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1 Basic definitions related to statistical testing for

simple hypthesis

The main ideas and definitions related to statistical testing can be understood best when
we think of a simple little guessing game involving several different dice. For this imagine
the following game: Matzinger owns two four-sided dice. One has the same probabilities
for each side and is hence a symmetric die. The other has an irregular shape with different
probabilities for each side. Matzinger is going to throw one of the two dice. He will not
tell you which die he has used. But Matzinger is going to tell you which number was
obtained. This number will be denoted by X and you will have to guess which die has
been used just based on the information which he gives you. Again, you know all the
different probabilities for each die. We call the fact that the first die was used, the null-
hypothesis and denote it by H0. The fact that the second die has been used, will be called
the alternative hypothesis and is denote by H1. Trying to figure out which die was used
based on one outcome X, is called testing H0 against the alternative hypothesis H1.

In general we do not assume that there is a probability to which die is used. Otherwise if there exists
probabilities for the hypotheses H0 and H1, then we will say that we are doing Bayesian-statistics. The
probabilities of the hypothesis, that is P (H0) and P (H1) are then called prior probabilities. Now assume
that we would have a bag with 10 dies of the first type and 90 of the second type. And say, we would
chose in that bag one of the dies at random so that each die has the same probability to be chosen.
Then, we would be in the Bayesian statistics case, and P (H0) = 0.1 and P (H1) = 0.9. So, this would
be a case where clearly it would make sense to assume the existence of prior probabilities. On the other
hand assume that your are testing oranges for mercury at the CDC. The hypothesis would be that there
is more than a certain legal among of Mercury in the oranges. Maybe suddenly the law changes and
oranges can be imported from a country where before import was not possible. Then this might lead to
some oranges with Mercury if in that country regulation is less strict. But, in this case we would not
think of a prior probability of the oranges having Mercury, because that probability just change when
the new situation occurred. .....

Now let us assume that the probabilities of the regular die are as follows:

P (X = 1|H0) = 0.25, P (X = 2|H0) = 0.25, P (X = 3|H0) = 0.25, P (X = 4|H0) = 0.25.
(1.1)

Assume that if the alternative hypothesis H1 holds, that is if we use the skewed die, then
the probabilities are as follows:

P (X = 1|H1) = 0.4, P (X = 2|H1) = 0.3, P (X = 3|H1) = 0.2, P (X = 4|H1) = 0.1. (1.2)

We can summarize both probability models in one table

x 1 2 3 4
P (X = x|H0) 0.25 0.25 0.25 0.25
P (X = x|H1) 0.4 0.3 0.2 0.1
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Then, your teacher Matzinger throws one of the two dice, but does not tell you which
he used. Say he obtains the value 2, so that X = 2. Now, you have to guess based on
that value X = 2 alone which of the two dice was used. Of course, you also know the
two models under consideration. That is you know all the probabilities given in 1.1 and
1.2. There are different ways to make your decision as to which die was used based on
the data X given to you.
One example of a test, would be a maximum-Likelihood based test. In this example, side
1 and 2 have bigger probability under H1, than under H0. On the other hand, the sides
2 and 3 have bigger probability under H0. So, we define a first test which we call TEST!.
The decision rule for TEST1 would then be:

1. if side 1 or 2 come we reject the null-hypothesis H0, that is the hypothesis that the
symmetric die was used.

2. If side 3 or 4 appear, then we accept the null-hypothesis H0, that is we accept the
hypothesis that the die used was symmetric

Since we obtained a 2 in our example when throwing the die, we reject the H0-hypothesis
with our test TEST1. In other words, for definition a test, we just need to define an
acceptance region. If then, the value X observed falls within the acceptance region, we
accept H0 whilst otherwise we reject it.
So for TEST1, we have {3, 4} is the acceptance region. On the other hand the set {1, 2}
is the rejection region of TEST1 which is also called critical region of the test.
You will not know in general which die was used. Of course in our little game Matzinger
could just tell you. But in real life, we usually will not know not for sure which model is
the correct one, that is the one which generates the data. think for example X to be same
data about nature which you have on a file. You may know two possible random models
which could have generated the data X. But, nobody while tell you in the end which
model was the correct one: you only have the data X to guess. So, we see, statistical
hypothesis testing is about guessing which stochastic model is generating real life data,
when you have the data available....
let us get back to the little example of the game played with Matzinger. There are two
type of errors:

1. When the first die is used and we decide the reject (wrongly) that H0-Hypothesis
we say that we are making an error of type I. The probability of it given that the
null-hypothesis holds, is called significance of the test and is denoted by α. Hence,

significance of test = P (We commit an error of type I|H0) = P (X is in rejection region|H0)

2. We call error of type II, an error which is committed whilst the alternative hypoth-
esis hold. Thus, such an error consists in failing to reject H0.(in our example: failing
to reject H0, despite as having used the second die). We denote the probability of
an error of type II under the hypothesis H1 by β and hence

β = P (We commit an error of type II|H1) = P (X is in acceptance region|H1)
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furthermore, we call 1− β the power of the test.

Note, that we might never now for sure in the end what type of error we made, since we
might never know for sure which die was used.
In our current example we find that the significance for TEST1, is equal to α = P (1|H0) + P (2|H0) =
0.25 + 0.25 = 0.5. In our case, we have that β = P (3|H1) +P (4|H1) = 0.2 + 0.1 = 0.3 The probability of
not making an error of type II under H1 is 1 minus the probability of making such an error. Hence the
power of a test is 1− β. (CAREFUL, some books use β for the power instead of for the probability of a
type II error. In our text-book β represents the power, but I use it for the probability of an error of type
II).
We have thus two numbers which characteristic a test: the significance α and the power
1 − β. Typically we want the significance α to be small and the power β to be large.
Usually there is a trade off between the two: if we need better significance, then we will
construct another test, but which typically will have worse (less) power.
So, let us consider two possible tests foand compare them. Let TEST1 be the test we
have considered so far and let TEST2 have acceptance region given by: {2, 4}. So,
schematically we have the following situation:

TEST1 a a
TEST2 a a

x 1 2 3 4
P (X = x|H0) 0.25 0.25 0.25 0.25
P (X = x|H1) 0.4 0.3 0.2 0.1

where a stands for acceptance region. Now let us compare the significance and power of
the two tests under consideration in a table:

α 1− β
TEST1 0.5 0.7
TEST2 0.5 0.6

We see both tests have significance 0.5. But TEST1 has bigger power than TEST2. So we
can discard TEST2, since TEST1 clearly has only advantages. You can check that in the
current example TEST1 among all possible tests with significance of 0.5 has most power.
Such a test is called most powerful test. So, a most powerful test on a given significance
level α is a test which maximizes the power among all tests with significance α in that
given situation.
In many real life situations we will be given a requested significance level α and then be
asked to find the most powerful test on that significance level. (Imagine again that you are
testing oranges for Mercury at the CDC. Then, the significance is typically given by Law
to you....) Now, say in the current example you would need a test with a significance of
5%. This in the current setting seems to not be possible, because the smallest probability
you encounter is 25% under H0. So, you would like to “split” one of these probabilities.
The way to do so is by doing a randomized test. For example, when X = 4 you trow a
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five sided die with five equal likely sides: I,II,III,IV and V . We thus assume that

P (I) = P (II) = P (III) = P (IV ) = P (V ) =
1

5

and that this die used is independent of the other dies. We could establish the following
rule: When the data X is equal to 4 we throw that other die and if we get a I we reject
the hypothesis. In all other cases we accept the hypothesis. The significance of this
randomized test is then

P (commit an error of type I|H0) =
1

5
P (X = 4|H0) =

1

5
0.25 = 0.05

So, we get a 5% significance for this randomized test. Schematically we will represent a
randomized test as follows: for each value of x we write the probability of accepting H0

given that X = x above the value of x. So, our randomized test can now be represented
by

P (we reject Ho|X = x) 0 0 0 0.2
x 1 2 3 4

In general the significance for a randomized test when we have a simple null-Hypothesis
and a finite number of possibilities for values for X is

significance of randomized test =
∑
x

P (rejection|X = x) · P (X = x|H0).

Another situation can be when we need randomization to construct a test with more
power on a certain significance level. Assume for this slightly changed probabilities from
our example:

TEST1 a a
TEST2 a a

x 1 2 3 4
P (X = x|H0) 0.25 0.25 0.251 0.249
P (X = x|H1) 0.4 0.3 0.2 0.1

So, we changed slightly, by no more than one percent the probability for 3 and 4. Every-
thing, else remains the same. Now, in the situation before TEST2 could be discarded,
because TEST1 had the same significance as TEST2 but a better power. In this new
situation, if we do not allow randomized tests, we have that TEST2 becomes a most
powerful test for its significance level of 0.501. (Most powerful among all non-randomized
test with significance level 0.501). The reason is that TEST2 has significance equal to

P (1|H0) + P (3|H0) = 0.25 + 0.251 = 0.501

and TEST1 has significance 0.5. So the two tests can not be compared “officially”. But
in real life of course this is non-sense! The difference in significance of 0.01 is not going
to matter, but the difference in power of 10% in important. So in real life we would most
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certainly prefer TEST1 over TEST2. The problem is that without randomizing we can
not split those probabilities and hence a test which might in practice be non-sensical,
can be the most powerful given its exact significance level. This is simply because it is
impossible to put together another test with exactly the same significance. (there only
a very limited number of possible tests....) Now, if we can randomize, then this is no
longer a problem and a test like TEST2 is no longer optimal, because we can construct
a randomized test with exactly the same significance but a better power. Here is what
we do. We would like TEST1 instead of TEST2. But the problem is that TEST1
has a slightly different significance than TEST2. So, what we do is we slightly change
TEST1 by randomization to obtain exactly the same significance than TEST2. But
the randomized test will have a power close to TEST1 (though not exactly the same
power) and hence beat TEST2 in power. To get the significane of 0.501 we will decide
when we have a 1 or a 2 to reject the null-hypothesis. This gives only a significance of
0.5 as of yet. Now, we introduce the randomization: when we have X = 3, we flip a
coin which is stongly biased to decide if we reject the hypothesis or not. That coin will
have a probability of 1/251 to tell us to reject. With X = 4, we always accept H0. The
randomized test is defined in the table below by its conditional probability to reject H0

given different values of X:

P (reject|H0, X = x) 1 1 1
251

0
x 1 2 3 4

P (X = x|H0) 0.25 0.25 0.251 0.249
P (X = x|H1) 0.4 0.3 0.2 0.1

And so the significance for this randomized test is now just equal to

significance of randomized test =
∑
x

P (reject|H0, X = X) · P(X = x|H0) =

= 1 · 0.25 + 1 · 0.25 +
1

251
· 0.251 + 0 · 0.249 = 0.501

which is exactly the same significance as TEST2. The power is

power of randomized test =
∑
x

P(reject|H1, X = x)P(X = x|H1) = 1·0.4+1·0.3+
0.2

251
≈ 0.701,

which is way better than the power β = 0.6 of TEST2!

2 Neyman-Pearson and how to find an optimal test

with simple hypotheses

Let us define the likelyhood ratio:

ratio(x)
P (X = x|H0)

P (X = x|H1
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let us going back to the origin situation with two dice and let us record the Likelihood
ratio in the table:

TEST1 a a
TEST2 a a
ratio(x) 0.625 0.83̄ 1.25 2.5

x 1 2 3 4
P (X = x|H0) 0.25 0.25 0.25 0.25
P (X = x|H1) 0.4 0.3 0.2 0.1

We had seen that TEST2 is not optimal because in its acceptance region it contain 1
instead of 3. When we change the acceptance region of TEST2 by replacing 2 by 3, we
improve the power whilst maintaining the significance at the same level. In other words,
the reason why TEST2 is not optimal is that in the acceptance region we can replace a
point with another point which has higher likelihood ratio. (In our case replacing in the
acceptance region 2 by 3). Note that

ratio(2) = 0.83̄ < ratio(3) = 1.25.

So, here the argument is that replacing a point in the acceptance region with another
with higher ratio can only increase the power. (This argument works here because when
changing 2 with 3, these points have the same probability under H0. In most cases,
this will not be the case.) So, in other words for our tests to be optimal they need the
acceptance region to follow the order of increasing likelihood ratio. Test ! for example
is optimal. the acceptance region corresponds to requesting that the ratio be bigger or
equal to 0.83̄. this corresponds to the points 3 and 4. In general it will not be the case,
that under H0 all points have the same probability. Non-the less it turns out in general
when we test two simple hypothesis against one another that all optimal tests must follow
the order of the likelihood ratio: the acceptance region can not contain a point with lower
ratio than any point in the rejection area. At least if we allow of randomized tests. this
is the content of the Neyman-Pearson Lemma below

Lemma 2.1 Assume that we test the simple hypothesis H0 against the simple alternative
H1. We allow for randomized tests. let

ratio(x) :=
P (X = x|H0)

P (X = x|H1)

Then any optimal test for a given significance level satisfies:
there exists a non-random constant c so that:

1. if ratio(X) < c we reject

2. if ratio(X) > c we accept

On the other hand, any test which satisfies the two conditions above is Most powerful for
its given confidence level.
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So, when ration(x) = c we can reject the hypothesis or accept or make randomized
decision. We will always get a most powerful test. (Only we will change the significance
depending on what we decide to do when ratio(x) = x.
We will give a detailed proof of this Lemma. The proof should be clear when we have
finite number of possible numbers and under H0 they all have the same probability. Now
when this is not the case, but still assume finite many possibilities. Then you can split
each of the possibilities into little sub-cases with equal probability.....more to come....

3 UMP-tests for composite alternatives

Next we are looking at a similar game but with 3 dice instead of only 3. So, we add
an additional die call it hypothesis H2. Again, I am going to throw one of these three
dice and you will have to guess based on the result which die was used. Again for all
three dice (i.e random models) we assume the probabilities known to you. But, I want
you only to tell me if it is die 1 used or die number 2 or 3. If you think that it is die
2 or 3 which was used, I don’t ask you to tell me which one of the two is most likely in
your view. I only want you to reject the hypothesis H0. So, in this case we taste the
null-hypothesis H0 against the alternative K which consists of two possibilities H1 and
H2. Again, you will accept H0 or reject it in favor of K. But if you reject in favor of K,
we don’t need you to tell us, which of the possibilities in K, that is H1 or H2 you find
more likely. The hypothesis K is called composite, because it does not consist of only
one model but of several. In real life we often test hypothesis against alternatives which
are composite: for example test the null-hypothesis that there is no lead in water vs K
being the alternative hypothesis that there is lead in the water. Then K is a composite
hypothesis: there are many different non-zero possible level of lead in the water: Each
such possibility is contained in K. Let us look at an example with three dice: the first
dice is the null-hypothesis. The second and third dice constitute the alternative. We
could for example have the following situation:

TEST1 a a
TEST2 a a

x 1 2 3 4
P (X = x|H0) 0.25 0.25 0.25 0.25
P (X = x|H1) 0.4 0.3 0.2 0.1
P (X = x|H2) 0.4 0.2 0.3 0.1

Now consider test1 it is optimal if we had only the second die, that is for H1 and H0.
But, with the third die TEST1 is not optimal! For H0 against the alternative H2, it turns
out TEST2 is better. This leads to that in this specific situation given above where the
alternative K consists of H1 and of H2, there is not overall best test with significance
0.5. A test that is “overall best”, that is that has maximum power for each alternative,
is called (UMP) Uniformly Most Powerful test. By this we mean that for each Hi in K
we have:
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the test is a maximum power test. The reason why in the above situation there is not
UMP-test, is that the likelihood rations for H1 and H2 do not lead to the same ordering
and hence to the same optimal (most powerful) tests. Let us define the ratios:

ratio1(x) =
P (X = x|H0)

P (X = x|H1)
, ratio2(x) =

P (X = x|H0)

P (X = x|H2)
.

Let us show these ratios in our table

TEST1 a a
TEST2 a a
ratio2(x) 0.625 1.25 0.83̄ 2.5
ratio1(x) 0.625 0.83̄ 1.25 2.5

x 1 2 3 4
P (X = x|H0) 0.25 0.25 0.25 0.25
P (X = x|H1) 0.4 0.3 0.2 0.1

So, TEST1 is better for H1 because ratio1(2) < ratio1(3). On the opposite, TEST2 is
better with hypothesis H2 because ratio2(2) > ratio2(3). So our problem of not being
able to find a UMP tests with significance 0.5 in the current situation comes from “ the
ordering induced by ratio1 and ratio2 being different on the points 2 and 3. When this is
not the case, we can always find UMP-test at all significance levels: as matter of fact for
each H1 and H2 separately the best rejection regions will coincide. This is the content of
the next lemma

Lemma 3.1 Assume that we have only a finite number of values for X to take. Denote
the finite set of these values by Ω. We assume that we test a simple hypothesis H0 against
the composite alternative hypothesis K. We allow for randomized tests. Then a necessary
and sufficient condition for the existence of UMP-tests at all significance levels is that the
order induced on Ω by the different ratios of the models in K are all compatible. More
precisely, the condition is that for any x, y ∈ Ω, we have that for any two models H1 and
H2 in K, the following holds:
if

ratio1(x) > ratio1(y)

then
ratio2(x) ≥ ratio2(y)

where for all x ∈ Ω

ratio1(x) :=
P (X = x|H0)

P (X = x|H1)
, ratio2(x) =

P (X = x|H0)

P (X = x|H2)
.

It is easy often easiest to verify if all the ratios for models inside the alternative hypothesis
induce the same order on Ω, when there is a test statistic T (x) so that all the ratios are
monotone functions of T (.). In that case we get the following result which also holds when
we have models defined with densities rather than on finite probability space:
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Theorem 3.1 Assume that we are testing a simple null-hypothesis H0 against a compos-
ite hypothesis K. We allow for randomized tests. Assume that there exists a test statistic
T (x) so that for every model Hi in K the likelihood ratio of Hi is an increasing function

of T (x). That means that if we define the likelihood ratio i: rationi(x) := P (X=x|H0)
P (X=x|Hi) then

we request that this ratio can be written as an increasing function of T (x). Hence there
should exist a (non-random) increasing function hi so that ratioi(x) = hi(T (x)) for all
x ∈ Ω. Under that condition any test for which there exists a constant c so that

1. If T (X) > c we a.s. accept H0.

2. If T (X) < c we a.s. reject H0

is a UMP-test. On top of this any UMP-test must satisfy the above two conditions.

Definition 3.1 A type of family of random models where it is particularly easy to find a
test statistic T (x) for which all the models in the alternative have likelihood ratio which
is monotone in T (X) (so that the above theorem applies) is the called exponential model.
The definition goes as follows: we call a family of probability models exponential family
iff any probability model inside the family can be written in the form

P (X = x|Hθ) = h(x)g(θ) exp(T (x) · ν(θ)).

