.d. Bernoulli variables
with parameter 1/2.

The mapping g can be interpreted as a coding that compresses the information contained
in £'; the mapping g can be interpreted as a decoder that reads the information g(£*)
from the mixed-up observations XSIZH. The vector g(&J') is the desired fingerprint of
&J'. We call it the g-information. The function ¢ will be referred to as the g-information
reconstruction algorithm.

Let us explain the content of the above theorem more in detail. The event

{a6a™) 29}
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is the event that § reconstructs the information g(&") correctly (up to the first or last
bit), based on the observations . The probability that § reconstructs g(&J") correctly
is large given the event {S(m?) = m} holds. The event {S(m?) = m} is needed to make
sure the random walk S visits the entire &' up to time m?. Obviously, if S does not visit
&', we can not reconstruct g(&J).

The reconstruction of the g-information works with high probability, but conditional on
the event that the scenery is nicely behaved. The scenery & behaves nicely, if £ € E7, ok-
In a sense, B, ok contains  typical” (pieces of) sceneries. These are sceneries for which
the g-information reconstruction algorithm works with high probability.

Condition 3) ensures that the content of the reconstructed information is large enough.
Indeed, if the piece of observations 7 were generated far from £J*, then g(£J") were
independent of x§”*, and P(§(x7") C g(&")) would be about 2. On the other hand,
given that £ € E7 ok, the probability P(Q(Xg”Q) C g(&)) is about P(S(m?) = m) which
is of order % > e~ Although, for big n, this difference is negligible, it can be still used
to make the scenery reconstruction possible.

Theorem 6.1 gives us a lower bound to the mutual information [ (56”); XS“Q). Indeed,
from Fano’s inequality follows that, for n big enough, there exists an > 0 such that

I(EMxg™) = 1(EM:; a0@™)) = H(E) — 1 — (1 — Po)log(2™ — 1) > Blum,

where

Pz = P(30") C ().

6.3 3-color example

In this subsection, we solve the fingerprint problem in a simplified 3-color case. This
example gives the main ideas behind Theorem 6.1.

6.3.1 Setup

Recall that we want to construct two functions
g {0, 11" = {0, 13" and g:{0, 1} — {0,1}"
such that

1) with high probability
P (06" € 9(&)| Sm?) =m) .

2) g(&) is ii.d. binary vector where the components are Bernoulli random variables
with parameter 3.
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In other words, 1) states that, with high probability, we can reconstruct g(&") from the
observations, provided that random walk S goes in m? steps from 0 to m.

Since this is not yet the real case, during the present subsection we will not be very
formal. For this subsection only, let us assume that the scenery & has three colors instead
of two. Moreover, we assume that {£(z)} satisfies all of the following three conditions:

a) {&(z): z € Z} are i.i.d. variables with state space {0, 1,2},
b) exp(n/Inn) < 1/P (£(0) = 2) < exp(n),

c) P(£(0) =0) = P(£((0) =1).
We define m = n*3(1/P(£(0) = 2)). Because of b) this means

n*5exp(n/Inn) < m(n) < n*®exp(n).

The so defined scenery distribution is very similar to our usual scenery except that some-
times (quite rarely) there appear also 2’s in this scenery.

We now introduce some necessary definitions.

Let z; denote the i-th place in [0, c0) where we have a 2 in . Thus
z = min{z > 0[{(2) = 2}, Zi41 = min{z > Z|{(z) = 2}.

We make the convention that Z, is the last location before zero where we have a 2 in &.
For a negative integer i« < 0, Z; designates the i + 1-th point before 0 where we have a 2
in £&. The random variables Z;-s are called signal carriers. For each signal carrier, Z;, we
define the frequency of ones at z;. By this we mean the (conditional on £) probability
to see 1 exactly after e"" observations having been at z;. We denote that conditional
probability by h(z;) and will also write h(i) for it. Formally:

h(i) = h(z) = P(g(S(en )+ 5) = 1‘5).

It is easy to see that the frequency of ones is equal to a weighted average of the scenery
in a neighborhood of radius Le"" of the point z;. That is h(7) is equal to:

h(i) = > E(2)P(S(e™) + 7 = 2) (6.1)

ze[—Le”O'l ,Le"o'l]

2F#Z;

0.1

(Of course this formula to hold assumes that there are no other two’s in
[Ei - L€n0.17 Zi + Leno'l]

except the two at z;. This is very likely to hold, see event E{ , below).
Let

9:(&0") = Tj,0.5)(R(7)).