Now, there
Note that in the case of an exponential family, the likely hood ratio when the null

hypothesis and a H1 are both from the exponential family, then the likelihood ratio is
equal to

ratio1(x) =
P (X = x|H0)

P (X = x|H1)
=
h(x)g(θ0) exp(T (x) · ν(θ0)

h(x)g(θ1) exp(T (x) · ν(θ1)
=
g(θ0)

g(θ1)
exp(T (x)·(ν(θ0)−ν(θ1))).

So we see immediately that if the null-hypothesis and all the models in the alternative-
hypothesis K are in an exponential family then all the likelihood ratios are monotone in
T (x). (Here the T (x) of the definition of the exponential family). So, then it is easy to
get thanks to the theorem above UMP tests based on the statistic T (X). These test will
be of the type T (X) > c accept if T (X) < c and if T (X) = c do whatever you want (what
is convenient to get the right significance, for example randomize). for this to work, we
simply need that for all parameters θ0 in the null-hypothesis and all θ1 in the alternate
hypothesis, we have

ν(θ0)− ν(θ1) > 0.

4 Unbiased tests

Let us assume that X is a random variable with probability given by

c(θ) · eθ·T (x)h(x),
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where θ is the parameter. So, X is a variable from an exponential family. Let θ0 be
a non-random value of the parameter. We have seen in the homework that typically
with exponential family we can find optimal tests for a hypothesis H0 : θ = θ0 against
K1 : θ > θ0. Similarly we could find optimal tests for testing H0 : θ = θ0 against
K2 : θ < θ0. But we can not find an optimal test (UMP test) for testing H0 : θ = θ0

against θ 6= θ0. The reason is that for testing H0 against θ < θ0 we find a UMP test
which is just the opposite from testing H0 against θ > θ0. To see why this is true, simply
remember that by Neymann-Pearson the optimal tests (UMP) are obtained by putting

ratio0(X) ≥ constant

Now, the ratio is
P (X = x|θ0)

P (X = x|θ1)
= e(θ0−θ1)T (X).

So putting the expression on the right side of the last equation above bigger than a
constant cst we find if θ0 − θ1 > 0 the following:

T (X) ≥ ln(cst)

θ0 − θ1

(4.1)

whilst if θ0 − θ1 < 0 then we get the opposite, because multiplying an inequality by a
negative, inverses the inequality:

T (X) ≤ ln(cst)

θ0 − θ1

. (4.2)

Note that when we test H0 : θ = θ0 against K : θ = θ1, then putting the ratio P (X =
x|θ0)/P (X = x|θ1) bigger than a constant yields the acceptance region for the optimal
tests. In other words, the acceptance region for the optimal tests would be given by 5.12
if we test against the alternative θ < θ0, but the acceptance region would be given by 5.13
if we test against θ > θ0. So, there is no UMP-test valid for both alternatives: when the
parameter in the alternative is above and when it is below θ0.
There is one way around this: we are going to introduce the concept of unbiased tests. We
will then restrict our attention to unbiased tests. And we will see that in a situation like
the above (more precisely as soon as we have an exponential family with a one dimensional
parameter) that if we do not consider all tests but only unbiased ones, there will be optimal
tests among the unbiased ones. Optimal in the sense that on a given significance level
they have maximum power for each value of the parameter in the alternative. Such tests
will then be called UMP-unbiased tests. We will show that for any exponential family
and for the a hypothesis H0 : θ ∈ [a, b] against the alternative K : θ /∈ [a, b] there always
exists a UMP-unbiased test on any significance level. Furthermore these UMP-unbiased
tests (for exponential families only) are of the type: we have an interval [c1, c2]. if T (X)
is strictly within the interval we accept H0. If T (X) is strictly outside we reject H0. If
T (X) is on the border, then we might need to randomize the test. But randomization is
never needed if we work with probability densities.
OK, now that we announced what we are going to do, let us explain first the concept of
unbiased test. Let us start with an example:
Let us assume that X is a normal variable with σ = 1 and µ not known. Say we want to test H0 : µ = 25
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against the alternative K : µ 6= 25. This situation could happen for example, when we work in a physics
lab. Then, µ could be the speed of a particle which we like to determine. We measure the speed, but as
usual we make a small measurement error ε which is supposed to be random. So

X = µ+ ε

The speed µ of the particle is not known, but is not random. It is a constant of physics which we try to
determine. We get

E[X] = E[µ+ ε] = µ+ E[ε] = µ+ 0 = µ,

where we assumed the expected measurement error to be 0.
Anyhow, so maybe a theoretical paper was published where some theoretical calculation lead to a scientist
postulating that the speed should be 25. Now, we are going to verify this making a measurement in a lab
and of course, as mentioned, there is always going to be a small measurement error. We assume the error
to have a normal distribution. The average size of the error be σ = 1. Let us consider several possible
tests and then think which ones make more sense. First we could consider a test TEST1 so that when
X is between 23 and 27 we accept the hypothesis H0 : µ = 25 and reject H0 when X is outside that
interval. Another test TEST2 could be defined as follows: accept H0 : θ = 25 when X is between 24 and
28, and reject H0 otherwise.
Well it should be pretty clear in the current situation with the task at hand that we would prefer TEST1
over TEST2. But what is wrong with using TEST2 for testing H0 : µ = 25 against K : µ 6= 25? Well
the problem with TEST2 is that the probability to be in the acceptance region [24, 28] is much higher
for θ = 26 (by symmetry in this case) rather than for our hypothesis H0 : θ = 25:
it may make sense to use TEST2 for testing µ = 26 as null hypothesis but not for our null-hypothesis
µ = 25. So formally, the reason why we do not want TEST2 for testing µ = 25, (but it would be OK for
testing µ = 26) is that

P (X ∈ [24, 28]|µ = 25) < P (X ∈ [24, 28]|µ = 26).

The above inequality is the same as the following:

P (TEST 2 accepts Ho|µ = 25) < P (TEST 2 accepts Ho|µ = 26).

We see that with TEST2 if the parameter is θ = 26, we have a greater probability to fall into the
acceptance region then for θ = 25. And this is precisely what we don’t want. So, we want to avoid such
a situation where under a false parameter the acceptance probability of H0 is higher than if we have the
parameter corresponding to H0 in our case µ = 25. A test which does not have the same problem as
TEST2 has with our H0 : µ = 25 is called unbiased test. In our current example TEST1 is unbiased for
H0 : µ = 25 against K : µ 6= 25, but TEST2 is not unbiased for H0 : µ = 25 against K : µ 6= 25. So, an
unbiased test here in this example with H0 : µ = 25 would be any test so that:
the probability of acceptance of H0 when µ = 25 is bigger or equal to the probability of acceptance for
any µ 6= 25. So for example if TEST3 would accept H0 : µ = 25 if X ∈ [a, b] and reject otherwise, then
for TEST3 to be unbiased we would simply request that for any µ1 6= 25 we have:

P (X ∈ [a, b]|µ = 25) ≥ P (X ∈ [a, b]|µ1).

So, for testing a simple hypothesis H0 : µ = µ0 against an alternative H0 : µ 6= µ0, saying
that a test TEST is unbiased simply means that the probability of acceptance of the
null-hypothesis is maximal for µ = µ0. In other words TEST is unbiased iff

P (TEST accepts H0|µ) = P (X is in acceptance region of TEST|µ)

is maximal for µ = µ0.
Now, we need to also define unbiasedness when the H0- hypothesis is not simple but say is
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of the type “parameter µ in parameter-set I0 against K : µ ∈ I1”. (Of course we assume
I0 and I1 have an empty intersection). In that case, we say that a test TEST is unbiased
for Ho : µ ∈ I0 against K : µ ∈ I1, iff for all µ0 ∈ I0 and all µ1 ∈ I1 we have

P (TEST accepts H0|µ0) ≥ P (TEST accepts H0|µ1)

or equivalently:

P (X is in acceptance region of TEST|µ0) ≥ P (X is in acceptance region of TEST|µ1).

Now, we will not just be interested in unbiased tests, but we will want to determine the
most powerful tests among such tests. As usual we fix a significance level α ∈ [0, 1] and
then look if there is among all unbiased tests with that given significance one which is
most powerful for any µ1 ∈ I1. So formally a UMP-unbiased test with significance α is
an unbiased test TEST with significance α so that for any µ1 ∈ I1 we have:
for any unbiased test TEST ′ with significance α, we have

P (TEST accepts H0|µ = µ1) ≤ P (TEST’ accepts H0|µ = µ1). (4.3)

To understand the above inequality note that one minus the probability of acceptance
of H0 is the power. Now, it is always easy to find an unbiased test TEST which would
satisfy inequality 4.3 for one given value of the parameter µ1 ∈ I1. the problem is to
find a unbiased test TEST which satisfies inequality 4.3 for all µ1 ∈ Ii at the same time!
Usually this is not possible, but for exponential families with a one dimensional parameter
µ it will always be possible: thanks to the following theorem:

Theorem 4.1 Let us assume that X is a random variable with probability given by

c(θ) · eθ·T (x)h(x),

where θ is the parameter. So, X is a variable from an exponential family. Let I0 and
I1 be two disjoint subsets of the parameter set. Let α ∈ [0, 1]. There exists a UMP-
unbiased test on the significance level α for testing H0 : θ ∈ I0 against H1 : θ ∈ I1.
Furthermore, that UMP-test can be chosen like accept inside a certain interval and re-
ject outside whilst on the border you may have to randomize. More precisely, there exists
c1 < c2 and γ1, γ2 ∈ [0, 1], so that the following constitutes a UMP-unbiased test at level α:

• accept if c1 < T (X) < c2

• reject if T (X) > c2 or T (X) < c1

• if T (X) = c1 accept with probability γ1

• if T (X) = c2 accept with probability γ2

13



The randomization on the border is not necessary if we deal with density functions rather
than discrete probabilities.

Now, the question maybe for a given hypothesis H0 : θ ∈ I0 and a given significance
level α how do we determine a UMP-unbiased test? Of course we assume that the variable
at hand, that is X is from a one-dimensional exponential family since otherwise there
might not be such a test. Typically we will have for Iθ and interval [a, b] which may
contain a single point that is [a, a] and we will test against µ /∈ [a, b] or against µ 6= a. In
almost all real life situations, the function

µ 7→ P (X ∈ acceptance region|µ)

will be a continuous function. so, then if a, b are border points (meaning that there values
as close as we want from both withing I0 and within I1), then a necessary condition (not
sufficient though) for the test being unbiased with significance α is that

P (X ∈ acceptance region|µ = a) = P (X ∈ acceptance region|µ = b) = 1− α.

To see why this holds, simply imagine that one of the two probabilities in the last equation
above would be strictly bigger than the other. Say for example, the probability above
with µ = a is strictly bigger than for µ = b. Then, we could find a point µ1 in the
parameter space very close to a but still in I1 so that

P (X ∈ acceptance region|µ = µ1)

is as close as we want to

P (X ∈ acceptance region|µ = a)

by continuity. So, by taking µ1 close enough to a we could get its acceptance probability
strictly bigger than for µ = b:

P (X ∈ acceptance region|µ = µ1) > P (X ∈ acceptance region|µ = b)

and that would imply that the test is not unbiased since µ1 ∈ I1.
Anyhow, so we have seen that we have a necessary condition for a test to be unbiased: on
the border points of I0 the value of the acceptance probability must everywhere be equal
to 1− α. (Assuming the acceptance probability to be continuous in the parameter which
is almost always the case in practice). But now we have a condition for unbiasedness, but
what we need is not just unbaisedness but a UMP-unbiased. So, how are we going to find
a UMP-unbiased? (Again this only works for exponential families, since otherwise UMP-
unbiased in most cases does not even exist). Well we are going to use our Theorem which
guaranties the existence of a UMP-unbiased test (for exponential families with a density)
of the type: accept inside [c1, c2] and reject if outside. So, for the significance level α,
what we mentioned before implies that for testing H0 : µ ∈ [a, b] against K : µ /∈ [a, b]
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with a UMP-test of the type: “accept when in [c1, c2] and reject otherwise, we need to
have

P (X ∈ [c1, c2]|θ = a) = P (X ∈ [c1, c2]|θ = b) = 1− α. (4.4)

Now, the above equation in principle does not guaranty a UMP-unbiasedness since it is
only a necessary condition for unbiasedness. But in practice it will in most cases give
the UMP-unbiased test at level α. (Again only for exponential family). why? because
in most applied situation we will encounter in real life, there will be a unique solution
c1, c2 to the equation 5.3. This then implies that we got the UMP-unbiased test, since the
UMP-unbiased test satisfies 5.3. So, in practice, when dealing with exponential family
with one parameter, we usually simply solve equation 5.3, for the unknown c1 and c2 and
when there is a unique solution, this then implies that we have found the UMP-unbiased
test at level α.
When dealing with an exponential family with discrete probabilities space, things are a
little more complicated since you have to determine also γ1 and γ2. So, then what you
do is for every pair of numbers c1 ≤ c2 in your discrete space you try to determine γ1

and γ2 so that equation 5.3 holds. You keep on searching until you find a pair c1, c2 for
which there exists γ1 and γ2 so that equation 5.3 is satisfied. This is a little more work
of course.... So for example if X can take any of the values {1, 2, 3, 4}. then you have to
try for any c1 ≤ c2 with c1, c2 ∈ {1, 2, 3, 4}. This is 4! possibilites that is 24 couples c1, c2

that is
(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), . . .

5 Mutlidimensional linear regression and other linear

models

First assume that we have a data with some cows and how much milk they produce. The
data-spread sheet could look as follows for example:

cow nb milk weigth age
1 4 2 5
2 5 3 6
3 8 4 5
4 9 4 4

So, if we look carefully at this data set, we will see that there is a simple “formula” for
finding the amount of milk produced by each cow based on age and weight:

milk = 5 + 2× weigth− age (5.1)

and it works for all the cows in the current data-set. Now such a relationship between
milk and weight and age might be useful for predicting how much a cow which we have
not bougth yet will produce in milk: maybe we are told the age and the weight, but not
the amount of milk produced. Again, here we have that for this data set the relationship
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5.1 works exactly. In general we will not be able to find such a linear relationship with
fits the data exactly. Let us explain. Say, we are looking for coefficients α, β1 and β2 so
that

milk = α + β1 × weigth+ β2 × age (5.2)

holds for each cow. The typical real life situation will be hundred of cows in a data-set
and not just 4 like here. So, with hundred of equations (one equation for each cow), but
only 3 variables, we typically get a system of linear equations which is over-determined,
that is has no solution. So, when trying to find a type of relationship between the milk
and age and weight like given in 5.2, we will have in general to content ourselves with
finding parameters α, β1 and β2 which comes as close as is possible to 5.2 in the data-set
available. For, this consider for example the following data-set:

cow nb milk weigth age
1 3.5 2 5
2 4.5 3 6
3 7.5 4 5
4 8.5 4 4

In this current example now, there is no parameters α, β1 and β2 which make 5.2 hold
exactly for each cow. So, instead we look for parameters which get “as close as possible
to making 5.2 hold for each cow”. That is for given α, β1 and β2, we take the square
of the difference between that actual amount of milk produced by the cow and what our
formal with the coefficients would give. Then, we minimize the sum of the squares of
these “approximation errors” in our data. So, we the current data-set, we minimize

(3.5−α−β12−β25)2 +(4.5−α−β13−β26)2 +(7.5−α−β14−β25)2 +(8.5−α−β14−β24)2

You can now minimize the above expression by finding the partial derivatives according to
α, then according to β1 and according to β2. Setting each of these three partial derivative
s equal to 0 yields a system of three linear equations. When you solve this system, you get
the coefficients α, β1 and β2 which come closest to predicting exactly what the milk for
each cow is as a linear function of age and weight. Let us do this, but in a general context
with letters instead of numbers. In this way, we will have a generally valid formula. So,
let yi denote the amount of milk produced by the i-th cow. Let xagei denote her age and
let xweigthi denote the wiegth of the i-th cow. Then, we want to minimize the following
function:

SS =
n∑
i=1

(yi − α− β1x
weigth
i − β2x

age
i )2

where n denotes the number of cows and the yi, x
age
i and xweigthi have to be thought of

as real numbers known to us from our data-spread sheet. To minimize SS we find the
partial derivatives according to α, β1 and β2 and set them equal to 0. In this manner we
find three linear equations:

dSS

dα
= −2

n∑
i=1

(yi − α− β1x
weigth
i − β2x

age
i ) = 0 (5.3)
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dSS

dβ1

= −2
n∑
i=1

xweigthi (yi − α− β1x
weigth
i − β2x

age
i ) = 0 (5.4)

dSS

dβ2

= −2
n∑
i=1

xagei (yi − α− β1x
weigth
i − β2x

age
i ) = 0 (5.5)

the value for α, β1 and β2 which satisfy the three liner equations above, that is 5.3,
5.4 and 5.5 are “our estimate of what the best way would be to approximate the milk
produced by a cow using linear expression of age and weight”. To denote estimates in
statistics one usually uses a hat, so we will denote by

α̂, β̂1, β̂2

the coefficients α, β1 and β2 which satisfy 5.3,5.4,5.5. (note in general there will be exactly
one solution, since we have the same number of equations as we have unknowns). In other
words, α̂, β̂1 and β̂2 are defined by the three following equations:

n∑
i=1

(yi − α̂− β̂1x
weigth
i − β̂2x

age
i ) = 0 (5.6)

n∑
i=1

xweigthi (yi − α̂− β̂1x
weigth
i − β̂2x

age
i ) = 0 (5.7)

n∑
i=1

xagei (yi − α̂− β̂1x
weigth
i − β̂2x

age
i ) = 0 (5.8)

which in vector notation using the dot-product are equivalent to

~1 ·
(
~y − α̂~1− β̂1~x

weigth − β̂2~x
age
)

= ~0 (5.9)

~xweigth ·
(
~y − α̂~1− β̂1~x

weigth − β̂2~x
age
)

= ~0 (5.10)

~xage ·
(
~y − α̂~1− β̂1~x

weigth − β̂2~x
age
)

= ~0 (5.11)

5.1 The statistical model and the main properties of the esti-
mates

Next we want to introduce a rigorous statistical model and show that the “estimates”
α̂, β̂1, β̂2 make sense in a statistical formal sense. Our model is now the following: we
assume that for each cow, the amount of milk produced Yi is a random variable, which is
equal to α + β1x

weigth
i + β2x

age
i plus a random term denoted by εi. So,

milk of cow number i = Yi = α + β1x
weigth
i + β2x

age
i + εi
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We assume the terms εi independent of each other and having expectation 0. At first we
will also assume that the terms εi are normal N (0, σ) where σ is identical for each cow.
So, this is as if nature would determine how much milk a cow produces by first computing
the number α+β1 ·weigthi+β2 ·agei and then adding the random term εi. That random
term is “the individual factor” of the cow, that is how much the cow fluctuates from what
the formula would predict. Also, because we assume E[εi] = 0 we find

E[Yi|age, weigth] = α + β1 · age+ β2 · weigth+ E[εi] = α + β1 · age+ β2 · weigth.

So, the coefficients α, β1 and β2 are non-random and are the same for each cow. But we
don’t know them: only nature knows them. So, we hope that our estimates α̂, β̂1 and β̂2

will be close to the true (but unknown) values for these parameters. We will see below
that indeed this is true when we have enough cows. But, first let us examine the property
of these estimators. We find the following list of properties:

1. The estimates are unbiased that is:

E[α̂] = α,E[β̂1] = β1, E[β̂2] = β2.

2. The estimates are maximum-likelihood estimates.

3. The model is an exponential family with a multidimensional parameter θ.

4. since the T (.) statistic in multidimensional exponential families are complete as soon
as the parameters are defined on a large enough set (in our case there is no restriction
on the parameters), we get that the family is complete and hence there is only one
unbiased estimator which depends only on T (.) So, if we want unbiased estimators,

α̂, β̂1 and β̂2 is the only possibility which makes sense. The ~T (.) statistic is sufficient
in a multidimensional exponential family. so, one can throw out everything else. But
the ~T (.) statistics is complete that means an unbiased estimator which depends only

on ~T is unique. Another way, to express this is that our estimators are, among all
unbiased estimators the only ones with lowest variance.

Proof of unbiased first note that the expected amount of milk of the i-th cow is

E[Yi] = E[α + β1x
weight
i + β2x

age
i + εi] =

E[α] + E[β1x
weight
i ] + E[β2x

age
i ] + E[εi] =

α + β1x
weight
i + β2x

age
i

Where we used the fact the expectation of a constant is the constant itself and we also
used that the terms εi have 0 expectation. We will now use the expression we found for
E[Yi] by taking the expectation on both sides of 5.6, 5.7 and 5.8. We find the following
three equations
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n∑
i=1

(E[Yi]− E[α̂]− E[β̂1]xweighti − E[β̂2]xagei ) =0

n∑
i=1

xweighti

(
E[Yi]− E[α̂]− E[β̂1]xweighti − E[β̂2]xagei

)
=0

n∑
i=1

xagei

(
E[Yi]− E[α̂]− E[β̂1]xweighti − E[β̂2]xagei

)
=0.

When, in the three equations above, we replace E[Yi] by α + β1x
weigth
i + β2x

age
i then we

get the following three equations:

n∑
i=1

[
(α− E[α̂]) + (β1 − E[β̂1])xweighti + (β2 − E[β̂2)])xagei )

]
= 0

n∑
i=1

xweighti

[
(α− E[α̂]) + (β1 − E[β̂1])xweighti + (β2 − E[β̂2])xagei

]
= 0

n∑
i=1

xagei

[
(α− E[α̂]) + (β1 − E[β̂1])xweighti + (β2 − E[β̂2])xagei

]
= 0

Which in vector form can be written as

0 =
(

(α− E[α̂])~1 + (β1 − E[β̂1])~xweight + (β2 − E[β2])~xage
)
· ~1 (5.12)

0 =
(

(α− E[α̂]) · ~1 + (β1 − E[β̂1])~xweight + (β2 − E[β̂2])~xage
)
· ~xweight (5.13)

0 =
(

(α− E[α̂]) · ~1 + (β1 − E[β̂1])~xweight + (β2 − E[β̂2])~xage
)
· ~xage (5.14)

where ~xweigth refers to the vector of the weights of the cows:

~xweigth := (xweigth1 , xweigth2 , . . . , xweigthn )t

and ~xage is the vector of the ages:

~xage := (xage1 , xage2 , . . . , xagen )t.

Furthermore, the column vector of length n and all entries equal to 1 is denoted by ~1.
We can now add the three equations 5.12, 5.13 and 5.14 after multiplying the first by
α− E[ ˆalpha], the second by β1 − E[β̂1] and the third by β2 − E[β̂2]. This then leads to

0 =
(

(α− E[α̂]) · ~1 + (β1 − E[β̂1])~xweigth + (β2 − E[β̂2])~xage
)2

,
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which implies that

~0 = (α− E[α̂]) · ~1 + (β1 − E[β̂1])~xweigth + (β2 − E[β̂2])~xage (5.15)

Now we will assume that ~1, ~xweigth and ~xage are linearly independent. Under that as-
sumption, equation 5.15, implies

E[α̂] = α

E[β̂1] = β1

E[β̂2] = β2

and hence our estimators are unbiased.
Proof that our estimator is a Mixmum-Likelihood estimator
We first assume that σ =

√
V AR[εi] is known. This could be the case if for example we

work in a lab and are trying to determine the size of an object depending on temper-
ature and pressure. Then, we measure the size for different values of the pressure and
temperature. There could be a linear relationship:

size = α + β1 · temp+ β2 · pressure.

But, when we measure we always make small measurement errors: so, let Yi be our i-th
measurement of size. We assume that we had a given temperature ti and a given pressure
pi which are known to us. So, the true size for the i-the measurement is

sizei = α + β1 · ti + β2 · pi.

But the i measurement is the true size plus a random error denoted by εi. So, if Yi denotes
our i-th measurement, we have

Yi = α + β1ti + β2pi + εi,

where εi is the i-th measurement error. We assume again all measurement errors to have
expectation 0 and be independent of each other. the precision of your measurement error
is given by the standard deviation σ = σεi . We assume all the measurement errors to
have identical standard deviation. If you know, your measurement tools well, because you
work often with them, then you will know the average size of your measurement error,
thus you will know σ. All this to justify why we can sometimes consider σ known.....
So, let us assume σ is known. Let us go back to our cows for this is a terminology which we
already know. Now, we assume the random measurement errors εi to be normal N (0, σ).
Remember our main equation

Yi = α + βxweighti + β2x
age
i + εi.

Here α + βxweighti + β2x
age
i is a constant and not random. When we add a non-random

number to a normal, we get again a normal. So, Yi is a normal with expectation given by
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µi := α+ βxweighti + β2x
age
i and standard deviation σ. The probability density function of

Yi is thus up to a constant equal to exp(−(yi − µi)2/2σ2). For independent variables the
joint density is the product of their individual densities. We assumed the measurement
errors εi to be independent of each others. Hence, the joint density of our data set

(Y1, Y2, . . . , Yn)

is equal to

P (Y1 = y1, Y2 = y2, . . . , Yn = yn|α, β1, β2) =

=
1

σn
√

(2π)n
exp(−(y1 − µ1)2/2σ2) · exp(−(y2 − µ2)2/2σ2) · . . . · exp(−(yn − µn)2/2σ2) =

=
1

σn
√

(2π)n
exp(−

n∑
i=1

(yi − µi)2

2σ2
)

Now, maximum likelihood estimate is simply taking as estimates those parameters which
maximize the probability. In other words, the maximum-likelihood estimates for α, β1

and β2 are found by finding those values for those three parameters which maximize

P (Y1 = y1, Y2 = y2, . . . , Yn = yn|α, β1, β2),

where y1, y2, . . . , yn are the values for the milk in our data. Now when we see our prob-
ability given above, first the expression 1

σn
√
πn

does not depend on the parameters α, β1

and β2. So, for finding which values maximize the probability we can leave that term out.
Second, maximizing a function or its logarithm amounts to the same, since the logarithm
is an increasing function. So, we can maximize

log
( √

2(π)nσn · P (Y1 = y1, Y2 = y2, . . . , Yn = yn|α, β1, β2)
)

= −
n∑
i=1

(yi − µi)2

2σ2
.

This amounts to the same as minimizing the sum or the squares

n∑
i=1

(yi − µi)2

which is precisely how out estimates where defined in the first place. So, we have proven
that the maximum-likelihood estimates and our estimates α̂, β̂1 and β̂2 are identical.

Multidimensional exponential family:
We are going to show that our probability model is a multidimensional exponential family.
We assume that σ is known, so it is not a parameter but just a given number. The
probability model (probability distribution) for a random vector ~X = (X1, X2, . . . , Xn) is

said to be a exponential family with multidimensional parameter ~θ = (θ1, . . . , θm) if there

exists a function ~T (.) which maps n dimensional vectors onto m dimensional vectors

T (~x) = (T1(~x), T2(~x), . . . , Tm(~x))
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and such that the probability model is of the form:

P (X1 = x1, X2 = x2, . . . , Xn = xn|θ1, θ2, . . . , θm) =

= c(~θ) · h(~x) · exp(~T (~x) · ~θ) =

= c(~θ) · h(~x) · exp(T1(~x)θ1 + · · ·+ Tm(~x)θm),

where ~x = (x1, x2, . . . , xn)t is non-random. In the previous paragraph we have calculated
the joint density function of the variables Y1, Y2, . . . , Ym and found the following formula:

P (Y1 = y1, Y2 = y2, . . . , Yn = yn|α, β1, β2) =
1

σn
√

(2π)n
exp(−

n∑
i=1

(yi − µi)2

2σ2
)

The above probability can be also written as

P (Y1 = y1, . . . , Yn = yn|α, β1, β2) =
1

σn
√

(2π)n
exp

(
−

n∑
i=1

(
y2
i

2σ2
− 2yi · µi

2σ2
+

µ2
i

2σ2

))
.

(5.16)
Recalling that µi = α+ β1x

weight
i + β2x

age
i , we find that the probability above in equation

5.16 is equal to:

1

σn
√

(2π)n
exp

(
−

(∑n
i=1 y

2
i

2σ2
− 2

∑n
i yi · (α + β1x

weight
i + β2x

age
i )

2σ2
+

∑n
i µ

2
i

2σ2

))
=

(5.17)

=
1

σn
√

(2π)n
exp

(
−
∑n

i=1 y
2
i

2σ2
+
α
∑n

i=1 yi + β1

∑n
i=1 yix

weight
i + β2

∑n
i=1 yix

age
i

σ2
−
∑n

i=1 µ
2
i

2σ2

)
=

(5.18)

= c(α, β1, β2) · h(y1, . . . , yn) · exp

(
α

∑n
i=1 yi
σ2

+ β1

∑n
i=1 yix

weight
i

σ2
+ β2

∑n
i=1 yix

age
i

σ2

)
(5.19)

where we define

h(y1, . . . , yn) := exp(−
n∑
i=1

y2
i

2σ2
)

and

c(α, β1, β2) :=
1

σn
√

(2π)n
·exp(−

∑n
i µ

2
i

2σ2
) =

1

σn
√

(2π)n
·exp(−

∑n
i (α + β1x

weight
i + β2x

age
i )2

2σ2
).

When looking at expression 5.19 above, we see that this is clearly an exponential family
with multidimensional parameter defined by:

~θ = (α, β1, β2)
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and sufficient statistic given by:

~T (~y) = (T1(~y), T2(~y), T3(~y))

where:

T1(~y) :=

∑n
i=1 yi
σ2

=
nȳ

σ2

T2(~y) :=

∑n
i=1 yix

weight
i

σ2
=
~y · ~xweight

σ2

T3(~y) :=

∑n
i=1 yix

age
i

σ2
=
~y · ~xage

σ2

As usual ~y denotes the vector
~y = (y1, y2, . . . , yn)t

and we used the fact, the σ here is known, so it is not considered a parameter but just a
given number. Same thing for the coefficients xweighti and xagei .

The fact that we are dealing with an exponential family has an extremely important
consequence: our estimates α̂, β̂1 and β̂2 are the only possible unbiased estimates
which make sense in the current case where we consider σ known. The reason is a
theorem in you book which states that for any multidimensional exponential families ( in

your book is simply called exponential family) the ~T (.) statistic is complete and sufficient,
provided the parameters are defined on at least a rectangle. This is the case here since
we have no restrictions on the parameters α, β1 and β2. Hence, in our current model ~T (.)
is complete since we have seen that it is an multi-dimensional family. so, let us define the
concept of completeness:

Definition 5.1 A statistic ~T (.) for a probability model P ( ~X|~θ] with parameter ~θ for a

random vector ~X is called complete if for any two functions f(.) and g(.) for which:

E[f(~T ( ~X))|~θ] = E[g(~T ( ~X)))|~θ]

for all ~θ in our parameter space, implies f(.) = g(.) almost everywhere.

Let us now assume there there would be two different unbiased estimators say for α which
depend only on the statistics ~T (.). An estimator is simply a function of the data. So, say

one estimator is denoted by f(.) and the other by g(.). Thus, we would have α̂1 = f(~T )

and the second estimator would be α̂2 = g(~T ). Then if both estimators would be unbiased
we would have

α = E[α̂1(~T ( ~X))|α, β1, β2] = E[f(~T ( ~X))|α, β1, β2]

and
α = E[α̂2(~Y )|α, β1, β2] = E[g(~T ( ~X)|α, β1, β2]

which then implies

E[f(~T ( ~X))|α, β1, β2] = E[g(~T ( ~X))|α, β1, β2] (5.20)
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for all α, β1 and β2. So, if the statistic ~T (.) in our probability model in the parameters
α, β1, β2 is complete, equation 5.20 implies that f(.) = g(.) almost everywhere. But we
know by our book that any multidimensional exponential family is complete. Hence,
f(.) = g(.) almost everywhere and hence

α̂1 = α̂2

which finishes proving that there can be only one unbiased estimator for α which depends
only on the statistic ~T ( ~X) of the exponential family. We can prove in the same way that
the unbiased estimator for β1 and for β2 are both unique as well. Again, we assumed σ
to be known. This implies that our unbiased estimators α̂, β̂1 and β̂3 are all three unique
among all unbiased estimators which depend only on ~T ( ~X). since in an exponential test

the statistic ~T is sufficient, we need only consider tests based on ~T for our optimal tests.
So, then if we want a test to be optimal and unbiased it has to be depending only on
~T ( ~X) and be unbiased and hence it is our estimates.

5.2 Estimating σ when it is not known

In our model we have that
~ε = (ε1, ε2, . . . , εn)t

designates a random vector with independent entries. We assume E[εi] = 0 for all i =
1, 2, . . . , n and that the ε1, ε2, . . . , εn are all independent of each other. We furthermore will
assume that each εi is distributed like a normal random variable N (0, σ). We are going
to investigate what happens when we consider the dot product of ~ε with a non random
vectors. The dot product between a vector ~a = (a1, . . . , an) and a vector~b = (b1, b2, . . . , bn)
is defined as follows:

~a ·~b = a1 · b1 + a2 · b2 + . . .+ an · bn.
Furthermore, the length of a vector (Euclidean norm) is the square root of the dot product
of the vector times itself:

|~a| =
√
~a · ~a =

√
a2

1 + a2
2 + . . .+ a2

n.

Next we state and prove a lemma which gives us the main stochastic properties of the
dot product of ~ε with a non-random vector:

Lemma 5.1 Assume the vectors ~a = (a1, a2, . . . , an)t and ~b = (b1, b2, . . . , bn)t are both
non random. Then we have:

1. First the expectation is 0:
E[~a · ~ε] = E[~b · ~ε] = 0.

2. Second the standard deviation is the length of the non-random vector up to the
constant σ:

σε·~a =
√
V AR[ε · ~a] = σ|~a| = σ

√
a2

1 + a2
2 + . . .+ a2

n.
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3. The covariance between ~ε · ~a and ~ε ·~b depends only the dot product of ~a with ~b:

COV (~a · ~ε,~b · ~ε) = σ2~a ·~b

4. The dot product ~a · ~ε has a normal distribution.

5. Since for normal variables, covariance equal to 0 implies independence, we get that
~a~ε is independent of ~b~ε if and only if ~a · ~b = 0, that is only when ~a and ~b are
orthogonal.

Proof. So, let us do the proofs. For the expectation we use the fact that expectation of
a sum is sum of expectation:

E[~a · ~ε] =

= E[a1~ε1 + a2~ε2 + . . .+ an~εn] =

= E[a1~ε1] + E[a2~ε2] + . . .+ E[an~εn] =

= a1E[~ε1 + a2E[~ε2] + . . .+ anE[~εn] = a1 · 0 + . . .+ an · 0 = 0

Next let us calculate the variance which is the square of the standard deviation:

σ2
~ε·~a = V AR[~ε · ~a] =

= V AR[a1~ε1 + a2~ε2 + . . .+ an~εn] =

= V AR[a1~ε1] + V AR[a2~ε2] + . . .+ V AR[an~εn] =

= a2
1V AR[~ε1] + a2

2V AR[~ε2] + . . .+ a2
nV AR[~εn] = a2

1 · σ2 + . . .+ a2
n · σ2 =

σ2 · (a2
1 + a2

2 + . . .+ a2
n) = σ2~a · ~a

next we are going to calculate the covariance of ~epsilon · ~a with ~ε ·~b. The covariance is
bilinear. Also the covariance of independent variables is always 0. So,

COV (εi, εj) = 0

as soon as i 6= j. We use this in the calculations that follow:

COV (~ε · ~a,~ε ·~b) =

= COV [a1~ε1 + a2~ε2 + . . .+ an~εn, b1~ε1 + b2~ε2 + . . .+ bn~εn] =

=
∑
i,j

aibjCOV (ei, ej) =
n∑
i=1

aibiCOV (ei, ei) = σ2

n∑
i=1

aibj =

= σ2~a ·~b

where we also used the fact that covariance of a variable with itself is the variance so that

COV (~εi,~εi) = V AR[~εi] = σ2.

The dot product ~ε is normal simply because a linear combination of normals which are
independent of each other is again normal.

The next ingredient we need is the Graham-Schmidt orthogonalization theorem:
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Lemma 5.2 Assume that we have several vectors of length n given:

~x0, ~x1, ~x2, . . . , ~xi

where the above vectors are all linearly independent of each other. Then there exists
orthonormal vectors:

~e0, ~e1, ~e2, . . . , ~en−1

(that is ~ei · ~ej = 0 for all i 6= j and ~ei · ~ei = 1 for all i = 0, 1, 2, . . . , n − 1) so that the
linear vector-subspace generated by ~x0, ~x1, ~x2 . . . , ~xl is equal to the linear subspace generated
by ~e0, ~e1, ~e2, . . . , ~el for all l = 0, 1, 2, . . . , i. This is simply to say that any vector which
is a linear combination of ~x0, ~x1, . . . , ~xl can also be written as a linear combination of
~e0, ~e1, . . . , ~el for all l ≤ i.

Proof. So, you have your sequence of factors ~1, ~xweight, ~xage and maybe more which
you want to “orthonormalize” and the complete to find an orthonormal basis. Let us
assume that we just have the three factors: ~1, ~xweight, ~xage. We are first going to find
a sequence of vectors ~f0, ~f1, ~f2, . . . , ~fn−1 which have the properties we want except being
normal (=having length 1). then we will simply take ~ei to be defined as

~ei =
~fi

|~fi|
.