We now define some events that describe the typical behavior of €.
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e Let B, denote the event that in [0, m] all the signal carriers are further apart than
exp(n/(2Inn)) from each other as well as from the points 0 and m. By the definition
of P({(i) = 2), the event P(E{,) — 1 as n — oo.

e Let ET, be the event that in [0, m] there are more than n? + 1 signal carrier points.
Because of the definition of m, P(E},) — 1 as n — oc.

When E}, and Ef, both hold, we define g(£") in the following way:
g(&(?) = (gl (gén) ) 92 (5(?) » 93 (gén) ey Gn241 (gén))

Conditional on ET, N Ef, we get that g (£™) is an i.i.d. random vector with the compo-
nents being Bernoulli variables with parameter 1/2. Here the parameter 1/2 follows simply
by symmetry of our definition [to be precise, P(g; (™) = 1) = 1/2—P(h(i) = 1/2), but we
disregard this small error term in this example| and the independence follows from the fact
that the scenery is i.i.d. [indeed, g;(£7") depends only on the scenery in a radius Le™" of
the point Z; and, due to Fg 2, the points Z; are further apart than exp(572—) > L exp(n®!)].
Hence, with almost no effort we get that when E}, and Ef, both hold, then condition
2) is satisfied. To be complete, we have to define the function g such that 2) holds also
outside ET, N Ef,. We actually are not interested in g outside ET, N Ef 4, - it would be
enough that we reconstruct g on ET', N Ef,. Therefore, extend ¢ in any possible way, so

that g (§") depends only on &J* and its component are i.i.d.

6.3.2 g-algorithm

We show, how to construct a map § : {0,1}" +— {0,1}" and an event EZ, € o(¢) such
that P(E}) is close to 1 and for each scenery belonging to Ej, the probability

P30 C 9(&)IS(m?) = m) (6:2)

is also high. Note, when the scenery ¢ is fixed, then the probability (6.2) depends on S.
The construction of ¢ consists of several steps. The first step is the estimation of the
frequency of one’s h(i). Note: due to Eg. we have that in the region of our interest we can
assume that all the signal carriers are further apart form each other than exp(n/(21nn)).
In this case we have that all the 2’s observed in a time interval of length e™” must come
from the same signal carrier. We will thus take time intervals 7" of length e™” to estimate
the frequency of one’s.

Let T = [t1,t,) be a (non-random) time interval such that t, — t; = "”. Assume that
during time T the random walk is close to the signal carrier z;. Then every time we see
a 2 during T' this gives us a stopping time which stops the random walk at z;. We can
now use these stopping times to get a very precise estimate of h(7). In order to obtain the
independence (which makes proofs easier), we do not take all the 2’s which we observe
during T'. Instead we take the 2’s apart by at least e"" from each other.

To be more formal, let us now give a few definitions.

Let v, (1) denote the first time ¢t > ¢; that we observe a 2 in the observations yx after
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time ¢;. Let 1, (k + 1) be the first time after time 1, (k) + €™ that we observe a 2 in
the observations y. Thus v, (k + 1) is equal to min{t|x(t) = 2,t > v, (k) + "' }. We
say that T is such that we can significantly estimate the frequency of one’s for T, if there
are more than e"” stopping times vy, (k) during T'. In other words, we say that we can
significantly estimate the frequency of one’s for T if and only if vy, (e"°) < t, — """
Let X,, (k) designate the Bernoulli variable which is equal to one if and only if

V(o (B) + ") = 1.

When v, (e"") < ty —e™"" we define hy the estimated frequency of one’s during 7" in the
following obvious way:

0.2

. 1 — -

hr = e Z X, (k).
k=1

Suppose we can significantly estimate the frequency of one’s for 7. Assume Ef, N E; 5
hold. Then all the stopping times vy, (6”0'2) stop the random walk S at one signal carrier,
say z;. Because of the strong Markov property of S we get then that, conditional on &,
the variables Xy, (k) are i.i.d. with expectations h;. Now, by Hoffding inequality,

P(lhy — h(i)| > e ™*7%) < exp(—(2¢™"7/?)).