So, how to we define the orthogonal sequence :

~f0, ~f1, ~f2, . . . , ~fn−1

The idea is very simple: we take ~fi to be basically the factor number i, plus sth to make
it orthogonal. The something is a linear combination of the vectors ~fj with j < i. Here

is how it works: Take ~f0 to be equal to the first factor. In our case:

~f0 = ~1.

Then, ~f1 is the factor ~xweight minus a little sth to make it orthogonal to ~f0. Here is our
definition:

~f1 = ~xweight −

(
~f0 · ~xweight
~f0 · ~f0

)
~f0

We can verify that ~f1 is orthogonal to ~f0:

~f0 · ~f1 =

= ~f0 · (~xweight −

(
~f0 · ~xweight
~f0 · ~f0

)
~f0) =

= ~f0 · ~xweight −

(
~f0 · ~xweight
~f0 · ~f0

)
(~f0 · ~f0) = 0
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so the fectors ~f0 and ~f1 are orthogonal. Note also, that any vector which can be expressed
as a combination of ~1 and ~xweight can be written as a linear combination of ~f0 and ~f1:

a~1 + b~xweight =

= a~f0 + b(~f1 +

(
~f0 · ~xweight
~f0 · ~f0

)
~f0) =

(a+ b
~f0 · ~xweight
~f0 · ~f0

) · ~f0 + b ~f1

Now, to define ~f2 we simply take the third factor ~xage and add a combination of ~f0 and
~f1 to make it orthogonal:

~f2 := ~xage − ~f0
~xage · ~f0

~f0 · ~f0

− ~f1
~xage · ~f1

~f1 · ~f1

.

One can now check that ~f2 is orthogonal to ~f1 and ~f0:

~f1 · ~f2 :=

= ~f1 · (~xage − ~f0
~xage · ~f0

~f0 · ~f0

− ~f1
~xage · ~f1

~f1 · ~f1

)

= ~f1 · ~xage − (~f1 · ~f0)
~xage · ~f0

~f0 · ~f0

− ~f1 · ~f1
~xage · ~f1

~f1 · ~f1

= 0.

Similary we can show that ~f2 and ~f0 are also orthogonal. Once, we are done with the
factors, we take any vector which is not a combination of the already defined ~f0, ~f1, ~f2 call
that vector ~z. Then define ~f3 to be

~f3 = ~z − ~f0
z · ~f0

~f0 · ~f0

− ~f1
z · ~f1

~f1 · ~f1

− ~f2
z · ~f2

~f2 · ~f1

So, then once we have ~f3 we go on

We are now ready to apply the above lemma to find an unbiased estimator for σ:
so let us consider the factor vectors ~1, ~xweigth and ~xage for our wonderful swiss cows. Let
now ~e1, ~e2, . . . , ~en be the sequence (basis) of orthonormal vectors which the above lemma
5.2 garanties the existence of. For this we take

~x0 = ~1, ~x1 = ~xweight, ~x2 := ~xage

and j = 2. So, then we have ~e1, ~e2, . . . are orthonormal and ~e0 and ~1 are colinear.
Furthermore, any vector which can be wrtten as a~1 + b~xweight can be written as a linear
combination of ~e0 and ~e1. Finally, any vector which can be written as a

a~1 + b~xweight + c~xage
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can be written as a linear combination of ~e0, ~e1, ~e2. This is the same as saying that ~e0, ~e1

and ~e2 generated the same subspace of vectors as the three vectors: ~1, ~xweight and ~xage.
Also, all the vectors ~ei are orthogonal to each other. Let us project our vector ~y onto ~ej

with j ≥ 3. Then we have in the current example that all the factor vectors ~1, ~xweight

and ~xage are orthogonal to ~ej for j ≥ 3. We can use this orthogonality to find: the dot
product ~y · ~ej is equal to

~y · ~ej =
(
α~1 + β1~x

weight + β2~x
age + ~ε

)
· ~ej =

= α~1 · ~ej + β1~x
age · ~ej + β2~x

age · ~ej + ~ε · ~ej = 0 + ~ε · ~ej = ~ε · ~ej.

But, now we have shown that
~y · ~ej = ~ε · ~ej. (5.21)

So, this implies first of all that the coefficients ~y ·~ej do not depend on any parameter α β1

or β2 nor on the factor vector, since ~ε · ~ej does not. Second, the dot product on the right
side of 5.21 is exactly of the form our lemma 5.2 is about. So we can apply the results of
lemma 5.2 and get: Since the vectors ~ej are orthogonal among each other, we get that the
coefficients ~ε ·~ej = ~y ·~ej are independent of each other. Furthermore, because the vectors
~ej have length one, the standard deviation of ~ε · ~ej is σ. The expectation is 0, so that

E[~ε · ~ej] = 0,

for j ≥ 3.
Of course the coefficient are normal. Hence, when we consider the random vector

(~y · ~e3, ~y · ~e4, ~y · ~e4, . . . , ~y · ~en),

(which is the projection of ~y onto the space orthogonal to the factor space), we get a
vector with i.i.d entries which are all normal N (0, σ). For such a vector the best unbiased
estimate of the variance σ2 is given by taking the sum of the squares:

σ̂2 :=
~y · ~e2

2 + ~y · ~e2
3 + ~y · ~e2

4 + . . .+ (~y · ~e2
n−1

n− 3
.

In general with k-factors instead of just 3 we would get the estimator

σ̂2 :=
(~y · ~ek−1)2 + (~y · ~ek)2 + (~y · ~ek+1)2 + . . .+ (~y · ~en−1)2

n− k
.

The estimate for the standard deviation is then

σ̂ :=

√
(~y · ~ek−1)2 + (~y · ~ek)2 + (~y · ~ek+1)2 + . . .+ (~y · ~en−1)2

n− k
.

Why do we say best “unbiased estimator”? Here is the answer: let us introduce the
notation Ni := ~y · ~ei for i = 0, 1, 2, . . . , n − 1. Then we have that the coefficients Ni for
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i ≥ k − 1, (when we have k factors) all have expectation 0. In that case, the variance is
simply the expectation of the square:

σ2 = V AR[Ni] = E[(Ni)
2]

for i ≥ k. So estimating the variance of Ni is the same as estimating the expectation of
N2
i . But for estimating the expectation of a bunch of variables the average is always an

unbiased estimator since

E[
Z1 + Z2 + . . .+ Zm

m
] =

1

m
E[Z1 + . . .+ Zm] =

=
1

m
(E[Z1] + E[Z2] + . . .+ E[Zm]) =

mE[Z1]

m
= E[Z1]

where we assumed that all the variables Zi have same expectation. In our setting Zi := N2
i

we find that

σ̂2 =
N2
k +N2

k+1 + . . .+N2
n−1

n− k
is an unbiased estimator of the expectation

E[Zi] = E[N2
i ] = V AR[Ni] = σ2.

Now the joint density of Nk, Nk, Nk+1, . . . , Nn−1 is given by

1

(
√

2πσ2)n−k
exp

(
−

n−1∑
i=k

N2
i ·

1

2σ2

)
.

So, we are dealing with an exponential family with parameter − 1
2σ2 and statistic T (.)

equal to:
T (Nk, Nk, Nk+1, . . . , Nn−1) := N2

k + . . .+N2
n−1

Indeed the joint density can be written as:

c(
−1

2σ2
) exp

(
T (Nk−1, Nk, Nk+1, . . . , Nn) · −1

2σ2

)
,

where c(x) is the function

c(x) =

(√
−x
π

)n−k
.

For an exponential family, the statistic T (.) is sufficient, so we can through out everthing
else. Hence, we can base any optimal estimator solely on the statistic T (Nk, Nk, Nk+1, . . . , Nn).
But for an exponential family, there is only one unbiased estimator based on T (.), because
of completeness as discussed earlier. But, our estimator is unbiased and only based on
T (Nk, Nk, Nk+1, . . . , Nn−1)). So in that sense, it is the best unbiased estimator possible.
Note that by definition we have

α̂~1 + β̂1~x
weigth + β̂2~x

age
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Now, note that we have seen that the factor vectors ~1, ~xweigth and ~xage are perpendicular
to

~y − (α̂ + β̂1~x
weight + β̂2~x

age)

This is given by the equations 5.9, 5.10 and 5.11. The explanation of why this holds is
simple: the estimates α̂, β̂1 and β̂2 Are simply this values for α, β1 and β2 which minimise
the sum of the error squares:

n∑
i=1

(yi − α− β1x
weight
i − β2x

age
i )2

This is the same as finding α, β1 and β2 which minimize the distance square between the
vector ~y and

α− β1~x
weight
i − β2~x

age. (5.22)

But when we consider all points which can be written like 5.22 (that is for which there is
any value of α, β1 and β2 so that expression 5.22 equals the point) then this collectionof
point is a linear subvector space. In three dimensions for example, all vector subspaces
are either {~0}, or a line going through the origin or a plane going through the origin or
the whole space. But if I wan to go in shortest path from a point in space ~y to a plane or
a line, the shortest path is always perpendiculr to the line or to the plane to which I want
to go. Same things holds in higher dimensional vector space: shortest path from a point
~y to a subspace is by going from ~y to the subspace in orthogonal way to the subspace.
Now for orthogonal vectors we can use the good old pythagoras: So we have

~y =
[
~y − (α̂ + β̂1~x

weigth + β̂2~x
age)
]

+
(
α− β1x

weight
i − β2x

age
i

)
Note that the first part of the sum on the right side of the above equation is equal to

5.3 Another estimate for σ: maximum-Lieklyhood.

Unlike many other situations, here there can be a big difference between maximum-
lieklyhood estimate for σ an the best unbiased estimate. Let us see what the maximum-
Likelyhood estimate for σ is: the joint density function for Y1, Y2, . . . , Yn is obtained
as mentionned already by mutiplying the different densities with each other since the
coefficients Yi are independent of each other. Now Yi is normal with expectation

µi; = α + β1x
weight
i + β2x

age
i

so the density of Yi at the point yi is given by

1√
2πσ

exp

(
yi − µi)2

2σ2

)
so the joint density which is the product of the density of each Yi is given by

fY1,Y2,...,Yn(y1, y2, . . . , yn) =
1√

(2π)nσn
exp

(
−

n∑
i=1

(yi − µi)2

2σ2

)
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we want to find σ which maximizes the density above for given numeric values y1, y2, . . . , yn.
This is the same as maximizing the logarithm of the density:

−n ln(σ)− (
n∑
i=1

(yi − µi)2

2σ2
),

which is the same as minimizing

+n ln(σ) + (
n∑
i=1

(yi − µi)2

2σ2
) = n ln(σ) +

n∑
i=1

(yi − α− β1x
weigth
i − β2x

age
i )2

2σ

Now the above density also depends on the parameter α, β1 and β2. But we have seen,
that the density gets maximized for given fixed value of σ with the estimates α̂, β̂1 and
β̂2. So, to find the value of σ maximizing the likelyhood we can replace in the formula for
density α, β1, β2 by α̂, β̂1, β̂2. So, hence, we want to maximize

n ln(σ) + (
n∑
i=1

(yi − α̂− β̂1x
weigth
i − β̂2x

age
i )2

2σ2

to minimize the expression above we can now take the derivative according to σ and set
it equal to 0:

n

σ
− (

n∑
i=1

(yi − α̂− β̂1x
weigth
i − β̂2x

age
i )2

σ3
= 0

which is equivalent to

σ2 =
n∑
i=1

(yi − α̂− β̂1x
weigth
i − β̂2x

age
i )2

n

So, the maximum-lieklihood estimate is given by

MLE(σ2) :=
n∑
i=1

(yi − α̂− β̂1x
weigth
i − β̂2x

age
i )2

n

Note that this estimate is very similar to the unbaised estimate σ̂: the only difference is
that here we devide by n instead of n minus the number of factors! So, if the number of
factors will be small the two estimates are very similar. But if the number of factors is
close to the dimension of the space, then the two might be somewhant different.

5.4 Precision of the estimates of the parameters

How precise are our estimates? We have to figure out the standard deviations. When
the factor vector are strongly correlated we find that our estimates can be very imprecise.
Most of the time we will take the values of the factor minus the data average: so for
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example for the factor ~xage we do not take as i-th entry the value xagei which is the age of
the i-th cow. Instead, we take xagei − x̄age where the age average is defined by:

x̄age :=
n∑
i=1

xagei .

So taking the vector ~xage to be equal to

~xage = (xage1 − x̄age, xage2 − x̄age, . . . , xagen − x̄age)t

we get that it is perpendicular to ~1. Furthermore, in that case the length of the vector is
equal to the sqrtn times the sample standard deviation of the factor “age”, because

|~xage| =
√
~xage · ~xage =

√
n ·

√√√√ n∑
i=1

(xagei − x̄age)2/n =
√
n · sd(age).

Let us summarize how precise the estimate β̂age is depending on wether the factors are
orthogonal or not:

1. Assume first that the factor ~1, ~xweigth and ~xage are orthogonal. Then

σβ̂1
=

σ√
n|~xage|

=
σ

√
n
√
~xage · ~xage

=
σ√

nsd(age)
.

so the precsion behave like 1/
√
n times constant.

2. If the factor vector are close to each other, then the estimates precision could be
very bad. Assume for example the the distance of the rescaled vector ~xage

|~xage| to the

linear subspace generated by the other factors is δ > 0. (In the present case, the
distance to the space generated by ~1 and ~xage). Then the standard deviation is given
by

σβ̂1
=

σ

δ
√
n · sd(age)

(5.23)

Let us give the proof. So, if the distance of ~xage to the linear subspace generated by the
other factors is δ · |~xage| and considering again our orthonormal sequence ~e0, ~e1, . . . we get
that ~xage can be written as δ|~xage|~e2 plus a linear combination of the other factors. So,

~xage = δ|~xage| · ~e2 + a~1 + b~xweight (5.24)

for some real coefficients a and b. From the three equations 5.3, 5.10 and 5.11 it follows
that any linear combination a~1 + b~xweight + c~xage is yorthogonal to

~y − α̂~1− β̂1~x
weigth − β̂2~x

age. (5.25)

But clearly ~e2 can be written as linear combination of the three factors ~1, ~xweight and ~xage.
Hence ~e2 must be orthogonal to 5.25, so that
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~e2 ·
(
~y − α̂~1− β̂1~x

weigth − β̂2~x
age
)

= ~0

we can now replace in the equation above ~y by α~1 + β1~x
weight + β2~x

age + ~ε to obtain:

~e2 ·
(

(α− α̂)~1 + (β1 − β̂1)~xweigth + (β2 − β̂2)~xage + ~ε
)

= ~0 (5.26)

So by ~e2 being orthogonal to the factors ~1 and ~xweight equation 5.26 finally becomes

(β2 − β̂2)~e2 · ~xage = −~e2 · ~ε

so that our estimation error for β2 can be written as

β2 − β̂2 = − ~e2 · ~ε
~e2 · ~xage

(5.27)

by equation 5.24 we get that

~e2 · ~xweight = δ · |~xweight|

and hence equation 5.27 becomes

β2 − β̂2 = − ~e2 · ~ε
δ
√
n · sd(age)

Now, the standard deviation of a variable times a constant is equal to the constant times
the standard deviation. This implies

σβ̂1
= σ− ~e2~ε

δ
√
nsd(age)

=
σ~e2·~ε

δ
√
n · sd(age)

=
σ

δ
√
n · sd(age)

,

where we used lemma 5.21 for obtaining the last equation above.
Now, we can find a confidence interval for β2 using the above standard deviation: note
that β̂2 is a normal variable with expectation β1. But for a normal variable we know how
to determine the confidence interval. For example, the 95% symmetric confidence interval
for β1 is then given by

[β̂1 − 1.96σβ̂1
, β̂1 + 1.96σβ̂1

] = [β̂1 − 1.96
σ

δ
√
n · sd(age)

, β̂1 + 1.96
σ

δ
√
n · sd(age)

] (5.28)

Now, in the case that you don’t know σ, you will simply replace it by the estimate σ̂ which
we defined earlier. Then becaue of these additional source of “error” (not having the ture
σ bu only an estimate), your confidence interval 5.28 will be sligthly too small. so, instead
of the coefficient 1.96 form the normal table you take a slightly bigger coefficient which
is to be found in a student t-table with n− k degrees of freedom. The confidence interval
is then given by:

[β̂1 − t0.05
σ̂

δ
√
n · sd(age)

, β̂1 + t0.05
σ̂

δ
√
n · sd(age)

]
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5.4.1 Testing for β2 = 0

Again, β̂2 is a normal variable with expectation β1. We know how to test for β1 = 0 on a
given significance level for such a variable (assuming fist σ to be known). The two-sided
test with significane α > 0 used to test µ = 0 agains µ 6= 0 is equivalent to calculating the
confidence interval on the confidence level 1−α and then rejecting the hypothesis β1 = 0
if 0 is not in the confidence interval. So, calculating the symmetric confidence interval
and then rejecting the hypothesis if 0 is not in the confidence interval has an advantage:
when you fail to reject the hypothesis β2 = 0 you might wonder why it is. Maybe it is
because you don’t have enough precision, that is there is too big standard deviation to the
estimate. Or maybe it is becauser really β0 is close to 0. Imagine for example that some
cows eat powerfood and you want to see if this improves milk production. So you need
to know if the coefficient βpowerfood is 0 or not. Say you fail to reject βpowerfood = 0. Then
you look at the confidence interval and you will see: if it is very big, then the problem is
lack of precision in the estimate most probability due to colinearity of the factors, that is
small δ making the standard deviation big. So, then you can try to increase the number
of cows to get the

√
n in the standard deviation better. this might be very hard work: to

get the precision 10 times better you will need 100 times more cows!

5.5 Predicting the amount of milk of a new cow

there two type of problems:

1. Finding out if a factor affect the milk production. for example is age important for
how much milk a cow produces. In other words, this is about testing the hypothesis
β2 = 0 agains β2 6== 0.

2. The second problem is predicting. Assume that you buy a new cow online and they
tell you the weigth and the age but not how much milk she produces. Then you
want to estimate how much milk this cow is going to produce and give a confidence
interval.

Say you are a big specialist with cows: you sell them and buy them for a living. Then
it could be that you know the true parameters α, β1 and β2 as well as σ. Now the amount
of milk prodced by the new cow is

Ynew = α + β1x
weight
new + β2x

age
new + εnew

where as usual E[εnew] = 0. so, the expected abount of milk is

E[Ynew] =E[α + β1x
weight
new + β2x

age
new + εnew] =

=E[α] + E[β1x
weight
new ] + E[β2x

age
new] + Eεnew] = α + β1x

weight
new ] + β2x

age
new

where we used that the expectation of a constant is the constant itself. So, you know the
expected amount of milk. the standard deviation is σ. So, in the case that you know all
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the parameters because you are a big experts who has been working with cows for years,
your 95% confidence interval is going to be

[α + β1x
weight
new ] + β2x

age
new − 1.96 · σ, α + β1x

weight
new ] + β2x

age
new + 1.96 · σ].

If you don’t know the parameters α, β1 and β2 exactly you will have to use the estimates
instead. This is then adding some uncertainty. So you replace

α + β1x
weight
new ] + β2x

age
new

by
α̂ + β̂1x

weight
new ] + β̂2x

age
new

this adds an estimation error equal to

errornew := α− α̂ + β1 − β̂1x
weight
new ] + (β2 − β̂2)xagenew

As estimate for the amount of milk produced by the new cow we use

Ŷnew := α̂ + β̂1x
weight
new ] + β̂2x

age
new

This is an unbiased estimator for the expected amount of milk for the new cow given her
size and age. This is so, since the estimators of the parameters are unbiased:

E[Ŷnew] = = E[α̂ + β̂1x
weight
new + β̂2x

age
new] =

= E[α̂] + E[β̂1]xweightnew + E[β̂2]xagenew]

= α + β1x
weight
new + β2x

age
new

the confidence interval for the milk which the new cow is coing to produce could be
view roughly as the estimate Ŷnew plus minus two times the standard deviation of the
estimation error. More precisely the 95% confidence interval is going to be

[Ŷnew − 1.96
√
σ2
Ŷnew

+ σ2, Ŷnew + 1.96
√
σ2
Ŷnew

+ σ2]

So, we need to determine
σŶnew

which can be viewed as the typical error if we want to estimate the expected amoung of
milk of the new cow rather than the milk it will actually produce. the imprecision could
be very bad. But let us first look at a cow which is typcial: average age and average
weight in our data set. We use equation 5.6 and find:

n∑
i=1

(yi − α̂− β̂1x
weigth
i − β̂2x

age
i ) = 0 (5.29)∑n

i=1 yi
n

− α̂− β̂1

∑n
i=1 x

weigth
i

n
− β̂2

∑n
i=1 x

age
i

n
) = 0 (5.30)

ȳ − α̂− β̂1x̄
weight − hatβ2x̄

age = 0 (5.31)
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Where ȳ designates the average of the yi’s in our data and bar is always used to designate
a sample average. Since

yi = α + β1x
weigth
i + β2x

age
i − εi

we can sum these equation over i = 1 up to i = n and then divide by n. We then find
that

ȳ = α + β1x̄
weight + β2x̄

age +

∑n
i=1 εi
n

Combining the last equation above with ??, we find finally that the difference

α− α̂ + (β1 − β̂1)x̄weight + (β2 − β̂2)x̄age = −
∑n

i εi
n

(5.32)

Note that the right side of the equation above is the difference between the expected milk
and the estimate of what the expected milk should be for a new cow with average values!!!
That is if xweightnew = x̄new and if xagenew = x̄age, then the expected milke for the new cow will
be

α + β1x
weight
new + β2x

age
new = α + β1x̄

weight + β2x̄
age.

The estimate for the expected milk of the new cow (not the estimate for the actual milk,
just for the expected milk given size and age of the new cow) is

α̂ + β̂1x
weight
new + β̂2x

age
new = α̂ + β̂1x̄

weight + β̂2x̄
age.

So, the estiamtion error for the expected milk for the new cow is the difference between
the true expected milk and the estimate is given by

α + β1x̄
weight + β2x̄

age − (α̂ + β̂1x̄
weight + β̂2x̄

age) =

= α− α̂ + (β1 − β̂1)x̄weight + (β2 − β̂2)x̄age = −
∑n

i εi
n

where we used ?? Now for the average of the εi the standard deviation is simply the
standard deviation of one of the terms divied by

√
n

V AR[

∑n
i εi
n

] =

∑n
i V AR[εi]

n2
=
n · V AR[ε1]

n2
=
σ2

n

and hence taking the square root on both sides of the above equation and using that the
standard deviation is the square root of the variance we find

σ(ε1+...+εn)/n =
σ√
n
.

So, we know the precision of the estimate fo the new cows expected milk production if
the cow is very typical. If it is not then the calculation is more complicated and we will
do it later. So, we have that

σŶnew =
σ2

√
n

when the new cow has age and height exactly equal to the average values in our data set.
So, we can use this value now for giving the confidence interval for such a super typical
cow!
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5.6 Testing for several coefficients βi to be zero: ANOVA

Say we work with weight, age, but also for example size. Maybe both age and size are
superfluous for predicting milk production of a cow. So, we consider the model:

milk = α + β1 · weight+ β2 · age+ β3 · size+ cow.nb.i.error

or
yi = α + β1 · xweighti + β2 · xagei + β3x

size
i + εi,

where as usual yi is the mount of milk produced by the i-th cow. As usual xweighti , xagei

resp. xsizei denote the weight, age, resp. size of the i-th cow. Then εi is as always the
individual fluctuation term of the i-th cow. In vector format, we have thus

~y = α~1 + β1~x
weight + β2~x

age + β3~x
size + ~ε

We want to test the hypothesis

H0 : β2 = β3 = 0.

If this hypothesis where true, it would mean, that in order to predict milk production in
a cow, once we use the weight factors, we can drop size and age.

Another such multi-factor situation, could be when try to test if some power-food has some effect on
milk production. Assume that in our data-set with cows, we have that to some cows a power food I is
given and to some others a second type of power food. Some cows don’t receive any power food. This
would then lead to two factor vectors: ~xpowerfoodI and ~xpowerfoodII . the i-th entry of ~xpowerfoodI , that
is xpowerfoodI

i would then be equal to 1 if the i-th cow has received power food number I and would be
0 otherwise. We would define the vector ~xpowerfoodII in a similar manner, but using the second power
food instead of the first. So, our model would be

~y = α~1 + β1~x
weight + β2~x

age + β3~x
size + β4~x

powerfoodI + β5~x
powerfoodII + ~ε.

in that model we may want to test for the hypothesis H0 : β3 = β4 = 0. If we can reject the hypothesis,
on a certain significance level, than that would mean that we have proven that the power foods have some
effect (on the given significance level at which we are testing). More precisely, we would have proven
that at least one of them has a significant effect on milk production. Why do we also use the other
factors: weight, age and size? The reason is that this allows us to reduce the variance in the problem: it
is very possible that the difference of weight between the cows, creates a enormous disparity in the milk
production from one cow to the other. Maybe the power food has some effect on milk production, but
less than the weight of the cow. In that case, we could be in a situation where the effect of the power food
is not seen right away, because it is masked by the big fluctuation of the amount of milk produced from
one cow to the next due to the different weights of the cows. But, now, when we include the weight of
the cow into the model, this can lead to “take away” the big fluctuation in milk which is due to size, and
then leave us with a smaller fluctuation (smaller average residuals) once the contribution of size is taken
out. And in that case, it is quite likely, that if the power food has indeed an effect on milk production
(and it is not a hoax), then we will be able to detect it
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So let us go back to our model with only weight, age and size. Now, we have seen how
to test for one coefficient to be equal to 0. Testing for several coefficients to be 0 at the
same time is not exactly the same thing. Specially if there are many factors involved in
the test. The reason is as follows: assume that we would try to test for 20 coefficients to
be all 0, so that H0 would be equal to:

β2 = β3 = β4 = . . . = β22 = 0.

Then if we have a critical value c0.05
i at the 5% significance level for each of these coeffi-

cients. So,
P (|β̂i| ≥ c0.05

i |βi = 0) = 0.05

for each i = 2, 3, . . . , 22. Let us assume the β̂i to be independent of each other for
i = 2, 3, . . . , 22. Then, the probability that one of these coefficients at least reaches its
critical value, is pretty high, and certainly much higher than 5%. (Indeed, if we make 20
trials of an event which each time has probability 1/20 to happen, the probability that
it happens once is then approximately e−1 = 0.36 6= 0.05.) So, all of this to justify, why
for testing that several coefficients are 0 at the same time, we do not simply use the tests
which we would use for each of them individually!

So, again we come back to the situation where we have only the factors weight, size and
age. Now, let us first mention that the factors for which we want to test if they have no
influence on out target data, must always be placed at the end of the other factors. So,
here if we would want to test that the factor weight does not affect milk production, we
would have to put first the factors size and age and then after that the factor weight.....
Another reason why we need to test several factors at the same time: imagine again our
beloved cows from Switzerland. But say we have 20 factors, many of them quite useless
to predict milk production. But for each of them alone when we leave the 19 others it
might be difficult to test for its β to be 0 because of colinaerity. So, putting many of them
in a package might help a lot, to test that all together they do not contribute!
So, let us explain how we do the testing:

we use the Graham-Schmidt orthogonality applied to the factors

~1, ~xweigth, ~xage, ~xsize

So, let ~e0, ~e1, ~e2, ~e3, . . . , ~en−1 be the sequence of orthogonal vectors obtained from Graham-
Schmidt when starting with the sequence: ~1, ~xweight, ~xage, ~xsize . (We assume that there
are n cows in our data set.) This means that ~1 and ~e0 are co-linear. Then ~e1 is a
linear combination of ~xweight and ~1. Similarly ~e2 is a linear combination of ~1, ~xweight,
~xage. Finally, ~e3 is a linear combination of ~1, ~xweight, ~xage and ~xsize. After that vectors ~ei
with i ≥ 4 are simply orthogonal vectors filling the space. We are going to use the two
dimensional random vector

(~y · ~e2, ~y · ~e3)
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to base our test for H0 : β2 = β3 = 0. By definition, ~e2 and ~e3 are both orthogonal to ~1
and ~xweight. Hence, we find

~e2 · ~y = ~e2 · (α~1 + β1~x
weight + β2~x

age + β3~x
size + ~ε) =

~e2 · (α~1 + β1~x
weight) + ~e2 · (β2~x

age + β3~x
size) + ~e2 · ~ε =

= ~e2 · (β2~x
age + β3~x

size) + ~e2 · ~ε.

If the hypothesis H0 is true, then because β2 = β3 = 0, the expression above yields:

~e2 · ~y = ~e2 · ~ε

Similarly for ~e3 we find:

~e3 · ~y = ~e3 · (β2~x
age + β3~x

size) + ~e3 · ~ε

which if H0 is true becomes
~e3 · ~y = ~e3~ε

So, if H0 is true, the expression
(~y · ~e2, ~y · ~e3)

is equal to
(~ε · ~e2,~ε · ~e3) (5.33)

From our Lemma 5.21 on scalar products of non-random vector with ~ε, we find that both
entries of the vector in 5.33 are independent of each other since ~e1 and ~e3 are orthogonal.
They are furthermore both normal with expectation 0 and standard deviation σ. This
assuming H0 to hold. If, H0 does not hold, then

(~y · ~e2, ~y · ~e3) = (~ε · ~e2,~ε · ~e3) + (~e2 · (β2~x
age + β3~x

size), ~e3 · (β2~x
age + β3~x

size)).

The difference here to the case of H0 is the vector

(~e2 · (β2~x
age + β3~x

size), ~e3 · (β2~x
age + β3~x

size))

which is non-random. Adding a non-random vector changes the expectation but does
not change the standard deviation. So basically we are testing for zero expectation in a
normal random vector with independent normal entries. We also assume that both entries
have standard deviation σ.
Let N2 =: ~y · ~e2 and let N3 := ~y · ~e3. Under H0 thus both N2 and N3 have 0 expectation.
there standard deviation as mentioned is σ. Now if the expectation is 0 then V AR[Ni] =

E[N2
i ] = σ2 and hence we would “expect”

N2
2 +N2

3

2σ2 to be about 1. We will use
N2

2 +N2
3

2σ2 to test
the hypothesis E[N2] = E[N2] = 0 which is equivalent to H0. This is how we proceed: we
find the critical value cα for the given significance level α > 0, so that

P (
N2

2 +N2
3

2σ2
≥ cα) = α. (5.34)
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The variable N2 and N3 being normal with standard deviation σ and expectation 0, we
find that equation 5.34 is equivalent to

P (
N 2

2 +N 2
3

2
≥ cα) = α

where N2 and N3 are independent standard normal. This is for the case that we know σ.
If we don’t know σ, then we simply use σ̂ instead of σ:
in that case, we use the ratio

N2
2 +N2

3

2σ̂2

for our test. If that is bigger than a critical value, then we will reject the hypothesis,
otherwise we accept it. Now, remember that our estimate σ̂ was defined to be equal to

σ̂2 =
N2

4 +N2
5 + . . .+N2

n−1

n− 4

where we define Ni to be
Ni := ~y · ~ei

for any i = 4, 5, 6, . . . , n − 1. We have seen that for i bigger then the biggest index of a
factor, we find that Ni = ~ε · ~ei. So, to test if β2 = β3 = 0 and assuming we do not know
σ, we use

(N2
2 +N2

3 )/2

N2
4 +N2

5 + . . .+N2
n−1/(n− 4)

=
(N 2

2 +N 2
3 )/2

(N 2
4 +N 2

5 + . . .+N 2
n−1)/(n− 4)

, (5.35)

where N2,N3, N4, ...is a sequence of i.i.d. standard normal. Expression given on the right
side of equation ?? is called a F-statistic with 2 and n − 4 degrees of freedom. We can
thus look in a table for an F -statistics with 2 and n− 4 degrees of freedom which is the
value cα which it does not exceed with probability bigger than α > 0. This is to say that
the critical value cα for our test is given by

P (
(N 2

2 +N 2
3 )/2

(N 2
4 +N 2

5 + . . .+N 2
n−1)/(n− 4)

≥ cα) = α

Once we have determined that critical value for the significance-level α, our test simply
consist in checking if the quantity

(N2
2 +N2

3 )/2

N2
4 +N2

5 + . . .+N2
n−1/(n− 4)

=
(~y · ~e2)2 + (~y · ~e3)2

σ̂

exceeds cα or not. If it does, we reject the hypothesis H0 = β2 = β3 = 0 on the level α.
Otherwise, we can not reject the hypothesis β2 = β3 = 0 on the level α, which could mean
several things: the hypothesis is indeed true or there is too much noise in the data for
figuring out that the hypothesis is not true. In the second case, adding more cows should
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after a while help expose the fact that the hypothesis is not true... In general imagine
that we have j + k factors and that the model is

~y =

j+k∑
l=1

βl · ~xl + ~ε.

Again we assume n cows. Say we want to test the hypothesis

H0 : βj+1 = βj+2 = . . . = βj+k = 0

Then let first ~e1, ~e2, ~e3, . . . , ~en be the orthogonal base obtained when applying Graham-
Schmidt to the vector sequence

~x1, ~x2, ~x3, . . . , ~xj+k.

So, we request that the linear subspace generated by ~x1, ~x2, ~x3, . . . , ~xm be identical to the
subspace generated by

~e1, ~e2, ~e3, . . . , ~em

for all m = 1, 2, . . . , n + k. Let Ni := ~y · ~ei for all i = 1, 2, . . . , n Then we use as test
statistic:

(N2
j+1 +N3

j+2 + . . .+N2
j+k)/k

(N2
j+k+1 +N2

j+k+2 + . . .+N2
n)/(n− k − j)

. (5.36)

which under H0 has F-distribution with k and n − j − k degrees of freedom. If that
statistic is above cα, then we reject H0. The critical value for cα has to be found now in a
table for a F -statistics with k and n− j − k degrees of freedom. let us define next SSE
and SSR: we define first the sum of squares of errors as:

SSE :=

j+k∑
i=1

(yi − β̂1x
1
i − β̂2x

2
i − . . .− β̂

j+k
i )2

Note that our estimate for σ using the full model is simply

σ̂2 :=
SSE

n− k − j

So, if SSE is small then this means that when we will have to predict a new cow, typically
the estimation error should not be too big. Now, note that SSE is equal to

N2
j+k+1 +N2

j+k+2 + . . .+N2
n.

What is the reason for this? We will see why in the section ?? below. Furthermore we
defined the sum of square due to the regression of the full model:

SSR(F ) :=
n∑
i=1

(β̂1x
1
i + β̂2x

2
i + . . .+ β̂j+kx

j+k
i )2
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and the sum of square of the regression for the restricted model:

SSR(R) :=
n∑
i=1

(β̂R1 x
1
i + β̂R2 x

2
i + . . .+ β̂Rj x

j
i )

2

where
β̂R1 , . . . , β̂

R
j

denotes the linear regression coefficients in the restricted model where we use only the
factors 1 through j instead of 1 through j + k. then, the term

(N2
j+1 +N3

j+2 + . . .+N2
j+k)

is simply equal to
SSR(F )− SSR(R)

In other words, if we want to test the hypothesis that H0 : βj+1 = βj+2 = . . . = βj+k = 0,
then the test statistic given in 5.36 is equal to

F =
(SSR(F )− SSR(R))/k

SSE/(n− j − k)

If the hypothesis H0 holds, then F has an F distribution with j and n− j − k degree of
freedom as already mentioned.

How to use the statistical data analysis program R for ANOVA In R, when
we use the command

fullmodel = lm(~y ∼ ~xweigth + ~xage + ~xsize)

then all the info about the linear regression is stored in the object “fullmodel”. Then we
do the same for the partial model:

partialmodel = lm(~y ∼ ~xweigth)

The next step is to type into the R-prompt:

anova(partialmodel, fullmodel)

Then R gives us a table with the F -statistic and the p-value (among others). What is the
p value? Well, we simply compute the numeric value of F and calculate the probability
that a random variable which has F distribution with 2 and n−4 degrees be at least that
big. So, in other words, the p-value is

P (F2,n−4 ≥
(SSR(F )− SSR(R))/k

SSE/(n− j − k)
)
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where F2,n−4 designates a random variable with an F -distribution with 2 degrees and
n− 4 degrees of freedom. Now note for example, that if the F -statistic takes on the value
19 in our cow data-set, then we know that it is almost impossible that the H0 be true: if
H0 is true, then the statistic

F =
(SSR(F )− SSR(R))/k

SSE/(n− j − k)
)

is equal to an average of standard normal squared divided by an average of other standard
normal squared. A standard normal squared has an expectation of 1. So, an average of
standard normal squared we should expect to be about 1 by the law of large numbers.
hence, 1 over 1 should be about 1 and not 19. So, with the F -statistic being 19, it is
almost impossible that H0 be true. But how “impossible” is it? for this we look in the
table of F -statistics. In this case with 100 cows, we get that the second degree of freedom
would be 96. So, with 2 and 96 degrees of freedom the probability for an F -statistic to
exceed 19 is 0.00000012. this would then be the p-value in our case. This is simply so
small, that it will not happen in practice! Hence, we are sure that the hypothesis would
not be true, that is the factors size and age add predictive power to the factor weight.