Hence, with high probability, hr is a precise estimate for h(z). The obtained preciseness
of hy is of the great importance. Namely, it is of smaller order than the typical variation
of h(i). In other words, with high probability |h(i) — h(j)| is of much bigger order than
exp(—n®?/4), i # j. To see this, consider (6.1). Note that, for each z,

i(z) = P(S(e"") + 7 = 2)

is constant, and, conditional under the event that in the radius of Lexp(n’!) are no
more 2’s in the scenery than Z;, we have that £(2; + z) are i.i.d. Bernoulli variables with
parameter % Hence

varh) < Y (me2)

[—Len®1 [en01]

Since our random walk is symmetric we get that

2.

2€[—Len®! Len1]

(#0.2(2))2

A

is equal to 1/4 times the probability that the random walk is back at the origin after
2¢""" time. By the local central limit theorem that probability is of order em"'/2 This
is much bigger than the order of the precision of the estimation of the frequencies of
one’s, e "*/4, Since h(i) is approximately normal, it is possible to show that with high
probability all frequencies h(0), h(1),...,h(n?+ 1) are more than exp(—n®!1) apart from
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%. By the similar argument holds: If {Z; };c; is the set of signal carriers that S encounters
during the time [0, m?], then for each pair 4, j € I, the frequencies of ones satisfy

[h(i) = h(5)| > exp(—n"").

Let Ef , be the set on which both statements holds.

Define

From now on we assume that Epx hold and we describe the g-construction algorithm in
this case:

Phase I Determine the intervals 7 C [0,7m?] containing more than ¢™” two’s (in the
observations.) Let T; designate the j-th such interval. Recall that these are the
intervals where we can significantly estimate the frequency of one’s. Let K designate
the total number of such time-intervals in [0, m?].

Let 7(j) designate the index of the signal carrier z; the random walk visits during
time T; (due to Ef ,, the visited signal carriers are further apart than Le™” from
each other and, hence, there is only one signal carrier that can get visited during
time 7;. Thus the definition of 7(j) is correct.)

Phase II Estimate the frequency of one’s for each interval 7;, j = 1,..., K. Based on
the observations XS“Q only, obtain the vector

A~ ~

(v, ) = (h(r(1), b((2)), .. h(r(K) ).

Here h(i) denotes the estimate of h(i), obtained by time interval T}, with 7(j) = 4.

The further construction of the g-reconstruction algorithm bases on an important property
of the mapping = : {1,..., K} — Z - with high probability 7 is a skip free walk, i.e.
|7(j) — n(j +1)| < 1. Hence, the random walk during time [0, m?] is unlikely to go
from one signal carrier to another without signaling all those in-between. By signaling
those in-between, we mean producing in the observations for each signal carrier z; a time
intervals of length e"”” for which one can significantly estimate the frequency of one’s
h(i). In particular, the skip-freeness implies that 7(1) € {0,1}. The skip-freeness of 7 is
proved in Theorem 5.2.

Let m, ;= min{n(j) : j=1,..., K}. Now 7, < 1. Let 7* :=max{n(j):j=1,...,K}. If
S(m?) = m, then, by E7,, 7 > n?.

Phase III Apply clustering to the vector (hy,, by, ..., by, ), i.e. define

R R . A 1 - )
Cy o= {hr, : |hay — hey| < 2exp(—n"'?)}, fi:= a Y ey, i=1,... K.

J€C;

31



By E%,, we have 5exp(—n®1?) < exp(—n®M) < |h(i) — h(j)|, if n is big enough. Hence,
ﬁTj € C; if and only if 7(i) = 7w(j). Thus, for each different i,; either C; = C; or
C; N C; = 0. Hence, fj is the average of all estimates of h(m(j)) and, therefore, f] is a
good estimate of h(m(j)). Obviously,

fi= fj if and only if 7 (i) = 7(j). (6.3)

Thus, we can denote f(z) = fj, if 7(j) = ¢ and (6.3) implies f(il)) + f(ij), if 1 £ 5.