5.7 SSE and SSR

let us consider a situation where we want to predict milk with m factors:

Yi = β1x
1
i + β2x

2
i + . . .+ βkx

m
i + εi

where Yi denotes the amount of milk produced by the i-th cow. xli is the value for the
l factor in cow number i for all i = 1, 2, . . . ,m. (this means that if for example the l-th
factor is weight, then xli is the weight of the i-th cow). Again, εi denotes the i-th cows
individual variation term. Let ~xl denote the l factor vector:

~xl := (xl1, x
l
2, . . . , x

l
n)t

where we assumed that there are n cows total. If ~Y is the column vector with the milk,
then our model reads:

~Y = β1~x
1 + β2~x

2 + . . .+ βm~x
m + ~ε.

The equations to determine the estimate for the correlation coefficients βl are given by

0 =
m∑
i=1

(Yi − β̂1x
1
i − β̂2x

2
i − . . .− β̂mi ~x+ im) · xli = (~Y − β̂1~x

1 + β̂2~x
2 + . . .+ β̂m~x

m+) · ~xl

where we have one such equation for every l = 1, 2, . . . ,m. Hence ~xl and

(~Y − β̂1~x
1 − β̂2~x

2 − . . .− β̂m~xm)
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are orthogonal for all l = 1, 2, . . . ,m. Thus

β̂1~x
1 − β̂2~x

2 − . . .− β̂m~xm

and
(~Y − β̂1~x

1 − β̂2~x
2 − . . .− β̂m~xm)

are orthogonal to each other. But, their sum is ~Y . When we have a sum of orthogonal
vectors we can apply Pythagoras. Hence the length square of ~Y must be equal to the sum
of the length squares of the two vectors:

|~Y |2 = |(~Y − β̂1~x
1 − β̂2~x

2 − . . .− β̂m~xm)|2 + |β̂1~x
1 − β̂2~x

2 − . . .− β̂m~xm)|2. (5.37)

Note that the two parts in the sum on the right side of the last equation above are just
the sum of square of the errors (SSE) and the sum of square of the regression (SSE) of
our model:

(~Y − β̂1~x
1 − β̂2~x

2 − . . .− β̂m~xm)|2 =
m∑
i=1

(Yi − β̂1x
1
i + β̂2x

2
i + . . .+ β̂mx

m
i )2 = SSE

It should also be clear why this is called SS-error: if we were to predict the milk of a cow
Nb i we would use the formula

β̂1x
1
i + β̂2x

2
i + . . .+ β̂mx

m
i .

the milk produced by that cow is Yi so the estimation error is

ε̂i := Yi − (β̂1x
1
i + β̂2x

2
i + . . .+ β̂mx

m
i .)

And, the SSE is just the sum of these estimation errors squared:

SSE =
n∑
i=1

ε̂2i .

Now, we don’t need to predict how much milk cow number i produces, because we already
have that information in our data set. But still, to see how good our milk prediction
technique we look how good it would be for the given cows in our data-set:
for each cow in the data-set we calculate the estimation error and then build the average of
the estimation errors squares. This should give a good idea of what the average estimation
error square is also for new cows.
Now, let ~e1, ~e2, . . . , ~en be the orthogonal basis which we obtain, when we apply Graham-
Schmidt normalization to the factor vector sequence:

~x1, ~x2, ~x3, . . . , ~xm

Hence, ~x1 and ~e1 are co-linear. Then, ~x1 and ~x2 generate the same vector space as ~e1 and
~e2. Similarly for any l ≤ m, we have that the set

~x1, ~x2, . . . , ~xl
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generates the same vector subspace as

~e1, ~e2, . . . , ~el.

Anyhow, we have that ~e1, ~e2, . . . , ~e3 is a orthonormal basis of our vector space. Thus for
any vector

~a = (a1, a2, . . . , an)t

in our vector space, we have that ~a can be represented in our basis by:

~a = (~a · ~e1)~e1 + (~a · ~e2) · ~e2 + . . .+ (~a · ~en) · ~en

and the length square of the vector ~a is the sum of the squares

|~a|2 =
n∑
i=1

ani = (~a · ~e1)2 + (~a · ~e2)2 + . . .+ (~a · ~en)2.

To, if we apply this talking the vector ~a equal to:

~a = ~Y − β̂1~x
1 − β̂2~x

2 − . . .− β̂m~xm)

, then we have

SSE = |~a|2 =
n∑
j=1

(~ej · ~a)2. (5.38)

But now if j > m, then ~ej is by definition perpendicular to any factor vector ~xl, with
l ≤ m. so, then, in the case j > m we have:

~ej · ~a = ~ej · (~Y − β̂1~x
1 − β̂2~x

2 − . . .− β̂m~xm) = ~ej · ~Y

On the other hand if j ≤ m we have that ~ej is in the same space as the space generated
by the first j factors. but the factors are as we saw all perpendicular to ~a, and hence ~ej
must also be perpendicular to ~a. This is to say, that in that case that j ≤ m, we have

~ej · ~a = 0

Summarizing what we found for ~ej · ~a, and using it with equation 5.38, we find

SSE =
n∑

j=m

(~Y · ~ej)2

But recall that our unbiased estimate for σ2 is given by

σ̂2 =

∑n
j=m(~Y · ~ej)2

n−m
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and hence we find that our unbiased estimate for the variance is equal to

σ̂ =
SSE

n− k
.

Often time the sum
∑n

i=1 Y
2
i is denoted by SST where T stands for “total”. So

SST :=
n∑
i=1

Y 2
i .

Now, with that definition, equation 5.37 reads:

SST = SSR + SSE (5.39)

5.8 Finding the best model for prediction

When we consider the same data set and a bunch of factors given in the data set, we
might still not want to use all factors for our prediction. the reason is as follows: assume
that we have as factors for the milk as usual weight, size and age and then 20 others.
Assume that the true β coefficient of all the 20 other factors is 0. So, the true model
would be

~yi = α + β1x
weight
i + β2x

size
i + β3x

age
i + εi

So, we might not know that and use for prediction all 20 factors, and hence predict the
amount of milk a new cow produces to be

α̂ + β̂1x
weight
new + β̂2x

size
new + β̂3x

age
new + β̂3x

4
new + β̂4x

4
new + . . .+ β̂22x

22
new.

Now if really we would have

β4 = β5 = . . .+ β22 = 0 (5.40)

or close to that situation, then the term

β̂3x
4
new + β̂4x

4
new + . . .+ β̂22x

22
new (5.41)

would be superfluous and may even be harmful. Actually then that additional term, if
there is a lot of co-linearity could have big estimation errors for the β̂i’s for which i ≥ 4.
but assuming the true βi’s to be zero, this could mean that the β̂i ’s for i ≥ 4 could be
far away from zero, making thus the expression 5.41 really big. So, we would have one
additional “noise” part which could very much reduce the precision of our estimate! To
remedy this, we could make a test to figure out if ??, and if we find that it might, we
would then work with the reduced model. All this to say that if we have a lot of factors,
it is usually not good to all use them for prediction. So, one has to select which ones
one wants. This is called model selection. Which model do we select? Well we want the
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prediction to be as precise as possible. So, we could chose the one model which has the
smallest unbiased estimate for σ. Let us explain: let us consider three models:

Model I :~Y = αI~1 + βI1~x
weight + βI2~x

age + ~ε

Model II :~Y = αII~1 + βII1 ~x
weight + ~ε

Model III :~Y = αIII~1 + βIII1 ~xweight + βIII2 ~xage + ~ε

Note that when the factors are not orthogonal, then the coefficients and their estimates
will depend on which model we consider. This is why, we wrote the coefficients with a
superscript indicating the model, they are calculated for.
How should we now select the model which is best suited for prediction among the three
models above? (Assuming we want to use one of those three models). Again, if we put
in factors which in reality have a β-coefficient equal to 0, then this can only make the
estimation process worse. Let us consider the situation where Model I would be the true
model. Say we work a lot with the model and know the coefficients exactly. Then the
95%-confidence interval for the amount of milk of a new cow would be

αI + βI1x
weight
new + βI2x

age
new ± 1.96σI

or we can write it as

[αI + βI1x
weight
new + βI2x

age
new − 1.96σI , α

I + βI1x
weight
new + βI2x

age
new + 1.96σI ].

So, the level of precision here is given by σI . So, we could chose which model is best
for prediction, but taking the one for which σ is smallest. Hence, we would compare σI ,
σII and σIII and chose the model for which that value is smallest. Now, note in most
cases we might not know exactly what αI , βI and βI are. So, we will use the estimates
instead. This will make the imprecision for our confidence interval slightly bigger. But, in
general, except with very big co linearity, the order of the size of the confidence interval
will remain the same. So, we can still take σI has a measure of approximately how precise
Model I is for prediction. This can also be seen, in our formula ?? for the precision of
estimates for the coefficients: mostly we get stuff of the type

σ√
n

times constant for the precision of β̂ − β. So, because of the
√
n in the denominator,

this then becomes much smaller than σ and hence σ still gives the approximate order of
the prediction precision even if we have to estimate the correlation coefficients. Often of
course the value of σ is not known. So, instead we will use its estimate. Then we just
chose the model for which the estimate of σ is smallest. We use the unbiased estimate.
So,

σ̂2
I :=

n∑
i=1

(Yi − αI + βIxweighti + βIxagei )2

dfI
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where df designates the degree of freedom here dfI = n−3. then we calculate the estimate
for σ in the second model:

σ̂2
I :=

n∑
i=1

(Yi − αII − βII1 x
weight
i )2

dfII
,

where the degree of freedom is dfII = n−2 finally we calculate the estimate for σ according
to the third model:

σ̂2
I :=

n∑
i=1

(Yi − αIII − βIII1 xweighti − βIII2 xagei )2

dfIII
,

with dfIII = n − 3. then find the smallest among: σ2
I , σ

2
II and σ2

III and chose the
corresponding model.
What about if we have a lot of factors? Say we would have for example 30 factors. Then
the number of possible models obtained from including several of these factors is equal
to 230 ≥ 1000000000!! so, that makes it difficult to calculated. Also, it will create a big
problem of the type over fitting or you could call it “data-snooping”. What does that
mean? If you have that many models to compare and for each model M you have an
estimate σ̂M , then by the large number you will have some where the estimate σ̂M is very
wrong and much smaller than the actual σM . If we would know the true σM for each model
M , then we would simply select the model for which σM is smallest. But, as mentioned,
we don’t know the true value of σM but only have an estimate (approximation) of it. This
estimate is quite fine usually, but with a billion of Models its just bound to have some of
these estimates which will be very wrong! So, when selecting a model if we would chose
among all one billion models and pick the one with smallest σ̂M here is what will happen:
the chances are very high that we pick a model M0 which does not have its true σM0

small, but instead has just a small σ̂M0 dues to a big estimation error! With a billion of
estimates, their is bound to be a few with a quite substantial error in the estimate. (Here
we look for an error which would underestimate the true value).
This is the same phenomena, as if you would data-mine stocks of firms until you find
something which is correlated substantially to an above average return. if you work for
days, and look at millions of parameters, you may find in the end for example, that
the firms with a CEO who has dark hair, and CFO with a name which starts in M,
outperforms other stocks in a significant way. Then we try to apply this what we found
by investing only into those firms where CEO has dark hair and CFO has a name starting
with M. Of course, we will probably not get an above average return with such a policy:
the reason is that we looked for millions of things, and in the end found something which
by chance was correlated to above expected return. But then in the future this will not
be the case again!
To solve this problem in the case there are many factors, there are different approaches
possible. The one which makes most sense to us goes as follows:
First chose among all models with only one factor the one which has smallest σ̂2. Say
you find that the one factor which is best suited is ~xweight. Then, in the second step, you
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consider all two factor models where one of the factors is ~xweight. From those two factor
models you chose again the one which minimizes σ̂2

M . Say you find that at that second
level the best is to use ~xweight with ~xage. So, for the third step you consider only three
factor models which contain ~xweight and ~xage and any third factor available. You chose
then among those three factor-models the one which minimizes σ̂2

M . You go on adding
one factor at a time to the preciously chosen ones. In this manner with n factors you get
only n2/2 choices (polynomial number in n) instead of the exponentially big number 2n.
Another improvement you can make is as follows: you keep on adding factors, but you
stop as soon as you realize that adding more factors does’t improve things much. One way
to do this, is at each step to test for the remaining factors to have all coefficients equal
to 0 on a given significance level. Another approach is to check by how much σ̂m gets
improved. If it is not improving a lot from one step to the next then stop the procedure
and stay with the factors you found for your model selection. So for example you could
say that from one step to the other the estimate σ̂ has to improve by at least 20%. Say
Mi is the model selected at the i-th step and Mi+1 is the model selected at the i+ 1 step.
Then you could say that you go on until for example the following is no longer true:

σ̂Mi+1

σ̂Mi

≤ 0.8

Another thing to realize is that we chose among different models which model M among
a set of different one has smallest σ̂2

M , then this is the same as finding the one which has
biggest SSR(M). Indeed we have seen in 5.39, that

SST = SSR(M) + SSE(M).

But, SST does not vary as we change the model, since it only depends on the milk
produced by each cow. So, minimizing SSE(M) is the same as maximizing SSR(M).
Now, our estimate is not exactly SSE(M) but is the faction:

σ̂2
M =

SSE(M)

dfM
(5.42)

where dfM is the degree of freedom of the model, which is equal to the number of cows
n minus the number of factors in the model. Since at each step we compare only models
with the same number of factors, when we minimize 5.42, this is the same as minimizing
SSE(M) since then dfM is the same for all models we compare at the same time. Hence,
at each step what we do is equivalent to minimizing SSE(M), which by equation 5.39
amounts to the same as maximizing SSR(M). I only mention this so you know why in
tables printed out by R, they always give SSR(M).
One more approach would be to keep the data of a few randomly selected cows just to
decide at which moment to stop our procedure. That is we could estimate σ̂M as described
until now. Then at each step we would also re-estimate it by using the additional cows,
but using the parameters β̂i found from the big data-set of cows. In this way, we would
not have the over-fitting problem for this part of the best model search....
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5.9 General overview

In a somewhat oversimplified way, we could say there are two somewhat different problems
at hand:

1. Prediction. For example this could be: We are going to build a new shop. We want
to estimate the future profit and give a confidence interval. We are a big company, so
we have a lot of data about our shops in the US and their profits. We can put yi to be
the profit the i-th shop makes. As factors we could use for each shop’s neighborhood
the following: the population density, the average income, percentages of age groups,
number of other shops in area, other indicators of economical situation in area,
presence of other competing shops, part of a Mall or not, business of street next to
shop,.....So, we know all the factors for the new shop and can use a multidimensional
regression model to predict the profit. We will also give a confidence interval for
the profit. We don’t care so much if some of the βi’s are wrong, as long as the
overall estimate of the profit is pretty correct. This means that often for this type
of prediction problem, the co-linearity is not such a severe problem: when we select
a model, we ill simply not chose factors to put into the model which would have a
lot of co-linearity between them. Say, back to the milk and cow problem. Probably
size and weight are similar in the sense that bigger cows tend to be heavier. so,
these two factors are very much correlated to each other. but typically the model
selection which we proposed in the previous paragraph, will then only select one of
these two to be included into the model: say your best single factor is weight. Then
the second which you chose will probability be age and not size: size is similar in its
information content to weight, so it will probably work better to include age at the
second step rather than size. So, this shows that with the model selection procedure
explained in the last subsection, there is a tendency to not include highly similar
factors, that is factors with a lot of co-linearity. So, typically if we would include
all the factors we may have a lot of co-linearity, but the model we chose will often
not have that problem.

2. Testing for a given i if H0 : βi = 0. An example for this is a long term study
about cardiovascular health. Here Yi could be a score of individual number i in
the study, which expresses the cardiovascular health of that individual. Then in
principle, the co-linearity problem can not just be ignored and close factors thrown
out of the model! let us explain why: in prediction for cows for example, size and
weight might be very similar for the purpose of predicting milk production. So,
in the model selection part we might chose either one of them (will be a little bit
of chance which one gets selected). Then with each of them we would probably
achieve similar precision for estimating milk production. So, we don’t care if in
the model selection one gets replaced by the other. This might happen because of
co-linearity. Now, for a problem like cardiovascular health, this is very different:
say virgin olive oil with the omega 3 is very good on the long run for your hart.
But spaghetti are just neutral. Now, in Italy, in many regions, (at least when I
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was a kid) they ate paste almost every day. Back then olive oil was used mainly
in southern countries in Europe and not in Northern Europe. So, I would expect,
that 30 years ago in Europe, eating a lot of pasta and consumption of olive oil, were
very much correlated. So, you would have co-linearity between these two factors.
but now assume that you have found that to predict cardiovascular health spaghetti
eating is the best predictor. In reality it is the olive oil which causes the better
health. So, for prediction this is fine, but not for understanding what is going on!
Say you are an insurance company who has to decide how much a person has to
premium to pay. if you can predict cardiovascular health well, you are in business
even if you use the wrong factor “spaghetti” instead of the true cause of health which
is “Omega 3 in olive oil” But for a doctor, which is investigating how to improve
the health of people, thinking that spaghetti is good for your hart is totally wrong:
say a government then promotes spaghetti eating as a public health approach to
improving cardio-vascular health. That would then not be helpful. So, when we
want to find if βolive oil is 0 or not, we can not simply discard other factors which
are closely co-linear to ~xolive oil. This is why these type of long term studies are so
difficult. In principle, the only way is then to increase the number n. That is we
have to include more people in our study. As a matter of fact, the precision of our
estimate for βoliveoil is given by something of the type

σ√
n · sd(~xolive oilδ

So, the precision gets as good as we want in principle when n becomes big enough.
Hence, we will be able to figure out if the true βolive oil is close to 0 or not by just
increasing n, that is adding more people to the study. Which is why these type of
studies need to be on very large scale and are often very difficult. Of course, factors
which are very “far” from ~xolive oil and which have a lot of co-linearity between
themselves but not with ~xolive oil may be kicked out. Then again that might not help
that much, because of how we calculated δ: the distance from the space generated
by the other factors to the re-scaled ~xolive oil. Now, those factors which anyhow are
far away for ~xolive oil may not effect δ all that much. Another important problem
is that we are interested in this type of problem in causality: we don’t just want
to know if things are correlated within our model (that is βolive oil > 0) but if truly
oliveoil is the true reason for better cardiovascular health. Now if you forget to
include one factor, then this might cause you to see that a coefficient is positive,
though it is not the cause for better health: say again olive oil is causing better
health, but this factor has not been included in your data set. Instead you have
include sardines as a possible factor in your list. Then, though the true reason for
better cardiovascular health is olive oil, but since this factor is not available in your
data set, linear regression analysis jumps to the conclusion that sardines is what
creates better cardio-vascular health. The reason is that the two are very correlated,
because again in the south of Europe they eat sardines as a main food all the time
and that is also where the main olive oil consumption takes place. The only way
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around this is to try to check for all possible factors. Again, for stuff like cancer,
where you have maybe million of chemicals in our food and a few of them could
have an effect of increasing the likelihood is very difficult!

5.10 Facing the real data

We have a nice theory, but it is based on assumption which are difficult to check in
practice. Among others, independence is often almost impossible to check. Now, what
if, all the nice assumptions, like normality, independence and so on would not be there,
would our approach still work? The answer is in many cases, linear regression still works.
First note that for the estimates α̂, β̂1 and β̂2 to be unbiased we only need the error terms
to have zero expectation and nothing else. (Go check the proof). So, But, 0 expectation
we can get just by definition: instead of having the model

Yi = α + β1x
weight
i + β2x

age
i + εi,

define
εi := Yi − E[Y |xweighti , xagei ]. (5.43)

So, here εi is the difference between the amount of milk the i-th cow truly produces and
what we would expect given the weight and age. With this definition we get

E[εi] = E[Yi − E[Y |xweighti , xagei ]] ] =

E[Yi]− E E[Y |xweighti , xagei ] = E[Yi]− E[Yi] = 0

Now let g(xweight, xage)E[Y |xweight, xage] be the function which gives the expected amount
of milk given weight and age. Then, by definition

Yi = g(xweight, xage) + εi

where εi is defined by ??. Now, g(., .) might not be a simple linear function, but it is
probably smooth. And hence it can be approximated by a polynomial in the factors as
closely as we want. (This is the result of the multidimensional Taylor theorem). Say we
find that g(xweight, xage) can be approximated sufficiently precisely for our purpose by a
second order polynomial:

g(xweight, xage) ≈ α + β1x
weight + β2x

age + β3(xweigth)2 + β4(xweight · xage) + β5(xage)2

then the linear model is:

~Y = α~1 + β1~x
weight + β2~x

age + β3~x
weigth·weight + β4~x

weight·age + β5~x
age·age + ~ε (5.44)

where
~xweigth·weight = (xweight1 · xweight1 , xweight2 · xweight2 , . . . , xweightn · xweightn ),

and
~xweigth·age = (xweight1 · xage1 , xweight2 · xage2 , . . . , xweightn · xagen ),
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and finally
~xage·age = (xage1 · xage1 , xage2 · xage2 , . . . , xagen · xagen ),

So, if we are willing to sacrifice the idea that the expected among of milk is a linear
function of weight and age, we get automatically, that the error terms εi have expectation
0, and this guaranties at least that the estimates α̂, β̂1 and β̂2 are unbiased! In terms,
of the vector model, like in 5.44, we still get a linear vector model even if the function
g(weight, age) = E[milk|weight, age] is not linear in weight and age, but is just a finite
polynomial in weight and age. so, all our techniques apply, except that we will have more
factors!

Now, what about the precision of our prediction for a new cow? So, first note that if we
would just have uncorrelated errors each having same standard deviation, then all our
calculations about standard deviation of estimates α̂,β̂1 and β̂2 remain valid.
But even that in reality might not be exactly the case: some cows might be a little bit
correlated. Also, they might not all have exactly the same σ. But here is an argument,
which explains why we are often able to use linear regression in situation where it is not
exactly true that we have all the error terms are uncorrelated and have exactly same
standard deviation: Say the new cow you want to predict, is “similar” to the others.
When you add her to the data set and calculate our estimates all the estimates remain
about the same. Then we could imagine the following “Gedankenexperiment”: you add
her, but she is similar, so after adding her we could pick at random any of the cows and
it “would somehow amount to the same”. that would tell you that the expected error
square should be about ∑n+1

i=1 (Yi − α̂− β̂1x
weight
i − β̂2x

age)2

n+ 1

which is about our Maximum-Likelihood estimate for σ. (Except that we have an added
cow).....So, this argument, tells me that things might work, as long as the cow is “typical”,
in the sense that she is not drawn from another population then the ones in the data-
set......

6 Invariant testing, principal components and the

mutivariate T 2 test

First assume that you have an artillery gun g0 shooting without changing its position,
amunition or direction and/or elevation. Let X, resp. Y be the x-coordinate, resp y-
coordinate of the impact point. Assume at first for simplificaton that E[X] = E[Y ] = 0
and that X and Y are independent of each other with σX = σY = 1. Now, we observe sud-
denly an impact point x = 2.3 and y = 0.3. This seems a little bit far from our expected
impact point to come from our artillery gun. maybe it is another gun, shooting which is
also execising in the same area. We would like to make a statistical test on the 5% con-
fidence level. We assume that the other gun has same covariance matrix. In the current
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case the covariance matrix is the identity. Now, for one dimensionl normal variable, we are
with 95% probability withing 1.96 the standard deviation from the expected value. So,
if we look at the x coordinate we are further: we are 2.3 standard deviations away from
the expectation of gun g0. Hence, if we would be given only x = 2.3 as information and
not the other coordinate, then we would reject the hypothesis that it is gun g0 shooting.
But, when we use both coordinates, we use X2 + Y 2 as test statistic. (We look at the
distance square of the impact point from the expected value of our gun g0. If the distance
square is too big we reject the hypotesis that it is our gun, as simple as that). Now, if it
is our gun shooting then X2 + Y 2 is a sum of two independent standard normals which
got squared. (It is the distance square from the origin of a normal vector with indpendent
standard normal entries). In statistics such a variable is called Chi-square with 2 degrees
of freedom. So, we go into a table and look for the critical value at 5%s significance.
We find 5.99. This is to say that the sum of two independent standard normals-squared
exceeds 5.99 only in about 5% of cases. In our case, using Euclide, the distance square
to the origin of this new impact point is x2 + y2 = 2.32 + 0.32 = 5.38 is below being
significant. So, in the two dimensional case, we can not reject the new impact
point as being from our original artillery gun on the 5%-level, despite a test
on one coordinate only would give a different result. What is the reason for this
difference? Well imagine a high dimensional data, with lots of coordinates which are in-
dependent of each other, not just two. Then, because there are lots of coordinates, there
is a high probability that at least some of them will be further away from their expectatin
than that is typical. (Of course, most will jsut behave in a regular was, and be within
two standard devition from their mean). Hence, we can not just test every coordinate
individually, because some will tell us to reject the hypothesis. Simple, because in a large
enough group there will always be a few outliers. So, to take this into account we take
the average of the squares.
Now let us go more formal: consider testing for a normal random vector (X, Y ) with inde-
pendent standard normal entries: the hypothesis E[X] = E[Y ] = 0 (that is µx, µy = (0, 0)
against (µx, µY ) = (E[X], E[Y ]) 6= (0, 0). (So, both hypothesis have the same covariance
matrix equal to I.) We assume that we know nothing about what (µx, µy) the average
impact point looks like if it is another gun shooting. (That is if we are in the alternative
hypothesis.) So, if for example there are two batteries shooting and we know the approx-
imate position of the other battery, and the alternative would be that the other battey
has been shotting and we know approximately there average impact point, then we would
have a totaly different situation. That is we would test our gun against a gun of the other
battery. That would mean test average impact point (0, 0) against another given, known
impact point (µx, µy). Same covariance. We have seen then the optimal deicision rule is
a half space. Totally different stuff from using the distance square to the origin....)
What is the justification for using the distance square to the averge impact point of our
gun as test statistic? One way of justifying it, is that the circle is invariant under rota-
tion. So, when we rotate the data around (0, 0) we transform the problem into itself. The
distributions in the alternative hypothesis are changed, individually, but not as a set. So,
since the problem remains invariant under rotation around the average impact point of g0,
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we may want the acceptance region to satisfy the same invariance. This allows in many
situations to find a way of testing: request the acceptance region to be invariant under a
set of transformations which leave the problem invariant. This is a very abstract way,
from the cook-book of abstract math-statistics to justify the circle around the
average impact points as acceptance region
Now, most artillery guns have different latteral flucutation than fluctuation in the di-
rection of shooting. Imagine, now that X and Y are still independent but have different
standard deviations. Say you have σX = 1 and σY = 3. for our artillery gun g0, where still
E[X] = E[Y ] = 0. We get an impact point (x, y) = (1.9, 5.9). Note that each coordinate
separately is within 2 standard deviation from its expectatin. (Provided we shoot with
our gun g0). So, if we do tests for the coordinates separately we would not reject that
the shell comes from the gun g0). But, let us do a two dimensional test. For this we
divide the coordinates by their standard deviation. Then, this being done we have two
independent standard normals. So, we are back in the previous situation, where we can
use the Chi-square statistic for a test. In other words, we take

x2

12
+
y2

32
=

1.92

1
+

5.92

9
= 7.47̄ (6.1)

as testing statistics. This is far from the critical value at 5% significance. Indeed, we
had seen that value being at 5.99. Hence, working in two dimension, we have significant
evidence (on the 5% level) that it is not our gun g0 which has shot the shell with impact
point (1.9, 5.9). This would not have been detected if we had just looked at the coordinates
individually!!
What is the justification for taking the expression 6.1 for our testing purpose as test
statistic? One can show again that the acceptance region given by

x2

12
+
y2

32
≤ constant (6.2)

are the only possible ones if we want invariance under all linear transforms which leave the
probem invariant. (That is all linear maps which leave the covariance matrix invariant.
So, we would have to find all 2× 2 matrices A for which AtCOV A = COV , where COV
is the covariance matrix of (X, Y ). Then we would need to determine all sets which are
invariant for all such A’s). That would be a lot of work. So, instead we transform our
impact point into having standard normal independent coordinates and then apply the
invariance principle. In other words, we apply the invariance principle to (X/σX , Y/σY ).
There, we have independent standard normal entries, where the invariant acceptance
region is the circle. so, the optimal test has acceptance region:

X2

σ2
X

+
Y 2

σ2
y

≤ constant,

where the constant depends on the significant level one wants.
Next situation is when we have again an impact point, but the coordinates are not inde-
pendent of each other. Then, we can transform the problem into the same situation that
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we had previously by using the principal components. So, let the impact point be the
random vector ~X = (X, Y )t. The principal components ~ν1 and ~ν2 are the eigenvectors of
the covariance matrix. We take them to be of length 1. The corresponding eigenvalues
are designated by λ1 and λ2. Let us cite a few facts from Matzingers lecture notes on
machinelearning about principal components:

1. The principal components ~ν1 ~ν2 are orthogonal to each other.

2. If we express ~X = (X, Y ) in the coordonate system defined by ~ν1 and ~ν2, then

the new coordonates are independent of each other. That is ~ν · ~X and ~ν2 · ~Y are
independent of each other.

3. Using the principal components as coordinate system, the variances of the coordi-
nates are the eigenvalues. So λ1 = V AR[~ν1 · ~X] and λ2 = V AR[~ν2 · ~X].

So, since in the coordinate system of the principal components, the coordinates are inde-
pendent, we can just apply what we have seen so far and find as acceptance region:

X2
PC

σ2
XPC

+
Y 2
PC

σ2
YPC

≤ constant (6.3)

where XPC = ~X · ~ν1 and YPC := ~X · ~ν2 are the coordinates in the principal component
coordinate system and the constant dependents on the significance level we want. So, let
us give an example. In other words, the acceptance region can be written as

( ~X · ~ν1)2

λ1

+
( ~X · ~ν2)2

λ2

≤ constant (6.4)

where we used the fact that the variance of the principal components are the eigenvalues
of the covariance matrix λ1 and λ2.
Assume that the covariance matrix is given by

COV [ ~X] =

(
4 2
2 4

)
(6.5)

Say we have an impact point (6, 6). Could that shell have originated from our gun with
average impact point (0, 0)? So, we test again (E[X], E[Y ]) = (0, 0) against the alterna-
tive (E[X], E[Y ]) 6= (0, 0). And we assume for both hypothesis, the covariance matrix
the same and given in 6.5. The covariance matrix is also supposed to be known. The
eigenvectors of our covariance matrix are ~ν1 = (1/

√
2, 1/
√

2) and ~ν2 = (−1/
√

2, 1/
√

2).
The corresponding eigenvalues are 6 and 2. When we represent our impact point (6, 6) in
the coordinate system of the principal components, we get: first coordinate is 12/

√
2 and

0. Hence, the test statistic is

( ~X · ~ν1)2

λ1

+
( ~X · ~ν2)2

λ2

=
122

2 · 6
+

0

2
= 12
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which is significant on the 5%-level. So, it probably was not our gun shooting this round.
Now, note that in the coordinate system of the principal components, the covaraince
matrix is diagonal since the components are independent and have covariance 0. So, the
covariance matrix for the impact point expressed in the principal components is

COV

[(
XPC

YPC

)]
=

(
λ1 0
0 λ2

)
(6.6)

So, our test statistic given on the left side of inequality 6.4 can be written as:

(XPC , YPC) ·
(
COV

[(
XPC

YPC

)])−1

·
(
XPC

YPC

)
(6.7)

Now, if Σ denotes the covariance matrix, we have thus as acceptance region:

~X · Σ−1 ~X ≤ constant (6.8)

where as usual the constant depends on the significance level wanted. (To obtain 6.8
from 6.7, we used the fact that the expression 6.7 is invariant under an orthonormal
basis change. And in our case, the coordinate system of the principal components are
orthonormal. So, basically, the right side of 6.8 is just the right side of 6.7 rewritten in
the original basis.
there is an additional justification for 6.8. Assume that we want to test our hypothesis
of a normal impact point with (E[X], E[Y ]) = (0, 0) and given covariance Σ agains the
alternative of a uniform random variable in an enormous erea around the origin denoted
by R. We assume that the acceptance region has to be in R. So, this is a simple hypothesis
testing situation. To find an optimal test, we simply, get the log ratio. We find the log
ratio to be

log
fnormal,µX=µY =0,Σ

funiform
= constant · (−(x, y)Σ−1

(
x
y

)
)

Hence, putting the above expression below a constant leads to an optimal test when we
test agains a uniform in a large area. So, we get again an acceptance region like this:

(x, y) · Σ−1

(
x
y

)
≤ constant (6.9)

6.1 The mulitdimensional T-square test

Often you are in a situation that you do not have the covariance matrix but have to
estimate it. Now, if you do not have a lot of data points this might introduce quite an
error. More specifically, our experience with real high dimensional data is that we need
a sample size about ten times bigger than the dimension of the random vector under
consideration to have a good estimate of the covariance matrix. In that case, you can
just act as if the true covariance was equal to the estimated one and replace in 6.9, the
covariance by its estimate and still act as if 6.9 was Chi-square with p degrees of freedom.
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Now, when your sample size n is less than about ten times the dimension p of your vector
then you could have a subsancial error in your estimated covariance. So, in other words
the difference between the true covariance and the estimated one, could be so big, that it
is absolutely no longer justified to act as if they would be the same. In that case, however,
we can show that the test statistic under H0 does not depend on Σ or the expected value
under H0 and has an F distribution when properly rescaled with p and n− p degrees of
freedom.
Let us imagine a simple example: you would have the same number of male and female
birdies in a sample. And you measure as usual length and wing span. Now, you want to
find if there is a significant difference between male and female for the vector ~X = (X, Y ).
So, take the differences bird by bird. (This is only possible if you have the same sample
size for female and male birdies). That is let (Xi, Yi) be the difference between the i-th
male and the ith female. (the ordering for each group is done at random). So you assume
that you have p males and p females. Formally you want to test given the sample

(X1, Y1), (X2, Y2), . . . , (Xp, Yp)

the hypothesis H0 that expectation is zero, that is the hypothesis that:

E[X] = E[Y ] = 0.

Typically, you do not know the covariance matrix, so you have to estimate it. Also, as
test statistic you take the average lengths:

X̄ =
X1, X2, . . . , Xp

p
; Ȳ =

Y1, Y2, . . . , Yp
p

But, note:

COV (X̄, Ȳ ) = COV (
X1 + . . .+Xn

n
,
Y1 + . . .+ Yn

n
) =

1

n2
COV (X1 + . . .+Xn, Y1 + . . .+ Yn) =

=
1

n2

∑
i,j

COV (Xi, Yj) =
1

n2

∑
i,i

COV (Xi, Yi) =
n

n2
COV (X1, Y1) =

COV (X1, Y1)

n
,

where we used that the covariance COV (Xi, Yj) is 0 when i 6= j. Similarly,

COV (X̄, X̄) = V AR((̄X)) = V AR[(X1 + . . .+Xn)/n] = V AR[X1]/n =
COV (X1, X1)

n

Samething for Y , we have COV (Ȳ , Ȳ ) = COV (Y, Y )/n. So, when instead of one
birdy we consider their average, then the covariance matrix gets devided by
n. Hence, if we knew the covariance matrix, then the test statistics would be

(X̄, Ȳ )·
(

COV (X̄, X̄ COV (X̄, Ȳ )
COV (Ȳ , X̄) COV (Ȳ , Ȳ )

)−1

·
(
X̄
Ȳ

)
= n·(X̄, Ȳ )·

(
COV (X,X) COV (X, Y )
COV (Y,X) COV (Y, Y )

)−1

·
(
X̄
Ȳ

)
(6.10)
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But, the problem is we do not know the covariance matrix, so instead of the true covariance
matrix, we will use the estimated one. So, our test statistics will be the expression on the
right of 6.10. In other words, the acceptance region will be of the type:

n · (X̄, Ȳ ) ·
(

ˆCOV

[(
X
Y

)])−1

·
(
X̄
Ȳ

)
≤ constant (6.11)

where constant > 0 is a constant which depends on the significance level one choses. Let
A be the true covariance matrix of the vector ~Z = (X, Y ) to the power −0.5:

A :=

(
COV

[(
X
Y

)])−0.5

For defining A, we leave the eigenvectors (principal components ) identical and take the
inverse square-roots of the eigenvalues. Then, (Xi, Yi)A is a normal vector with standard
normal independent entries assuming that Xi and Yi have expectation 0. To prove this
note that the covariance matrix of a random row vector can be written as expectation of
the vector mutliplied by its transpose. We have to multiply it from right otherwise we
would get scalar product and not a matrix. So, in other words, the covariance matrix of
(Xi, Yi)A is equal to

E[((Xi, Yi)A)t(Xi, Yi)A] = E[At(Xi, Yi)
t(Xi, Yi)A] = AtE[(Xi, Yi)

t(Xi, Yi)]A =

= AtCOV

[(
X
Y

)]
A = Id

where Id is the 2× 2 idendity matrix. We used, that since A = COV [~Z]−0.5 then we have

AtCOV [~Z]A = Id.

Same thing is of course, A(X, Y )t has standard normal independent entries under H0.
Now, we simply apply this to our test statistic. We get that our test statistics 6.11 is
equal to:

n · (X̄, Ȳ )A ·
(
A · ˆCOV

[(
X
Y

)]
A

)−1

· A
(
X̄
Ȳ

)
≤ constant (6.12)

Now having put the matrix A in the above test statistics we get that the test statistics is
the test statistics for standartised data. That means if our original true covariance matrix
would the identity, that is if X and Y would be standard normal and independent of each
other and we would compute the statistics 6.11, then we would have the same as 6.12.
For this let

(UX,i, UY,i) := (Xi, Yi)A (6.13)

be the standardazied data. Then, by taking the transpose of 6.13, we also have:(
UX,i
UY,i

)
= A

(
Xi

Yi

)
. (6.14)
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Let

ŪX :=
UX,1 + . . .+ UX,n

n

and let

ŪY :=
UY,1 + . . .+ UY,n

n
.