After phrase III we, therefore, end up with a sequence of estimators f(zﬂ(l)), o f(Z,r(K))
that correspond to the sequence of frequencies h(w(1)),...,h(mw(1)). Or, equivalently, j —
fj is a path of a skip-free random walk 7 on the set of different reals {f(zr*), o f(z,r)}
The problem is that the estimates, f(é,r(l)), e f(é,r(K)) are in the wrong order, i.e. we
are not aware of the values 7(j), 7 = 1,..., K. But having some information about the
values 7(j) is necessary for estimating the frequencies h(1), ..., h(n?+1). So the question
is: How can get from the sequence f(z(ﬂ(l)), ce f(EW(K)) the elements f(21), ..., f(Zp211)?
Or, equivalently: after observing the path of 7 on {f(Zy.), . .., f(Zz)}, how can we deduce

A~ A~

f(z1)s oy f(Znzy1)?

6.3.3 Real scenery reconstruction algorithm

We now present the so-called real scenery reconstruction algorithm - AX. This algorithm
is able to answer to the stated questions up to the (swift by) one element.

The algorithm works due to the particular properties of 7 and { f (Z)s - - f (Zz<)}. These
properties are:

A1) 7(1) € {0,1}, i.e. the first estimated frequency of one’s, f; must be either an
estimate of h(1) or of h(0). Unfortunately there is no way to find out which one
of the two signal carriers Z; or z; was visited first. This is why our algorithm can
reconstruct the real scenery up to the first or last bit, only;

A2) 7(K) > n? This is true, because we condition on S(m?) = m and we assume that
there are at least n + 1 2-s in [0, m] (event ET,);

A3) 7 is skip-free (it does not jump);
A4) f(z)# f(Z)Vi#i, 05 €{m,... 7}

Algorithm 6.1 Let s = (521, 50,...,K) be the vector of real numbers such that the
number of different reals in » is at least n® + 1. The vector » constitutes the input for
AR,

Define Ry := . From here on we proceed by induction on j : once R; is defined, we
define Rjy1 : »s, with s :== 1+ max{j : 3, = R;}. Proceed until j = n*+ 1 and put

A]S(%) = (R2a R?n s 7Rn2+1>'

32



The idea of the algorithm is very simple: take the first element s of s and consider all
elements of the input vector s« that are equal to s and find the one with the biggest
index (the last s¢;). Let j; be this index. Then take s; 4, as the first output and look for
the last s¢;,41. Let the corresponding index be j, and take s,1; as the second output.
Proceed so n? + 1 times.

Let us proof that the algorithm A works. In our case the input vector is f = (f1, cee fK)

Proposition 6.1 Let {f(z:,),.... [(Z:+)} and 7 satisfy A1), A2), A3), A4). Then

~

A e {(f R JER), (F(Z) o f(Ze)) Lo AR E (f(21),- - f(Za2)-

Phase IV Apply A% to f. Denote the output AR(f) by (f1,..., fa2). By Proposition
6.1,

A A

(fr, - fu) E(f(Z1), - f(Zn2sa) (6.4)

Now recall that we are interested in reconstructing the g;(&7") := Ijo5)(h(7)) rather than
h(i). Thus, having estimates for h(Z;), namely f(Zz;), we use the obvious estimator for g;:

To,0.5)(fi)-

Phase V Define the final output of g
Q(ng?) = (I[O.S,l](fl)u .- -1[0.5,1](fn2)>-

Recall that because of EY,, with high probability all random variables h(1),. .., h(n*+1)

are more than exp(—n®!) apart from 1. Since exp(—n®!') is much bigger than the

preciseness of our estimate, with high probability we have f(z) < 0.5 if and only if
h(z;) < 0.5. By (6.4) this means

a0 = (Tosn(1): - Tosu () € (Toan(h(z).- - Tosn(h(zen))) = (&)

Hence, when Epg holds, then ¢ is properly defined and the probability (6.2) is high. Since
we are not interested in § when Epx does not hold, we extend the definition of g arbitrary
to Eé -

6.4 How to reconstruct a word

In this subsection, we try to explain the main ideas behind the procedure that uses the
fingerprints (as in Theorem 6.1) to reconstruct a word. This procedure is the content of
the paper [?].
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6.4.1 Ladder word selection

Recall the basic word reconstruction procedure in Subsection 4.2: We assumed there
exists two special locations x and y so that we can immediately see, when S is located
at x or at y. Then the shortest word between = any y in observations is £, a.s.. We
are now considering the case when the random walk can jump. Suppose that x < y and
y —x = cL, where c is a positive integer, and L is the length of the maximal jump of S.
In this case, the shortest observation word between z any y is not £, but r the word

E(x)é(x+ L)é(x +2L) ... L(x + (c — 1)L)E(y). (6.5)

The word (6.5) is called a ladder word. So, if S can jump, then the procedure described

above gives us a ladder word. However, if we have sufficiently many ladder words, then

the scenery can still be reconstructed.

Let us now explain the reconstruction of a ladder word a bit more precisely. Suppose that

for a pair (z,y) such that y = z + cL, there exist integers u,v < oo and functions
G(E™) =Gy, G(&,) =G

Gw),w e {0,1}"*',  G*(w),w € {0,1}"*+!
such that the following hold:
1 if S(t) <, then G*(x!_,) = G%, if S(t) >y, then G(x?) = Gy;
2 if S(t) > x, then G*(x!_,) # G%, if S(t) <y, then G(x?) # G-

Note the difference: Instead of assuming that the element £(y) is unique, we assume now
(more realistically) that the piece of scenery £¥** is somehow unique. The function G
recognizes and captures the uniqueness of that piece. So, GG, can be considered as the
name of the piece f;fr“. The function G reads the name from observations. The name
G, is assumed to be such that it cannot be read from a piece of observation y;*", if by
generating it, S did start left from y. The symmetric assumptions are made for x.

In this case, the reconstruction of the word (6.5) is straightforward. For each ¢ > 0 define
the observation-words

wH(t) == Xj_,, w(t):=x" w'(t) =Xt (6.6)

and apply the functions G* and G to wl(t) and w?(t), respectively. Because S recurrent,
a.s. there exists a ¢ such that G*(w'(t)) = G* and G(w?*(t)) = G,. In particular, this
implies that S(¢) < x and S(t + ¢) > y. On the other hand, during ¢ steps, the random
walk cannot move more that c¢L. This is exactly the distance between x and y. Hence,
the only possibility is that S(t) = z and S(t+c¢) = y. In this case, w?(t) equals the ladder
word (6.5).

So, under the assumptions 1 and 2, there is a simple rule for selection a observation word
w as the ladder word (6.5), and this rule works a.s. Unfortunately, the assumptions are
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still very unrealistic. At first, in our setup, there is no way to construct the name reading
functions G and G* so that they read the names G, and G, for sure. It is more realistic
to assume that they do it with certain probablhty, only. This means that the assump-
tions 1 hold with a positive probability. However, since the random walk is recurrent, the
procedure above still holds.

Secondly, a necessary condition for the procedure above to work is that there is no z <y
such that £ = ¥, Indeed, if there exists such a z, then the names G, = G(§™)

and G, = G(f’g*“) were equal, and G could read it from the left of y. Because any finite
pattern exists infinitely often in £ (a.s.), the condition obviously fails. Therefore, it is
more realistic to assume that the word S?y”“ is unique in a certain neighborhood, only.
To apply the procedure, it is then necessary to know, when S is in the neighborhood of
interest. This is done via the stopping times as explained in Subsections 4.4 and 4.5. To
every stopping time 75, corresponds a triple (w!, w? w?). If there are sufficiently many
stopping times, then (with high probability), for some triples the name readers read the
names.

Thirdly, the described procedure requires that we know the names G: = G(&7_,) and
G, = G(&)™). These names depend on unknown §. However, they can be read with pos-
1t1ve probablhty If we have sufficiently many word triples (w1 w?, w3), then (with high
probability), a certain portion of them satisfy G*(w') = G, G(w?) = G,. So, there exists
a pair of names, G* and G such that the number of word triples (w!, w?, w?) satisfying
G (w') = G*, G(w®) = @ is above a pre-defined threshold. Unfortunately, there can be
many pairs on names (G*,G) having the same property. To choose the right pair, we
ripe benefit from the condition 2. Due to this condition, the right pair of names has an
important characteristic — if G*(w') = G* and G(w?) = G,, then the word w? is always
(6.5) and hence the same. We can now formalize a more realistic but not yet definitive
rule for selecting a word w? as the ladder word (6.5).