By taking the average of 6.13 and 6.14, we find

(ŪX , ŪY ) := (X̄, Ȳ )A ,

(
ŪX
ŪY

)
= A

(
X̄
Ȳ

)
. (6.15)

Then, we apply 6.13, 6.14 and 6.15 to 6.12, and find that 6.12 (and hence also 6.11) is
equal to to:

n · (ŪX , ŪY )

(
ˆCOV

[(
UX
Uy

)])−1

·
(
ŪX
ŪY

)
≤ constant (6.16)

where

ˆCOV

[(
UX
UY

)]
=

=
1

n− 1

(
UX,1 − ŪX UX,2 − ŪX . . . UX,n − ŪX
UY,1 − ŪY UY,2 − ŪY . . . UY,n − ŪY

)
·


UX,1 − ŪX UY,1 − ŪY
UX,2 − ŪX UY,2 − ŪY

. . .
UX,n − ŪX UY,n − ŪY


designates the estimated covariance matrix, when we use the standartized data instead
of the original one. The estimated covariance matrix for the standartized data replaces
in formula 6.12 the expression

A · ˆCOV

[(
X
Y

)]
A.
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This is justified, because:

A · ˆCOV

[(
X
Y

)]
A =

A · 1

n− 1

(
X1 − X̄ X2 − X̄ . . . Xn − X̄
Y1 − Ȳ1 Y2 − Ȳ . . . Yn − Ȳ

)
·


X1 − X̄ Y1 − Ȳ
X2 − X̄ Y2 − Ȳ
. . .

Xn − X̄ Yn − Ȳ

 · A =

=
1

n− 1

(
A · (X1 − X̄,X2 − X̄, . . . , Xn − X̄)
A · (Y1 − Ȳ , Y2 − Ȳ , . . . , Yn − Ȳ )

)
·


(X1 − X̄, Y1 − Ȳ ) · A
(X2 − X̄, Y2 − Ȳ ) · A

. . .
(Xn − X̄, Yn − Ȳ ) · A

 =

=
1

n− 1

(
UX,1 − ŪX UX,2 − ŪX . . . UX,n − ŪX
UY,1 − ŪY UY,2 − ŪY . . . UY,n − ŪY

)
·


UX,1 − ŪX UY,1 − ŪY
UX,2 − ŪX UY,2 − ŪY

. . .
UX,n − ŪX UY,n − ŪY

 =

= ˆCOV

[(
UX
UY

)]
where the last equation above was obtained by using 6.13, 6.14 and 6.15. Now, we are
going to devide the vector (ŪX , ŪY ) by its Euclidian norm so as to get a unit vector:

(Ū∗X , Ū
∗
Y ) =

(ŪX , ŪY )√
Ū2
X + Ū2

Y

.

with this notation, our inequality 6.16 reads:

n · (Ū2
X + Ū2

Y ) · (Ū∗X , Ū
∗
Y )

(
ˆCOV

[(
UX
Uy

)])−1(
Ū∗X
Ū∗Y

)
≤ constant (6.17)

Note that ŪX and ŪY both are normal with expectation 0 and have standard deviation
1/
√
n. Hence, the expression

n · (Ū2
X + Ū2

Y ) (6.18)

is the sum of two independent standard normals squared. Hence a Chi-square with 2
degrees of freedom. In general, if we have random vectors of dimension p, then this will
be a Chi-square with p degrees of freedom. Now, note that

(UX,1 − ŪX , UX,2 − ŪX , . . . , UX,n − ŪX) (6.19)

is independent of ŪX . (To check just realize that COV (UX,i − ŪX , ŪX) = 0 and that for
joint normals we have that covariance 0 implies independence). Similarly, we get that

(UY,1 − ŪY , UY,2 − ŪY , . . . , UY,n − ŪY ) (6.20)
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is independent of ŪY . Now the estimated covariance matrix for the standartize data only
depends on 6.19 and 6.20 and hence is independent of (X̄, Ȳ ). Also, by isotropy of space
under a normal vector with independent standard normal entries, we find that X̄2 + Ȳ 2

is independent of (X̄∗, Ȳ ∗). This is to say, that in 6.17 the Chi-square variable give by
n(Ū2

X + Ū2
Y ) is independent of the rest of expression 6.17. The rest of the expression is

(n − 1) over a Chi-square with n − p degrees of freedom. This then leads that our test
statistics given in 6.11, is equal to:

T 2
0 :=

(n− 1)p

n− p
Fp,n−p

where Fp,n−p denotes an F -statistics with p and n − p degrees of freedom. Here p is the
size of the vectors we consider, and n is the sample size. The only things which we still
need to prove is that the other part (other than n(Ū2

X + Ū2
Y )) in 6.17, that is expression:

(Ū∗X , Ū
∗
Y )

(
ˆCOV

[(
UX
Uy

)])−1(
Ū∗X
Ū∗Y

)
(6.21)

is (n− 1) divided by a Chi-square matrix with n− p degrees of freedom. This is done as
follows:
define the p× n matrix L as follows:

L :=

(
X1 − X̄ X2 − X̄ . . . Xn − X̄
Y1 − Ȳ1 Y2 − Ȳ . . . Yn − Ȳ

)
.

then let ~Li be the i-th row of L. Hence, we have

L =

(
~L1

~L2

)
Now let P1(.) denote the orthogonal projection onto the orthogonal complement of the

span of ~L2 and the vectors (1, 1, . . . , 1)t in Rn. (If there would be more than 2 coordinates
X and Y , that is if there would be p coordinates, then we project orthogonally onto the
orthogonal complement of the span of the vectors ~Li with i 6= 1. Now, note that the
vector ((̄U)∗X , Ū

∗
Y ) has a distribution which is invariant under rotation in space. Same

thing for the estimated covariance matrix

ˆCOV

[
UX
UY

]
On top of this the two are independent. So, we can take any unit vector for (Ū∗X , Ū

∗
Y ) and

we get the same distribution for 6.21. In other words, if we replace in expression 6.21,
the unit vector (Ū∗X , Ū

∗
Y ) by (1, 0) we get the same distribution for 6.21. This allows us
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to realize that expression 6.21 has same distribution as

(1, 0)

(
ˆCOV

[(
UX
Uy

)])−1(
1
0

)
=

=(n− 1) · (1, 0)
(
L · Lt

)−1
(

1
0

)
=

=(n− 1) · (1, 0)
(
(L−1)t · L−1

)( 1
0

)
=

=(n− 1) ·
(
(1, 0)(L−1)t

)
·
(
L−1

(
1
0

))
=

=(n− 1) ·
(
L−1

(
1
0

))t
·
(
L−1

(
1
0

))
=

=(n− 1) ·
∣∣∣∣L−1

(
1
0

)∣∣∣∣2
2

=

where |.|22 designates the Euclidian norm squared. Now the matrix L is not a square
matrix, so what do we mean by L−1? Well we restrict the map ~x 7→ L · ~x from Rn to Rn

to the imagespace of L. Now, by definition

P1(~L1) · ~L2 = 0

and
P1(~L1) · ~L1 = |P1(~L1)|22

hence, the vector
P1(~L1)

|P1(~L1)|22
is transformed by the linear map L into the vector (1, 0)t. So, we can write

L−1

(
1
0

)
=

P1(~L1)

|P1(~L1)|22
.

hence, ∣∣∣∣L−1

(
1
0

)∣∣∣∣2
2

=
P1(~L1) · P1(~L1)

|P1(~L1)|42
=

1

|P1(~L1)|22
now P1(~L1) is the orthogonal projection of a random vector with i.i.d. standard normal

entries onto a n− p dimensional space. hence, |P1(~L1)|22 is a χ-square variable with n− p
degrees of freedom. This finishes our proof.
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7 Asymptotics of testing, fisher information and the

likelyhood ratio testing

So, assume that you have a bunch of variables which are i.i.d. X1, X2, . . . , Xn which have
probability density f(x, θ0), where the parameter θ0 is not known. Assume, that we use
maximum-likelyhood to estimate θ0. How, precise will our estimate be in terms of having
more date points n? We are going to show, that under some mild regularity conditions,
when n is large enough, the maximum-Likelyhood estimate θ̂n is approximately normal
with expectation θ0 and variance given by

V AR[θ̂n] ≈ 1

n · E[I(θ0)]

where
I(θ)

is the fisher information given by

I = −∂
2log(f(X, θ))

∂2θ
.

We call l(x, θ) := log(f(x, θ)) the log likelyhood. The partial derivative according to θ is
called the scoring function and denoted by S:

S =
∂l(x, θ)

∂θ
=
∂f(x, θ)/∂θ

f(x, θ)

So, we have

I(θ) = −∂S
∂θ

= −∂
2f(x, θ)/∂2θ

f(x, θ)
+

(∂f(x, θ)/∂θ)2

f 2(x, θ)
.

So, the maximum-likelyhood estimate is the value of θ which maximizes the log likelyhood.
So, in other words

θ̂n = argmax

n∑
i=1

l(Xi, θ)

Now, the maximum is reached where the derivative is 0. So, we find that θ̂n is solution to∑n
i=1 S(Xi, θ)

n
= 0. (7.1)

The coefficient n does not change anything, we added it for later it will be easier to
calculate. Now, Let us calculate the expected score at θ0:

E[S(X, θ0)] =

= E[
∂f

∂θ
(X, θ0)

1

f(x, θ0)
] =

∫
∂f

∂θ
(X, θ0)

1

f(x, θ0)
f(X, θ0)dx =

∫
∂f

∂θ
(X, θ0)dx =

∂
(∫

f(x, θ)dx
)

∂θ
= 0
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where we used that the integral of a probability density is always 1:∫
f(x, θ)dx = 1,∀θ

and hence the derivative is 0. So,this shows that expression 7.1, has expectation 0 at θ0.
Now, the expression 7.1 being a sum of independents, it is approximately normal. Let us
calculate the variance of S(X, θ0):
We have

V AR[S(X, θ0)] = E[S2(X, θ0)]− E2[S(X, θ0)] = E[S2(X, θ0)] =

= E[

(
∂f

∂θ
(X, θ0)

)2
1

f 2(x, θ0)
]

Hence, the variance of expression 7.1, being equal to V AR[S(X, θ0)]/n is of order O(1/n).
Furthermore, the derivative of the expression on the left side of 7.1 is given by:∑n

i=1 ∂S(Xi, θ)/∂θ

n
=

n∑
i=1

I(Xi, θ)

n
≈ E[I(X, θ)] (7.2)

where the last approximation above comes from the law of large numbers which says that
an average of i.i.d. variables is about equal to their expectation when n → ∞. Now the
expected fisher information can be calculated as follows:

E[I(θ)] = (7.3)

E[−∂
2f(x, θ)/∂2θ

f(x, θ)
] + E[

(∂f(x, θ)/∂θ)2

f 2(x, θ)
] = E[

(∂f(x, θ)/∂θ)2

f 2(x, θ)
], (7.4)

(7.5)

where we used

E[
∂2f(x, θ)/∂2θ

f(x, θ0)
] =

=

∫
∂2f

∂2θ
(X, θ0)

1

f(x, θ0)
f(x, θ0)dx =

∫
∂2f

∂2θ
(X, θ0)dx =

∂2
∫
f(X, θ)

∂2θ
= 0

Hence, we find
E[I(X, θ0)] = V AR[S(X, θ0)], (7.6)

So, say you have a differentiable function θ 7→ g(θ) which take a small value of order
O(1/n) at θ0 and has a derivative at θ0 bounded away from zero of order O(1). Then,
there will typically by a solution to g(θ) = 0 in the vicinity of θ0 given approximately by

θ = − g(θ0)

g′(θ0)
.
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(To see this, just put the first order Taylor expension:

g(θ) ≈ g(θ0) + ∆θg′(θ0)

equal to 0 and solve for ∆θ). So, when we take expression on the left side of 7.1 as g(θ),
then we find that the solution to 7.1 is approximately equal to:

θ̂ ≈ g(θ0)

g′(θ)
=

Pn
i=1 S(Xi,θ)

n
∂

Pn
i=1 S(Xi,θ)/∂θ

n

≈

Pn
i=1 S(Xi,θ)

n

E[I(X, θ0)]

where we used 7.2. The expression on the very right side of the last equality above, has
expectation 0 and variance equal to

V AR[S]

n · E2[I(X, θ0)]
=

1

n · I(X, θ0)
,

where we used equation 7.6. We have just finished showning, that as n becomes bigger the
maximu-likelyhood estimate θ̂n is approximately normal with expectation 0 and variance
given by:

V AR[θ̂n] ≈ 1

n · E[I(X, θ0)]
.

7.1 The most precise testing one could get

Say you have two type of particles and you measure their size. One has size 1 and the
other has size 2, what ever the units are. You try based on the measurment of the size to
determine which type of particle it is. Now, you know that the particle you measure is one
of these two types. Assume that you get to measure one particle, but the measurment error
is of order 20. (Standard deviation of measurment error is about 20). Then, you would be
unable to say what type of particle it is based on your measurment. (Error of first type
plus error of second type sum up to about 1). Then, you buy a better measurment tool.
Now, you make measurments with a precision of 0.1. (Standard deviation of measurment
error is about 0.1) Now you will be able to say with high probability which type of particle
you have, because the error is much smaller than the difference in size, and by recognising
the size you figure out the particle type. So, basically this is about testing where H0: X
is normal with expectation µ1 and standard deviation σ against H1 : X is normal with
expectation µ2 and same standard deviation σ. So, lousely speaking when µ1−µ2| = σ is
the breaking point where we start being able to distinguish between the two hypothesis.
When σ is quite a bit bigger than |µ−1−µ2| then we can not recognize which hypothesis
holds. When σ is quite a bit smaller than µ1−µ2|, then we can detect which hypothesis we
are dealing with with high probability. So, now we are going to apply this idea when we
test that a bunch of i.i.d. points X1, X2, . . . , Xn are generated by the probability density
g(.) or f(.). (so, they are all either generated by f(.) or all by g(.)). Then we know that
the optimal test will be a ratio test, with acceptance region given by:

f(X1) · f(X2) . . . f(Xn)

g(X1) · g(X2) . . . g(Xn)
≥ cst
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where cst is a constant which will determine the significance level. We can also take the
log-ratio, which would lead to the acceptance region being:

log(f(X1

g(X1
) + log(f(X2)

g(X2)
) + . . .+ log(f(Xn)

g(Xn)
)

n
> cst. (7.7)

Now, this is a sum of independents and hence asymptotically normal. It will have different
expectation depending on wether the “true” underlying model is with f(.) or with g(.).
The difference in expectation is

∆E = Ef [log(
f(X

g(X)
]− Eg[log(

f(X

g(X)
] =

∫
[log(

f(X

g(X)
f(x)dx−

∫
log(

f(X

g(X)
)g(x)dx

And we need to compare this to the standard deviation√
V AR[log(

f(X

g(X
)]

which in many cases we consider does not dependen a lot on which model we use. So,
when the standard deviation is quite a bit smaller than the difference in expectation we
can tell which model we are dealing with whilst otherwise we can not.
We are going to apply this idea to a one paratmeter family f(x, θ). here f(x, θ0 is a one
parameter family. Assume the date is generated by f(x, θ0. Now, take any non-random
θ 6= θ0. If we don’t know, can we test with our n data points to find out which parameter
is the true one? That is can we figure out if it is θ0 or θ? (We assume that θ is a
fixed given value which is already a little close to θ1. We simply need to compare the
expectation to the variance of the log ratio statistics.. So, when we take f(x) = f(x, θ)
and g(x) = f(x, θ0), then our test-statistics 7.7 is:

n∑
i=1

log
f(Xi, θ)

f(Xi, θ0)
=

n∑
i=1

(log(f(Xi, θ)−log(f(Xi, θ0)) ≈ ∆θ
n∑
i=1

∂ log(f)

∂θ
(Xi, θ0) = ∆θ

n∑
i=1

∂f
∂θ

f
(Xi, θ0).

Hence, the difference in expectation is going to be obtained by taking the expectation of
the log ratio under f(x, θ) vs under f(x, θ0). This gives for the difference in expectation
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of the log-ratio under the two different densities:

∆E = ∆θ

(
Eθ[

n∑
i=1

∂f
∂θ

f
(Xi, θ0)]− Eθ0 [

n∑
i=1

∂f
∂θ

f
(Xi, θ0)]

)
=

= ∆θ

(∫ n∑
i=1

∂f
∂θ

f
(Xi, θ0)f(x, θ)dx−

∫ n∑
i=1

∂f
∂θ

f
(Xi, θ0)f(x, θ0)dx

)
=

= ∆θ

∫ n∑
i=1

∂f
∂θ

f
(Xi, θ0)(f(x, θ)− f(x, θ0)dx ≈

≈ ∆2θ

∫ n∑
i=1

(∂f
∂θ

)2

f
(Xi, θ0)dx =

= n∆2θ

∫
(∂f
∂θ

)2

f
(Xi, θ0)dx

the other thing we need to find is the variance of the log-likelyhood ratio. So, we have

V AR[
n∑
i=1

log(
f(Xi, θ)

f(Xi, θ0)
] =

n∑
i

V AR[log(
f(Xi, θ)

f(Xi, θ0)
]] =

= nV AR[log(
f(X, θ)

f(X, θ0)
]] ≈ nV AR[∆θ

∂f
∂θ

f
(Xi, θ0)] =

= n∆2θE

( ∂f
∂θ

f
(Xi, θ0)

)2
 =

= n∆2θ

∫ ( ∂f
∂θ

f
(Xi, θ0)

)2

f(x, θ0)dx =

= n∆2θ

∫ (
∂f
∂θ

)2

f
(Xi, θ0)dx

Now, puting the difference in expectation equal to the variance of the log-likelyhood ratio
will tell us at what point θ is too close to θ0 to distinguish. So, we put

∆E =
√
V AR

which leads to

n∆2θ

∫
(∂f
∂θ

)2

f
(Xi, θ0)dx =

√
n∆2θ

∫ (
∂f
∂θ

)2

f
(Xi, θ0)dx

which implies

∆θ =
1√

n
∫ ( ∂f∂θ )

2

f
(Xi, θ0)dx

=
1√

n · I(X)
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where we used

E[I(X, θ)] =

∫ ∂f
∂θ

f
dx. (7.8)

which was proven in the previous section in (see equation 7.4).

7.2 The likelihood-ratio testing and generalised linear models

69