Simplified selection rule: The word is taken as (6.5), if there exists a pair of names
G*, G such that the following holds:

a) there exists a certain amount of triples (w!, w? w?) such that
G*(w') = G*, Gw?) =G, (6.7)

b) for every triple (w', w? w?) satisfying (6.7), it holds w? = w.
In [?], the simplified rule is modified so that the definite selection rule works with high

probability, provided that we have suitable name- and name reading functions.

6.4.2 Reading the names

Let us now briefly explain the basic ideas behind the construction of the name and name
reading functions. Unfortunately, we cannot find these functions so that the condition
2 were satisfied. Instead, we require that if S(¢f) > z and S(t) < y, then the events
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{G*(x!_,) = G*} and {G(x?) = G,} have negligible probability comparing to the case of
S(t) > x and S(t) < y. To construct such functions, we use the fingerprints from Theorem
6.1. For several reasons, the fingerprints alone are not good enough. To get more powerful
functions, we use the fingerprints iteratively. We take a [ big enough, and we shall apply
the functions g and § [ times consecutively. Let w = w(0)...w(Im) € {0, 1} where
m is as in Theorem 6.1. We define [ sub-words, called cells

w; =w((i —1)m)---w(im), i=1,...,1L
Using the sub-words w;, we naturally extend the definition of g to the words in {0, 1}!™*!
G {0, 1 110{0, 11, Gluw) = (g(uwn), ... glw).
Let v = v(0)...v(Im?) € {0, 1}'*+1. We define cells
v =v((i — D)m?) ... v(@im?), i=1,...,L

Using the sub-words v;, we extend the definition of G to the words in {0, 1}/ +1.

N

G {0, 11+ L0, 1Y Go) = (G(v), ..., G(w)).

The functions G* and G are defined similarly.
Finally, we have to relax the requirement G(v) = G(u). Since the name reading procedure
is based on Theorem 6.1, it is natural to expect that G(x/*"!) "reads” G(&yt™), if the
relation C holds cell-wise, i.e.

G( tim? ) EG(E’“m ) foreach =11

Xt—i—(z 1)m?2 y+(i—1)

To understand, why this definition would not work, note that Theorem 6.1 bounds

the probability of the event G( A W (Syﬂm ) only if the piece of scenery

Xt—i— (i—1)m?2 y+(i—1)m
elongs to € se is is € case, we say a € ce
Y M e belongs to the set Bl . If this is th that the cell &7\

is OK Although E” ok has the probability close to one, since [ is big, we expect a pro-
portion of cells not to be OK. For not OK cells, the statement 2) of Theorem 6.1 needs
not hold, and the cell-wise reproducing might fail. Hence, we relax the requirement of the
full cell-wise reproducing to the requirement that the OK cells are reproduced. Whether
a cell is OK or not, depends on unknown &. However, it can shown that for a suitable
¢, the number of OK cells is bigger than (1 — 3¢), provided [ is big enough. Hence, the
function G(x™%) reads the name Gy(&), if the relation C holds for at least [(1 — 3¢)
cells. The name G, is read similarly.

To get the better insight to the whole ladder word reconstruction procedure including

the definite selection rule as well as the final definition of G and G functions, the reader
is recommended to read the first section of [?].
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6.4.3 Assembling the words

Having a working ladder words selection rule, with high probability, we collect many
ladder words with fixed length. With high probability, again, these words can be uniquely
assembled to get a ladder word of bigger length. Suppose now that we want to reconstruct
a piece of scenery with the length M. For this we obviously need L different ladder words
(modulo L), each of them having at least % elements. Suppose we are able to construct
these L ladder words. We are now faced another problem: How to assemble these different
ladder words together? Since the locations of these ladder words in the original scenery
¢ is obviously disjoint, to assemble them correctly, we need some more information. Like
a (relatively) small piece of original scenery. In Subsection 4.3, we re-stated the scenery
reconstruction problem as the problem of reconstructing an increasing sequence of finite
pieces of . So, for reconstructing the piece v™*!, we can use the already reconstructed
piece v as a piece of original scenery. This piece helps us to assemble the ladder words
correctly. This part of the scenery reconstruction procedure is identical in different setups,
and it is well explained in the first section of [21].
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